
Citizen-centered, auditable and privacy-
preserving population genomics

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s43588-021-00044-9



Supplementary Materials for

Citizen-Centered, Auditable and Privacy-Preserving Population
Genomics

Dennis Grishin,1,4∗† Jean Louis Raisaro,2∗† Juan Ramón Troncoso-Pastoriza3†,
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We begin the supplementary material by introducing a high-level description of the privacy

and security concepts used in the paper. We continue by describing in details the material

and methods that support our system for secure, privacy-preserving and auditable data sharing.

Finally, we report and describe additional performance results that, due to space constraints, are

not included in the main manuscript.

1 Security and Privacy Background

We first introduce the main cryptographic concepts used in our platform, with a special focus

on privacy and security. In particular, we further develop: (a) secure computing techniques that

enable data processing while avoiding undesired leakages to the computing party or parties; (b)

data integrity and trust decentralization techniques, that enable immutable storage of relevant

logging and transaction information guaranteeing tamper-proof integrity with no single points

of failure, and (c) secure data release techniques, that enable sharing cleartext data (such as the

results of a secure process) while mitigating malicious attacks on those data (e.g., membership

inference or reconstruction attacks).

1.1 Secure computing

Confidentiality and privacy in collaborative processes are traditionally handled by the use of

cryptographic privacy-enhancing techniques, especially homomorphic encryption and secure

multi-party computation. In particular, our system requires database searches, which are more

efficiently handled by equality-preserving encryption. We now give a high-level overview of

these three technologies.
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1.1.1 Homomorphic Encryption

Homomorphic Encryption (HE) enables computing on encrypted data without having to de-

crypt it first, consequently being an excellent enabler for secure processing in untrustworthy

environments. By virtue of a mathematical homomorphism between the plaintext space and the

ciphertext space, a server without access to the secret decryption key can obtain the result of

group (addition or multiplication) or ring (addition and multiplication) operations on the plain-

text by running their homomorphic counterparts on the ciphertext. Depending on the available

homomorphism, HE systems can be either additive, multiplicative or algebraic (both additive

and multiplicative). In order to be considered secure, any homomorphic cryptosystem must

feature semantic security, which means that it is not possible for somebody without access to

the secret decryption key to distinguish between encryptions of the same or different plaintexts.

This requires the cryptosystem to be probabilistic, i.e., each encryption is randomized so that

two encryptions of the same plaintext result in different ciphertexts with very high probability.

Elliptic Curve ElGamal

Our system requires an additively and probabilistic homomorphic cryptosystem to enable counts

and histogram generation with encrypted data; for this purpose, we could have chosen either a

lattice-based SHE, or an additively homomorphic cryptosystem. In order to (optionally) enable

verifiability of the performed operations, we chose the latter, and more specifically, Elliptic

Curve ElGamal (1), which can support efficient use of zero-knowledge proofs for correctness,

contrarily to lattice-based SHE. Zero-knowledge proofs (2) are cryptographic constructions by

which a prover can convince a verifier that a statement is true without revealing any further

information.

It must be noted, though, that our system functionality is not bound to this choice and can

be achieved with other cryptosystems. The encryption of a message m ∈ Zp (the set of integers
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between 0 and a big prime p), is a pair of points in the elliptic curve: EK(m) = (rG,mG+rK),

where r is a uniformly-random nonce in Zp (therefore the probabilistic nature of the encryption),

G is a base point on an elliptic curve γ, and K is a public key.

The additive homomorphic property states that E(αm1 + βm2) = αE(m1) + βE(m2) for

any messagesm1 andm2 and for any scalars α and β. In order to decrypt ciphertext (rG,mG+

rK), the holder of the corresponding private key k (such thatK = kG) multiplies the first point

rG and k yielding k(rG) = rK, and subtracts this point from the second term of the ciphertext

mG + rK. The result mG is then mapped back to m, e.g., by using a hash table. We rely on

fixed-point representation to encrypt floating values.

As described in the main text, we enable trust distribution by combining the public keys of

several computing servers and building a collective public key. Decryption is then enabled as

an interactive protocol, where each server sequentially performs partial decryption with its own

secret key (which is still protected by the security properties of EC ElGamal, by virtue of the

discrete logarithm problem).

1.1.2 Secure Multi-Party Computation

Secure multi-party computation (SMC) is an area of cryptography that aims at enabling sev-

eral parties to evaluate a function on private data coming from distinct data sources without

aggregating or sharing the input data (3). At the end of the protocol, the parties learn nothing

more but the value of the function. SMC protocols are primarily based on either secret sharing

(splitting the secret values into randomly generated shares that are distributed among all parties)

or garbled circuits (hashing the truth tables of the to-be-computed circuit gates and executing

them by obliviously transferring the inputs) (4). Recent progress on oblivious transfer made

a lot of these protocols practical and even scalable (5), thus allowing for privacy-preserving

machine learning computations. Various privacy-preserving supervised machine learning algo-
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rithms have been proposed and analyzed in the SMC setting (6). There is an increasing interest

in both training and prediction algorithms for machine learning under SMC (7, 8).

1.1.3 Equality-Preserving Encryption

The probabilistic nature of homomorphic cryptosystems, where the encryption function is a one-

to-many function (it takes one same input to several different possible output values), prevents

direct equality comparisons between ciphertexts. There are two options to enable this function-

ality: either (a) define the comparison function as a polynomial that can be homomorphically

executed with the ring operations enabled by the cryptosystem; this solution is computationally

complex, especially when the plaintext coefficients are not represented with a binary decompo-

sition. Moreover, the result of the comparison would still be encrypted, requiring decryption

or further homomorphic processing to be effectively used. (b) The other option is to use in-

stead a non-probabilistic cipher in which the encryption of the same plaintext will always yield

the same ciphertext; i.e., the encryption function is a one-to-one function (deterministic). This

enables very efficient comparisons by just comparing the values of the ciphertexts.

In the case of EC ElGamal encryptions EK(m) = (rG,mG+ rK), a deterministic version

can be achieved by setting a fixed (secret) value for r, hence using only the second point of

the encryption function (Edet,K(m) = (mG′ + rK)), where G′ is a base point of the curve,

possibly different from G. In our distributed scenario, it is possible to split the value r and the

base point G′ among the computing nodes (analogously to the way the collective public key is

split), and run an interactive protocol that converts a probabilistic encryption of a message into

a deterministic one. Further details about this protocol can be found in (9).

It must be noted that, due to its equality-preserving property, deterministic encryption is sus-

ceptible to frequency attacks. An attacker that knows the frequency distribution of the clear-text

terms can try to map them to the frequency distribution of the corresponding encryptions, hence
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breaking it. In this work, we rely mainly on probabilistic homomorphic encryption, and when-

ever we need deterministic encryption, we apply additional countermeasures (see Generation of

dummy data in the Methods Section) to avoid this kind of attacks.

1.2 Integrity, Accountability and Access Control

There are two main approaches to protect data integrity and enforce access control in an ac-

countable way: centralized and distributed. We briefly introduce the advantages and disadvan-

tages of each of them, justifying our choice of a distributed approach for our system.

1.2.1 Centralized Approach

Enforcing access control has been traditionally the job of centralized (cloud) services (10).

These implement the logic that stores and interprets the rules applied to grant or deny access

to the sensitive data, and also log the access requests and their outcomes. These services are

typically manually configured and vulnerable to compromises. In personalized medicine, how-

ever, due to the sensitivity of the managed data and the inherently distributed nature of the data

sources, relying on the existence and good will of such a provider or centralized authority poses

significant risks that the multiple data holders are rarely willing to accept, especially when con-

sidering networks of clinical institutions or large sets of individuals. The single point of failure

represented by the centralized authority becomes an obvious target for attackers, and represents

a threat for the data in the whole network if compromised. Furthermore, the recent growth of the

personal genomics industry has exacerbated existing privacy concerns due to widely publicized

security breaches, non-transparent data sharing practices and government access to genomic

data without consent.
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1.2.2 Distributed Approach

In a distributed environment, a centralized authority is avoided, and accountability usually relies

on trusting each and every of the stakeholders involved in the collaborative processes (federated

network). Our approach prevents this weakness by relying on distributed ledger technologies

(DLTs, a.k.a. blockchains) (11–13). DLTs are considered a core building block for many next-

generation technologies relevant in multiple sectors of our future society, such as finance (14),

healthcare (15) and e-democracy (16). The idea around distributed ledgers is to move from a

trust-and-hope model, where a centralized authority provides service to clients, to a trust-but-

verify setting where the abstraction of this centralized authority is implemented by a (sub)set of

the participants, who replicate the actions of the authority and collectively agree (by majority)

on the ground truth. This split of trust makes the subversion of the system a challenging task for

an adversary, as he would need to stealthily compromise the majority of participants, instead of

a single central authority, in order to change the ground truth.

1.2.3 Permissioned vs public blockchains

There are two types of blockchains that can be deployed in a distributed scenario: public and

permissioned. The former are typically related to cryptocurrencies (e.g., Bitcoin), where there

is no restriction to the entities that can join the management of the chain and modify its con-

tents; the rules for updating the chain are normally based on Proof of Work, requiring that the

participating entities (miners) perform some computationally costly operations before they are

allowed to modify the chain by adding a new block. Besides not being environmentally friendly,

these chains are susceptible to the so-called 51% attack, in which a (minority) group of miners

temporarily accumulate enough computational power to be able to drift the evolution of the

chain at their will.

Contrarily, permissioned blockchains restrict the set of entities that have write-access to the
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chain, therefore effectively limiting the blockchain maintainers to a set of authorized parties.

The evolution of the chain is not based on proof-of-work, but on strict consensus rules that define

the majority ratio needed to add new blocks to the chain. Therefore, permissioned blockchains

are a perfect fit for distributing the trust among a set of authorized servers, out of which the

users only need to trust a majority, hence effectively avoiding single points of failure.

1.3 Secure Data Release

Once data has been processed and is ready to be publicly released or shared with authorized

entities, it has to be protected to avoid inference attacks that can single out individuals whose

data has been used to produce the released results. Traditionally, statistical approaches are used

to protect released data against these attacks, by means of modifications to the data that reduce

its accuracy but limit the leakage that could lead to successful inferences. These approaches

comprise de-identification and anonymization techniques for released individual data records,

and differential privacy for released aggregated data.

1.3.1 Data De-Identification

A data record is de-identified when direct identifiers are removed (17). Following the Privacy

Rule of the Health Insurance Portability and Accountability Act (HIPAA), de-identification

process can be applied following the Safe Harbor rule (removal of 18 personal identifiers),

or by expert determination. In either of both cases, after the removal of direct identifiers it

may still be possible to re-identify the individual in the presence of unique combinations of

indirect identifiers, such as genomic data; therefore, de-identified records cannot be considered

anonymized.
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1.3.2 Data anonymization

Data anonymization (18) is the result of processing personal data with the aim of irreversibly

preventing re-identification of the data subject. Both direct and indirect identifiers are subjected

to aggregation, generalization, suppression and/or randomization to mitigate re-identification

risks. There are several metrics to determine the achieved degree of anonymization; one of the

most popular is k-anonymity (18): A dataset fulfills k-anonymity whenever it contains at least

k individuals with any chosen combination of quasi-identifiers. Therefore, each individual in

the dataset is “hidden” within an anonymity set of at least k people.

1.3.3 Differential Privacy

A function applied over a dataset is called differentially private (19) whenever the (distribution

of the) result of such function does not substantially change by the presence or absence of one

individual in the dataset. Therefore, the release of a differentially-private result reveals neg-

ligible information about each of the individuals in the dataset. Differential privacy is usually

achieved through randomization techniques; i.e., adding a controlled amount of random noise to

the output of the to-be-computed deterministic “exact” function f(.), such that the variance of

the noise exceeds the maximum deviation of the function’s output produced by the contribution

of any individual as part of the input dataset. There are several notions of differential privacy;

the one we use in this work is (ε, δ)-differential privacy (19). Formally, this notion is defined

in the following way: Given two databases X and X ′ that differ in one record, a randomized

mechanism κ is said to be (ε, δ)-differentially private if for all possible outputs y (query re-

sponses) of K, it holds that Pr[κ(X) = y] ≤ eε ·Pr[κ(X ′) = y]+δ, where Pr[.] represents the

probability of an event. The informal interpretation of the previous expression is that the fact

that two databases differ in one record does not significantly change the probability distribution

of the output of the query. In practical terms, κ(.) is usually defined as the deterministic (exact)
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output of the desired query f(.) plus noise with a bounded power, usually drawn from a Lapla-

cian or Gaussian distribution. Recent work has demonstrated a query-answering mechanism

that maximizes the utility of the system while achieving provable privacy guarantees (20). This

approach can be applied to the differential privacy mechanism that is part of the system that we

present here.

1.3.4 Protecting Genomic Data Release

While anonymization and de-identification techniques can, to some extent, mitigate the re-

identification risk of clinical data, genomic databases have been proven vulnerable against

several types of inference attacks. Membership inference has been popularized by Homer et

al. back in 2008 (21). It consists of inferring whether some target individuals contributed their

genomic data to a cohort while knowing only part of the target’s data and summary statistics

about the cohort. Another inference attack, variant inference (proposed by Humbert et al. (22)),

can be carried out by relying on the intra-genome (between variants) and inter-genome (be-

tween relatives) correlations. Gymrek et al. have further shown that the identity of individuals

could be inferred by leveraging genetic genealogy databases (containing surnames) with short

tandem repeats on the Y chromosome (23). Shringarpure and Bustamante have also shown that

it is possible to infer whether an individual is part of a group of interest by only asking binary

questions about the presence or absence of alleles at different positions in the genome (24).

It is worth noting that membership inference attacks have also been recently performed with

relatively high success against genomic databases (e.g., Backes et al. (25)).

Consequently, genomic data cannot be effectively de-identified or anonymized, and it re-

quires more strict protection mechanisms, such as encryption, to avoid re-identification risks.
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2 Example of Secure Distributed Aggregate-Data Analysis:
Privacy-Preserving GWAS Computation

The main goal of genetic research is to identify genes that are involved in human diseases and

genome-wide association studies (GWAS) are one of the most popular methods used for this

purpose. In particular, a GWAS checks if some specific genetic mutations occur more frequently

in people with a particular disease than in people without the disease. The most common ap-

proach for GWAS is the case-control setup, which compares two large groups of individuals,

one healthy “control” group and one “case” group affected by a disease. In particular, for each

genetic mutation, the frequency of each mutation in the case group is compared to the frequency

of the same letter in the control group. If the difference is statistically significant, then it means

that the mutation in question is associated with the disease. The data of a genetic mutation on a

set of cases and controls can be represented in a 2x2 contingency table. Several different statis-

tical analysis methods can be applied to this table. For example, Pearson’s chi-square (chi2) test

is one of the most conventional methods used to assess deviation from the null hypothesis that

cases and controls have the same distribution of letter counts. As mentioned above, the privacy-

preserving ”aggregate-data analysis” functionality can be used in combination with the ”cohort

discovery” functionality to securely compute the input of 2-by-2 contingency tables for such

chi-squared association tests without having to access the raw individual-level genomic data of

the individuals. Let X be the set of genomic variants that a researcher wants to test for associ-

ation with a given phenotype Y . To run a GWAS between X and Y , the researcher first runs

a cohort discovery operation to identify the individuals in the system that match the inclusion

criteria in the case and control groups. Second, the researcher runs an aggregate-data analysis

operation on the two cohorts to obtain their corresponding size. Finally, by using the same

two operations on the two identified cohorts, the researcher asks to identify for each genomic
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variant in X how many individuals carry a mutation and their corresponding count. Finally,

by subtraction, the researcher can compute in the cleartext domain the number of individuals

in the two cohorts that do not carry a mutation for each genomic variant, in order to build the

complete set of 2-by-2 contingency tables and the chi2 association test.

3 Supplementary Results

3.1 Performance Measurements

In addition to the performance evaluation reported in the main text, we run the following addi-

tional experiments with each measurement averaged over 10 independent runs:

• Experiment 1 – Data preparation and loading time per data provider: Supplementary

Figure 1 shows the time needed for a data provider (individual) to encrypt an increasing

number of clinical attributes and genetic variants and measured in a laptop with a Core i7

processor at 2.8 GHz and 16 GB of RAM.
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Supplementary Figure 1: Runtime needed for encrypting an increasing number of clinical at-
tributes and genetic variants at a data provider computer (before upload to the system).
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Supplementary Figure 2 shows that the time needed by three computing nodes to re-

encrypt the uploaded clinical attributes and genetic variants codes from homomorphic

encryption to equality-preserving encryption is linear in the number of codes.
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Supplementary Figure 2: System response (re-encryption) time for the upload of encrypted
observations from a data provider for a growing number of variables, with three computing
nodes.

Similarly, Supplementary Figure 3 shows the time needed to re-encrypt 200,000 uploaded

clinical attributes and genetic variants codes from homomorphic encryption to equality-

preserving re-encryption is also linear in the number of computing nodes involved in the

protocol.

Finally, it is worth noting that the data upload only happens once per data provider and

that the overhead introduced by the encryption and the secure re-encryption protocol is

always (3 to 4 times) lower than the time it takes to do an insert operation of 1M variables

in the database. This time indeed oscillates between 15 and 20 minutes regardless on the

data being encrypted or not.

• Experiment 2 – Query run time breakdown: Supplementary Figure 4 explains the almost
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Supplementary Figure 3: System response (re-encryption) time for the upload of encrypted
observations from a data provider for a growing number of nodes, with a fixed set of 200k
variables (individual variants).

negligible overhead introduced by the proposed encryption techniques. In particular, we

observe that most of the query processing time is consumed by the execution of the query

at the database level within the storage unit. This operation is not affected by the en-

cryption, as it takes into account only the time needed to perform a set of standard SQL

queries. This time mainly depends on the number of stored observations in the database

and on the number of items composing the query.

• Experiment 3 – GWAS computation: Supplementary Figure 5 reports the response time

of each of the subqueries sent for computing a GWAS as described in Supplementary

Section 2. The total response time is linear with the size of the matching patient set, with

a slope of approximately 21 ms per matching patient. The overhead of encryption grows

linearly with the number of matching patients, but slower than the response time of the

clear-text database. Therefore, the actual overhead is kept below 6% in practical scenar-

ios. It must be noted though, that each of these subqueries can be run in parallel with
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Supplementary Figure 4: Breakdown of query response time for 28 billion variables, 12 com-
puting nodes and storage units, 10 query variables, and with a result set of 1511 individuals per
node.

almost perfect scaling, both at the database engine level and at the cryptographic protocol

level, which means that with the server setup that we are managing for the experiments,

the response time is proportional to the number of variables divided by the number of

available computing cores in each server.

• Experiment 4 – Blockchain performance: Supplementary Figure 6 reports the perfor-

mance of our blockchain implementation, where the number of transactions per second

is only slightly affected by the increase in the number of computing nodes. This demon-

strates that the time to generate transactions for data and access policy uploads, for data

discovery queries, and data access requests is negligible with respect to the time needed

to execute these operations.

• Experiment 5 – Storage overhead: The storage overhead introduced by encryption affects
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Supplementary Figure 5: Benchmark for computing a GWAS. Subquery response time (involv-
ing one single variable) for 28 billion variables, 3 computing nodes and storage units, and a
varying number of patients. Subqueries can be easily parallelized.
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Supplementary Figure 6: Blockchain performance in terms of the number of transactions per
second. The shaded area represents lower and upper throughput bounds.

only the set of unique observation codes used in the system, and it is in the order of 4x,

as the use of equality-preserving converts each observation code, represented by a 64-

bit integer, into a 32-bytes ciphertext. Depending on the specific distribution of codes

across data providers, a varying number of dummy individuals is also added and must
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be considered as additional storage overhead. In the tested dataset we obtain an increase

factor of 3.6x, which means that for each real data provider, 3.6 dummy individuals (on

average) have to be generated.

3.2 User Feedback

The blockchain component of our platform was deployed by Nebula Genomics, a genetic testing

company. A survey of 407 Nebula Genomics users showed that the use of technologies to

protect data privacy played a role in their decision to use a genetic testing service. The majority

of participants were also more likely to share access to their genetic data with researchers due

to the use of these technologies. Finally, the majority of survey participants believe that other

genetic testing companies should prioritize data privacy protection (Supplementary Figure 7).

A screenshot of the user interface that shows privacy setting and blockchain keys is shown in

Supplementary Figure 8.
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Did our use of technologies to protect genetic data privacy
contribute to your decision to use our genetic testing service?

Are you more likely to share access to your genetic data with researchers because
of the control, transparency, and protection that our platform provides?

Do you think other genetic testing companies should invest more
resources in developing technologies to protect genetic data privacy?

I am not sure.

I am not sure.

I am not sure.

Yes. I am more likely to participate
in research because of your platform.

Yes. It made me more likely
to use your service.

Yes. Genetic data privacy should
not be an afterthought. 

No. I would have used
your service anyway.

No. Your platform does
not in�uence my stance

on research participation.

No. Companies should invest
their resources in other things.

72.5%
(295)

8.6%
(35)

86.2%
(350)

13.8%
(56)

18.2%
(74)

68.0%
(277)

17.7%
(72)

9.8%
(40)

5.2%
(21)

Supplementary Figure 7: A survey of individuals who used the blockchain component of our
platform.
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Supplementary Figure 8: Screenshot of the graphical user interface (for data providers) where
(A) users select access policy and (B) can view their public and private keys.

19



Supplementary Figure 9: Screenshot of the graphical user interface (for data queriers) where
users can select query criteria and obtain aggregate-level statistics (individual count) on the
identified cohort.
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4 Supplementary Methods Figures

This section contains supplementary figures that are referenced in the Methods Section.
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data_provider_dimension

dp_id gender age ethnicity

DP1 Male 18 European

DP2 Female 49 Asian

… … … …

concept_dimension

concept_id description

ICD10:I50 Heart failure

ICD10:C34 Lung cancer

ICD10:M08 Juvenile arthritis

chr17:43076025:G>A Genetic variant

chr17:43067609:T>C Genetic variant

RxCUI:11289 Warfarin

… …

observation_fact

dp_id concept_id up_id

DP1 ICD10:M08 E1

DP1 ICD10:I50 E1

DP1 RxCUI:11289 E1

DP1 chr17:43076025:G>A E1

DP2 chr17:43076025:G>A E2

DP2 chr17:43067609:T>C E2

DP2 ICD10:C34 E3

DP2 ICD10:I50 E3

DP2 RxCUI:11289 E3

… … …

upload_history_dimension

up_id upload_date

E1 1/1/2018

E2 2/2/2018

E3 3/3/2018

… …

1

!

!
1

!

!

Supplementary Figure 10: Toy example of the “star-schema” data model storing data uploaded
by two data providers DP1 and DP2. The observation fact contains clinical and genetic obser-
vations for the two data providers (one observation per row). The meta-data about data providers
is stored in the data provider dimension table. The concept dimension table stores information
about clinical and genetic variables (or concepts). The upload history dimension table stores
meta-information about the data upload, e.g., the data upload date.
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data_provider_dimension

dp_id enc_binary_flag

DP1 65970e30ac9633b6

DP2 153cdfe3ffb63bf9

DP3 cdd3f59a62a8a886

… …

concept_dimension

concept_id
(incremental

concept_enc_id

00000001 96185326b151aeef

00000002 7801c19ae3f2aae2

00000003 3060c21169d49cd0

00000004 c0b2fdc9c1ff62ff

00000005 1d74768f35bcce58

00000006 327d88fc02e5b65a

… …

observation_fact

dp_id concept_id

DP1 00000003

DP1 00000001

DP1 00000006

DP1 00000004

DP2 00000004

DP2 00000005

DP2 00000002

DP2 00000001

DP2 00000006

DP3 00000003

DP3 00000005

DP3 00000002

… …

1

!

!

!

00000001

00000002

00000003

00000004

00000005

00000006

Distribution of encrypted codes

real
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# 
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Supplementary Figure 11: Toy example of Supplementary Figure 10 with only the tables of the
“star-schema” data model affected by data encryption. A dummy individual (DP3) with three
observations has been added in order to flatten the distribution of encrypted observation codes.

Computing Nodes

(1) Keys generation
for each computing node !
"! , $! : public/private key pair 

%! : secret key

(2) Collective key computation

$ ='
!
$!

Data Provider Storage Unit

(3) Permissioned blockchain 
setup

$!

Supplementary Figure 12: System initialization phase sequence diagram.
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Data Provider Computing Nodes Storage Unit

(1) Dummy data generation
{)}": set of dummy individuals for real individual +
, # : set of observations for real individual +
, $: set of observations for dummy individual ) ∈
{)}"
.": binary flag for real individual
.$: binary flag for dummy individual ) ∈ {)}"
/": symmetric encryption key for raw data of real 
individual +

(2) Data encryption & upload
0% ." ← 203)4(." , $)
0% /" ← 203)4(/" , $)

{0% , } ← 203)4 ,, $ , ∀, ∈ , " ∪ , $, ∀)
∈ ) "

{0% .$ } ← 203)4 .$, $ , ∀) ∈ 9"

→Blockchain transaction

(3) Secure distributed data re-encryption
{;<& , } ← .'({0% , }),
∀, ∈ , " ∪ , $, ∀) ∈ ) "

(4) Data storage

0% /" , 0% ." , {0% .$ }, {0% , }

0% /" , 0% ." , {0% .$ },{;<& , }

Supplementary Figure 13: Data preparation phase sequence diagram. For details on protocol f1
see Supplementary Figure 17.

Data Querier Computing Nodes Storage Unit

(1) Query generation
(=(, >(): public/private key pair for querier ?
{0% ,( }: list of encrypted query attributes 
combined with AND/OR Boolean operators

→ Blockchain transaction

(2) Secure distributed query re-encryption
{;<& ,( } ← .'({0% ,( }),

(3) Query execution
{+, )} : list of matching pseudo-IDs for real 
and dummy individuals
0%(.",$) : list of encrypted binary flags

=(, {0% ,( }

{;<& ,( }

+, ) , {0%(.",$)}

Supplementary Figure 14: Data discovery phase sequence diagram. For details on protocol f1
see Supplementary Figure 17.
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Data Querier Computing Nodes Storage Unit

+. ) , {0%(.",$)}

(1) Secure distributed count aggregation

0% A ← 20BCC 20BCC 0% .",$
!

∀!, ∀+, ) ∈ {+, )}

(Note: dummy flags are automatically 
cancelled out from the sum)

(2) Secure distributed result obfuscation 
0% DA ← 20BCC(0% A , E*()F!%3))

0% A

(3) Secure distributed key switching
0+!( DA) ← .,(0% DA )

0% DA

(4) Result decryption
DA ← 20C34(0+! DA , >()

0+!( DA)

Supplementary Figure 15: Aggregate-Data Analysis sequence diagram. For details on protocol
f2 see Supplementary Figure 18.
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Data Querier Computing Nodes Storage Unit

+. ) , {0%(.",$)}

(1) Masking of identifiers
0% + ← 20G>HI +, 0% ."

0% 0 ← 20G>HI ), 0% .$

(2) Secure distributed key switching
{0+!(+)} ← {.,(0% + )}
{0+!(0)} ← {.,(0% 0 )}

(3) Identifiers decryption
+ ← {20C34(0+! + , ,()}
0 ← {20C34(0+! 0 , ,()}

(4) Data access request

(5) Policy verification

(6) Secure distributed key switching
0+!(K/") ← .,(0% /" )

(7) Symmetric key decryption
/" ← 20C34(0+! /

" , ,()

(8) Files download and decryption

0% + , {0-(0)}

+

0+!(K/")

Supplementary Figure 16: Raw-data access sequence diagram. For details on protocol f2 see
Supplementary Figure 18.
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1 Introduction

Secure distributed re-encryption protocol f1()
EK(v) = (C1, C2) = (rG, v + rK) is the expanded representation of an EC-
ElGamal encrypted observation v under the collective public key K, where r
is a random nonce and G is the base point of the elliptic curve. This protocol
consists of two rounds across all computing nodes CNi.

Input: EK(v), si, ki, K;
Output: DTs(v);

Round 1:
1: Each CNi uses si to compute siG + C2

2: ! (C̃1,0, C̃2,0) = (rG, v + rK +
P

i siG)

Round 2:
3: Each CNi computes (C̃1,i, C̃2,i) =

⇣
siC̃1,i�1, si(C̃2,i�1 � C̃1,i�1ki)

⌘

The equality-preserving version of the encrypted variable code is obtained
by keeping only the second component of the resulting ciphertext.

4: ! DTs(v) = C̃2,n = sv +
P

i sisG, where s =
Q

i si

1

Supplementary Figure 17: Secure distributed re-encryption protocol.

Secure distributed key switching protocol f2()
EK(R) = (C1, C2) = (rG, R + rK) is the EC-ElGamal encryption of the query
result with the collective public key K and Uq is the data querier’s public key.
This protocol consists of one round across all computing nodes CNi.

Input: EK(R), ki, K, Uq;
Output: EUq (R);

Round 1:
1: (C̃1,0, C̃2,0) = (0, C2)

2: Each CNi generates a fresh random nonce vi

3: Each CNi computes (C̃1,i, C̃2,i) =
⇣
C̃1,i�1 + viG, C̃2,i�1 � kiC1 + viUq

⌘

4: ! EUq (R) = (C̃1,n, C̃2,n) = (vG, R + vUq), where v = v1 + . . . + vn

2

Supplementary Figure 18: Secure distributed key-switching protocol.
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