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1 Details of the quantum models

The quantum models considered in this study are of the form given in Figure 1 of the main
manuscript. In the following, we depict the circuits used for the feature map and variational form
of the quantum neural network.

1.1 The feature map

Supplementary Figure 1 contains a circuit representation of the hard feature map used in the
quantum neural network. The Z-rotations are about angles which depend on the feature values
of the data, xi. A more detailed explanation is contained in the Methods section of the main
manuscript.
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Supplementary Figure 1: Feature map from [1], used in the quantum neural network. First,
Hadamard gates are applied to each qubit. Then, normalized feature values of the data are encoded
using RZ-gates. This is followed by CNOT-gates and higher order data encoding between every
pair of qubits, and every pair of features in the data. The feature map is repeated to create a
depth of 2. The easy quantum model, introduced in the results section, applies only the first sets
of Hadamard and RZ-gates.

1.2 The variational form

Supplementary Figure 2 contains a circuit diagram of the variational form used in the quantum
neural network, as well as the easy quantum model. There are layers of parameterized Y-rotations
and all-to-all qubit entanglement. More details can be found in the Methods section of the main
manuscript.
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Supplementary Figure 2: Variational circuit used in both quantum models is plotted in this
figure. The circuit contains parameterized RY-gates, followed by CNOT-gates and another set of
parameterized RY-gates.

2 Properties of the effective dimension

2.1 Effective dimension converges to maximal rank of Fisher informa-
tion matrix

The effective dimension converges to the maximal rank of the Fisher information matrix denoted
by r̄ := maxθ∈Θ rθ in the limit n→∞. Since the Fisher information matrix is positive semidefinite,
it can be unitarily diagonalized. By definition of the effective dimension, we see that, without loss
of generality, F (θ) can be diagonal, i.e. F (θ) = diag(λ1(θ), . . . , λrθ (θ), 0 . . . , 0). Furthermore we
define the normalization constant

β := d
VΘ∫

Θ
trF (θ)dθ

,

such that F̂ (θ) = βF (θ). Let κn := γn
2π logn and consider n to be sufficiently large such that κn ≥ 1.

By definition of the effective dimension we find

dγ,n = 2 log

(
1

VΘ

∫
Θ

√
det(idd + κnF̂ (θ))dθ

)
/ log (κn)

= 2 log

(
1

VΘ

∫
Θ

√(
1 + κnβλ1(θ)

)
. . .
(
1 + κnβλrθ (θ)

)
dθ

)
/ log (κn)

≤ 2 log

(
1

VΘ

∫
Θ

√
κrθn
(
1 + βλ1(θ)

)
. . .
(
1 + βλrθ (θ)

)
dθ

)
/ log (κn)

≤ 2 log

(
κ
r̄/2
n

VΘ

∫
Θ

√(
1 + βλ1(θ)

)
. . .
(
1 + βλr̄(θ)

)
dθ

)
/ log (κn) ,

where the final step uses that the Fisher information matrix is positive definite. Taking the limit
n→∞ gives

lim
n→∞

dγ,n ≤ r̄ + lim
n→∞

2 log

(
1

VΘ

∫
Θ

√(
1 + βλ1(θ)

)
. . .
(
1 + βλr̄(θ)

)
dθ

)
/ log (κn) = r̄ .

To see the other direction, let A := {θ ∈ Θ : rθ = r̄} and denote its volume by |A|. By definition
of the effective dimension we obtain

lim
n→∞

dγ,n ≥ lim
n→∞

2 log

(
1

VΘ

∫
A

√
det(idd + κnF̂ (θ))dθ

)
/ log (κn)

= lim
n→∞

2 log(|A|/VΘ)/ log (κn) + lim
n→∞

2 log

(
1

|A|

∫
A

√
det(idd + κnF̂ (θ))dθ

)
/ log (κn)

≥ lim
n→∞

2 log

(
1

|A|

∫
A

√
det(κnF̂ (θ))dθ

)
/ log (κn)
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= r̄ + lim
n→∞

2 log

(
1

|A|

∫
A

√
det(F̂ (θ))dθ

)
/ log (κn)

= r̄ .

This proves the other direction and concludes the argument.

2.2 A geometric depiction of the effective dimension

The effective dimension defined in the main document does not necessarily increase monotonically
with the number of data, n. Recall that the effective dimension attempts to capture the size of
a model, whilst n determines the resolution at which the model can be observed. Supplementary
Figure 3 contains an intuitive example of a case where the effective dimension is not monotone
in n. We can interpret a model as a geometric object. When n is small, the resolution at which
we are able to see this object is very low. In this unclear, low resolution setting, the model can
appear to be a 2-dimensional disk as depicted in Supplementary Figure 3. Increasing n, increases
the resolution and the model can then look 1-dimensional, as seen by the spiralling line in the
medium resolution regime. Going to very high resolution, and thus, very high n, reveals that the
model is a 2-dimensional structure. In this example, the effective dimension will be high for small
n, where the model is considered 2-dimensional, lower for slightly higher n where the model seems
1-dimensional, and high again as the number of data becomes sufficient to accurately quantify the
true model size. Similar examples can be constructed in higher dimensions by taking the same
object and allowing it to spiral inside the unit ball of the ambient space Rd. Then, the effective
dimension will be d for small n, it will go down to a value close to 1, and finally converge to 2 as
n → ∞. In all experiments conducted in this study, we examine the effective dimension over a
wide range of n, to ensure it is sufficient in accurately estimating the size of a model.

Medium resolution High resolution 

Supplementary Figure 3: Geometric picture of a model at different resolution scales. In
the low resolution scale, the model can appear as a 2-dimensional disk and the effective dimension
attempts to quantify the size of this disk. As we enhance the resolution by increasing the number
of data used in the effective dimension, the medium scale reveals a 1-dimensional line, spiralling.
Adding sufficient data and moving to high resolution allows the effective dimension to accurately
capture the model’s true size, which in this case is actually a 2-dimensional object. Thus, the
effective dimension does not necessarily increase monotonically with the number of data used.

3 Numerical experiments

3.1 Sensitivity analysis for the effective dimension

We use Monte Carlo sampling to estimate the effective dimension. The capacity results will, thus,
be sensitive to the number of data samples used in estimating the Fisher information matrix for
a given θ, and to the number of θ samples then used to calculate the effective dimension. We
plot the normalized effective dimension with n fixed, in Supplementary Figure 4 over an increasing
number of data and parameter samples using the classical feedforward model. For networks with
less trainable parameters, d, the results stabilize with as little as 40 data and parameter samples.
When higher dimensions are considered, the standard deviation around the results increases, but
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100 data and parameter samples are still reasonable given that we consider a maximum of d = 100.
For higher d, it is likely that more samples will be needed.

Supplementary Figure 4: Sensitivity analysis of the normalized effective dimension to different
numbers of data and parameter samples, used in calculating the empirical Fisher information
matrix, and subsequently, the effective dimension.

3.2 The Fisher information spectra for varying model size

Supplementary Figure 5 plots the average distribution of the Fisher information eigenvalues for
all model types in box plots, over increasing input size, sin, and hence, increasing number of
parameters, d. The dots in the box plots represent outlier values relative to the length of the
whiskers. The lower whisker is at the lowest datum above Q1 - 1.5*(Q3-Q1), and the upper
whisker at the highest datum below Q3 + 1.5*(Q3-Q1), where Q1 and Q3 are the first and third
quartiles. This is a standard method to compute these plots.

These average distributions are generated using 100 Fisher information matrices with parame-
ters, θ, drawn uniformly at random on Θ = [−1, 1]d. Row A contains the distribution of eigenvalues
for models with sin = 6, row B for sin = 8 and row C for sin = 10. In all scenarios, the classical
model has a majority of its eigenvalues near or equal to zero, with a few very large eigenvalues.
The easy quantum model has a somewhat uniform spectrum for a smaller input size, but this de-
teriorates as the input size (also equal to the number of qubits in this particular model) increases.
The quantum neural network, however, maintains a more uniform spectrum over increasing sin

and d, showing promise in avoiding unfavorable qualities, such as barren plateaus.

3.2.1 The Fisher information spectra with hardware noise

Similar to Supplementary Figure 5, Supplementary Figure 6 contains the average distribution of
the Fisher information eigenvalues where the outputs of both quantum models are attained from
a a shot-based simulation of the ibmq montreal 27-qubit chip which includes a model for the
underlying physical noise. Row A contains models with sin = 4, row B with sin = 6, row C
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Supplementary Figure 5: Average Fisher information spectrum depicted as a boxplot plot
for all three model types, over increasing input size, sin. Row A contains models with sin = 6 and
d = 60, row B has sin = 8 and d = 80 and row C has sin = 10 and d = 100. In all cases, sout = 2.

with sin = 8 and row D with sin = 10. The effect of hardware noise does not seem to change the
eigenvalue distributions significantly. The easy quantum model continues to display uneven spectra
as the model’s size increases, whereas the quantum neural network’s spectra remains stable.

3.3 Training the models using a simulator

To test the trainability of all three model types, we conduct a simple experiment using the Iris

dataset. In each model, we use an input size of sin = 4, output size sout = 2 and d = 8 trainable
parameters. We train the models for 100 training iterations, using 100 data points from the first
two classes of the dataset. Standard hyperparameter choices are made, using an initial learning
rate = 0.1 and the ADAM optimizer. Each model is trained 100 times, with initial parameters θ
sampled uniformly on Θ = [−1, 1]d each trial. We choose Θ = [−1, 1]d as the sample space for the
initial parameters, as well as for the parameter sample space in the effective dimension. Another
convention is to use [−2π, 2π]d as the parameter space for initialization of the quantum model,
however, we stick with [−1, 1]d to be consistent and align with classical neural network literature.
We note that for the effective dimension, using either parameter space does affect the observed
results. The average training loss and average Fisher-Rao norm after 100 training iterations, is
captured in Supplementary Table 1. The quantum neural network notably has the highest Fisher-
Rao norm and lowest training loss on average.
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Supplementary Figure 6: Average Fisher information spectrum for the easy quantum model
and the quantum neural network with hardware noise. Row A contains models with sin = 4 and
d = 40, row B with sin = 6 and d = 60, row C with sin = 8 and d = 80 and row D with sin = 10
and d = 100.

Model Training loss Fisher-Rao norm

Classical neural network 37.90% 46.45

Easy quantum model 43.05% 104.89

Quantum neural network 23.14% 117.84

Supplementary Table 1: Average training loss and average Fisher-Rao norm for all three
models, using 100 different trials with 100 training iterations.
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3.3.1 Training with hardware noise

Training quantum models can be drastically effected by the impact of hardware noise. In order
to explore this further, we investigate the training performance under noisy hardware conditions
for the quantum neural network and the easy quantum model using a shot-based simulation of the
ibmq montreal 27-qubit device and plot the results in Supplementary Figure 7. As one would
expect, the introduction of noise slows down the loss convergence for the quantum neural network.
Interestingly, the easy quantum model’s training performance improves when noise is added. The
quantum neural network with noise still outperforms the easy quantum model with/without noise.
But in both noisy situations, the models struggle to train using the ADAM optimizer.

Supplementary Figure 7: Training with hardware noise using a cross entropy loss function
and the ADAM optimizer. As expected, the quantum neural network’s performance is negatively
impacted by hardware noise. On the other hand, noise seems to improve the training performance
of the easy quantum model, but overall, the quantum neural network (even with noise) performs
better than the easy quantum model with and without noise.

3.4 Training the quantum neural network on real hardware

The hardware experiment is conducted on the ibmq montreal 27-qubit device. We use 4 qubits
with linear connectivity to train the quantum neural network on the first two classes of the Iris

dataset and plot the circuit in Supplementary Figure 8.

4 The Fisher spectrum and the barren plateau phenomenon

The Fisher information spectrum for fully connected feedforward neural networks reveals that the
parameter space is flat in most dimensions, and strongly distorted in a few others [2]. These dis-
tortions are captured by a few very large eigenvalues, whilst the flatness corresponds to eigenvalues
being close to zero. This behavior has also been reported for the Hessian matrix, which coincides
with the Fisher information matrix under certain conditions, e.g., under the use of certain loss
functions [3–5]. These types of spectra are known to slow down a model’s training and may ren-
der optimization suboptimal [6]. In the quantum realm, the negative effect of barren plateaus on
training quantum neural networks has been linked to the Hessian matrix [7]. It was found that
the entries of the Hessian vanish exponentially with the size of the system in models that are in
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Supplementary Figure 8: Circuit implemented on quantum hardware. First, Hadamard
gates are applied. Then the data is encoded using RZ-gates applied to each qubit whereby the
Z-rotations depend on the feature values of the data. Thereafter, CNOT entangling layers with
RZ-gates encoding products of feature values are applied. The data encoding gates, along with the
CNOT-gates are repeated to create a depth 2 feature map. Lastly, parameterized RY-gates are
applied to each qubit followed by linear entanglement and a final layer of parameterized RY-gates.
The circuit has a total of 8 trainable parameters.

a barren plateau. This implies that the loss landscape becomes increasingly flat as the size of the
model increases, making optimization more difficult.

The Fisher information can also be connected to barren plateaus. Assuming a log-likelihood
loss function, without loss of generality, we can formulate the empirical risk over the full training
set as

Rn(θ) = − 1

n
log
( n∏
i=1

p(yi|xi; θ)
)

= − 1

n

n∑
i=1

log p(yi|xi; θ),

where p(yi|xi; θ) is the conditional distribution for a data pair (xi, yi). From Bayes rule, note that
the derivative of the empirical risk function is then equal to the derivative of the log of the joint
distribution summed over all data pairs, i.e.,

∂

∂θ
Rn(θ) = − ∂

∂θ

1

n

n∑
i=1

log p(yi|xi; θ) = − ∂

∂θ

1

n

n∑
i=1

log p(xi, yi; θ) = − 1

n

n∑
i=1

∂

∂θ
log p(xi, yi; θ) ,

since the prior distribution p(·) does not depend on θ. From [8], we know that we are in a barren
plateau if, for parameters θ uniformly sampled from Θ, each element of the gradient of the loss
function with respect to θ vanishes exponentially in the number of qubits, S. In mathematical
terms this means∣∣∣∣Eθ[ ∂

∂θj
Rn(θ)

]∣∣∣∣ =

∣∣∣∣∣Eθ[ 1

n

n∑
i=1

∂

∂θj
log p(xi, yi; θ)

]∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

Eθ
[ ∂

∂θj
log p(xi, yi; θ)

]∣∣∣∣∣ ≤ ωS ,
for all j = 1, . . . d and for some nonnegative constant ωS that goes to zero exponentially fast with
increasing S. The barren plateau result also tells us that Varθ[

∂
∂θj

Rn(θ)] ≤ ωS for models in a

barren plateau. By definition of the empirical Fisher information (see main document), the entries
of the Fisher matrix can be written as

F (θ)jk =
∂

∂θj
Rn(θ)

∂

∂θk
Rn(θ) ,

for j, k = 1, . . . , d. Hence we can write

Eθ[F (θ)jj ] = Eθ

[(
∂

∂θj
Rn(θ)

)2
]

= Varθ

[
∂

∂θj
Rn(θ)

]
+

(
Eθ
[
∂

∂θj
Rn(θ)

])2

≤ ωS + ω2
S ,

which implies tr(Eθ[F (θ)]) ≤ d(ωS + ω2
S). Due to the positive semidefinite nature of the Fisher

information matrix and by definition of the Hilbert-Schimdt norm, all matrix entries will approach
zero if a model is in a barren plateau, and natural gradient optimization techniques become unfea-
sible. We can conclude that a model suffering from a barren plateau will have a Fisher information
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spectrum with an increasing concentration of eigenvalues approaching zero as the number of qubits
in the model increase. Conversely, a model with a Fisher information spectrum that is not con-
centrated around zero is unlikely to experience a barren plateau.

5 Generalization properties of the effective dimension

5.1 Proof of generalisation bound

Here we provide a proof for the generalisation bound stated as a theorem in the main document.
Given a positive definite matrix A ≥ 0, and a function g : R+ → R+, we define g(A) as the
matrix obtained by taking the image of the eigenvalues of A under the map g. In other words,
A = U†diag(µ1, . . . , µd)U implies g(A) = U†diag(g(µ1), . . . , g(µd))U . To prove the assertion of the
theorem, we start with a lemma that relates the effective dimension to the covering number.

Lemma 1. Let Θ = [−1, 1]d, and let N (ε) denote the number of boxes of side length ε required to
cover the parameter set Θ, the length being measured with respect to the metric F̂ij(θ). Under the
assumption of the theorem (see main document), there exists a dimensional constant cd <∞ such
that for γ ∈ (0, 1] and for all n ∈ N, we have

N
(√

2π log n

γn

)
≤ cd

(
γn

2π log n

)dγ,n/2
.

Proof. The result follows from the arguments presented in [9]. More precisely, thanks to the bound
‖∇θ log F̂ (θ)‖ ≤ Λ, which holds by assumption, it follows that

‖F̂ (θ)− F̂ (0)‖ ≤ cdΛ‖F̂ (0)‖ and ‖F̂ (θ)− F̂ (0)‖ ≤ cdΛ‖F̂ (θ)‖ ∀ θ ∈ Θ . (1)

In the following, we set ε :=
√

2π log n/(γn). Note that, if Bε(θ̄k) is a box centered at θ̄k ∈ Θ

and of length ε (the length being measured with respect to the metric F̂ij), then this box contains
(1 + cdΛ)−1/2Bε(θ̄k), where

Bε(θ̄k) := {θ ∈ Θ : 〈F̂ (0) · (θ − θ̄k), θ − θ̄k〉 ≤ ε2} .

Up to a rotation, we can diagonalize the Fisher information matrix as F̂ (0) = diag(s2
1, . . . , s

2
d).

Then, we see that n the number of boxes of the form (1 + cdΛ)−1/2Bε(θ̄k) needed to cover Θ is
given by

ĉd(1 + cdΛ)d/2
d∏
i=1

⌈
ε−1si

⌉
≤ ĉd(1 + cdΛ)d/2

√√√√ d∏
i=1

(
1 + ε−2s2

i

)

= ĉd(1 + cdΛ)d/2

√
det

(
idd +

γn

2π log n
F̂ (0)

)

≤ ĉd(1 + cdΛ)d/2

√
det

(
idd +

γn

2π log n
(1 + cdΛ)F̂ (θ)

)

≤ ĉd(1 + cdΛ)d

√
det

(
idd +

γn

2π log n
F̂ (θ)

)
,

where the second inequality follows from (1) and the fact that the determinant is operator monotone
on the set of positive definite matrices, i.e., 0 ≤ A ≤ B implies det(A) ≤ det(B) [10, Exercise 12
in Section 82]. Here ĉd depends on the orientation of [−1, 1]d with respect to the boxes Bε(θ̄k). In
particular ĉd ≤ 2

√
d (the length of the diagonal of [−1, 1]d), and if the boxes Bε(θ̄k) are aligned

along the canonical axes, then ĉd = 2.
Since the number of boxes of size ε (with respect to the metric F̂ij) needed to cover Θ is

bounded by the number of boxes of the form (1 + cdΛ)−1/2Bε(θ̄k), averaging the bound above with
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respect to θ ∈ Θ we proved that

N (ε) ≤ ĉd(1 + cdΛ)d
1

VΘ

∫
Θ

√
det

(
idd +

γn

2π log n
F̂ (θ)

)
dθ ,

which implies the inequality in the statement of Lemma 1 by recalling the definition of the effective
dimension and ε :=

√
2π log n/(γn).

Lemma 2. Let ε ∈ (0, 1). Under the assumption of the theorem (see main document), we have

P
(

sup
θ∈Θ
|R(θ)−Rn(θ)| ≥ ε

)
≤ 2N

(( ε

4M

)1/α
)

exp

(
− nε

2

2B2

)
,

where N (ε) denotes the number of balls of side length ε, with respect to F̂ , required to cover the
parameter set Θ.

Proof. The proof is a slight generalization of a result found in [11, Chapter 3]. Let S(θ) :=
R(θ)−Rn(θ). Then

|S(θ1)− S(θ2)| ≤ |R(θ1)−R(θ2)|+ |Rn(θ1)−Rn(θ2)| ≤ 2M‖θ1 − θ2‖α∞ , (2)

where the final step uses the fact that R(·) as well as Rn(·) are α-Hölder continuous with constant
M for M = Mα

1 M2. To see this recall that by definition of the risk, we find for the observed input
and output distributions r ∈ P(X ) and q ∈ P(Y), respectively,

|R(θ1)−R(θ2)| =
∣∣∣Er,q[L(p(y|x; θ1)r(x), q(y)

)]
− Er,q

[
L
(
p(y|x; θ2)r(x), q(y)

)]∣∣∣
≤ Er,q

[∣∣L(p(y|x; θ1)r(x), q(y)
)
− L

(
p(y|x; θ2)r(x), q(y)

)∣∣]
≤M2Er

[
‖p(y|x; θ1)r(x)− p(y|x; θ2)r(x)‖α1

]
≤M2 ‖p(y|x; θ1)− p(y|x; θ2)‖α∞ Er

[
‖r(x)‖α1

]
= M2 ‖p(y|x; θ1)− p(y|x; θ2)‖α∞
≤M2M

α
1 ‖θ1 − θ2‖α∞ ,

where the third step uses the continuity assumption of the loss function and the fourth step follows
from Hölder’s inequality. The final step uses the Lipschitz continuity assumption of the model.
Equivalently we see that

|Rn(θ1)−Rn(θ2)| ≤M2M
α
1 ‖θ1 − θ2‖α∞ .

Assume that Θ can be covered by k subsets B1, . . . , Bk, i.e. Θ = B1 ∪ . . . ∪ Bk. Then, for any
ε > 0,

P
(

sup
θ∈Θ
|S(θ)| ≥ ε

)
= P

(
k⋃
i=1

sup
θ∈Bi

|S(θ)| ≥ ε
)
≤

k∑
i=1

P
(

sup
θ∈Bi

|S(θ)| ≥ ε
)
, (3)

where the inequality is due to the union bound. Finally, let k = N (( ε
4M )1/α) and let B1, . . . , Bk

be balls of radius ( ε
4M )1/α centered at θ1, . . . , θk covering Θ. Then the following inequality holds

for all i = 1, . . . , k,

P
(

sup
θ∈Bi

|S(θ)| ≥ ε
)
≤ P

(
|S(θi)| ≥

ε

2

)
. (4)

To prove (4), observe that by using (2) we have for any θ ∈ Bi,

|S(θ)− S(θi)| ≤ 2M‖θ − θi‖α∞ ≤
ε

2
.

The last inequality implies that, if |S(θ)| ≥ ε, it must be that |S(θi)| ≥ ε
2 . This in turns implies (4).
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To conclude, we apply Hoeffding’s inequality, which yields

P
(
|S(θi)| ≥

ε

2

)
= P

(
|R(θi)−Rn(θi)| ≥

ε

2

)
≤ 2 exp

(−nε2

2B2

)
. (5)

Combined with (3), we obtain

P
(

sup
θ∈Θ
|S(θ)| ≥ ε

)
≤

k∑
i=1

P
(

sup
θ∈Bi

|S(θ)| ≥ ε
)

≤
k∑
i=1

P
(
|S(θi)| ≥

ε

2

)
≤ 2N

(( ε

4M

)1/α
)

exp

(−nε2

2B2

)
,

where the second step uses (4). The final step follows from (5) and by recalling that k =
N (( ε

4M )1/α).

Having Lemma 1 and Lemma 2 at hand we are ready to prove the assertion of the theorem
stated in the main document. Lemma 2 implies for ε = 4M

√
2π log n/(γn)

P
(

sup
θ∈Θ
|R(θ)−Rn(θ)| ≥ 4M

√
2π log n/(γn)

)
≤ 2N

((2π log n

γn

) 1
2α

)
exp

(
−16M2π log n

B2γ

)
≤ 2N

((2π log n1/α

γn1/α

) 1
2

)
exp

(
−16M2π log n

B2γ

)

≤ 4cd

(
γn1/α

2π log n1/α

)dγ,n1/α

2

exp

(
−16M2π log n

B2γ

)
, (6)

where the penultimate step uses(2π log n

γn

) 1
2α ≥

(2π log n1/α

γn1/α

) 1
2

,

for all λ ∈ (0, 1] and α ∈ (0, 1]. The final step in (6) uses Lemma 1.

Remark 3 (Choice of γ parameter). As mentioned in the main text the parameter γ ∈ (0, 1]
needs to be chosen sufficiently small to ensure that the right-hand side of the generalisation bound
vanishes in the limit n → ∞. A simple calculation reveals that this occurs if γ scales at most as
γ ∼ 32παM2/(dB2). To see this, we use the fact that dγ,n ≤ d+τ/| log n| for some constant τ > 0.

Remark 4 (Improved scaling for relative entropy loss function). The relative entropy is commonly
used as a loss function. Note that the relative entropy is log-Lipschitz in the first argument which
is better than Hölder continuous. Recall that the function f(t) = t log(t) is log-Lipschitz with
constant 1, i.e., |f(t)− f(s)| ≤ |t− s| log(|t− s|) for |t− s| ≤ 1/e. As a result we can improve the
bound from Lemma 2 to

P
(

sup
θ∈Θ
|R(θ)−Rn(θ)| ≥ ε

)
≤ 2N

(
ε/(4M)

| log(ε/4)|

)
exp

(
− nε

2

2B2

)
,

by following the proof given above and utilizing the log-Lipschitz property of the relative entropy
in its first argument and the fact that the inverse of t| log(t)| behaves like s/| log(s)| near the origin.

More precisely we can choose k = N ( ε/(4M)
| log(ε/4)| ) in the proof above.

Remark 5 (Boundedness assumption of loss function). By utilizing a stronger concentration
bound than Hoeffding’s inequality in (5), one may be able to relax the assumption that the loss
function in the generalisation bound has to be bounded.
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5.2 Generalization ability of the effective dimension

In order to assess the effective dimension’s ability to capture generalization behavior, we conduct a
numerical experiment originally introduced in [12]. The authors argue that a capacity measure is
able to capture generalization behavior across local minima, if it is positively correlated with the
test error on a dataset. To demonstrate this, we fix the architecture of a classical neural network
model where we use a feedforward network with a single hidden layer, an input size of sin = 6,
output size sout = 2 and number of trainable weights d = 880, and train it on multiple confusion
sets constructed from scikit-learn’s make blobs dataset [13]. A confusion set is a dataset where
the training labels are randomized to some degree.

We first generate 1000 data points and separate them into training and test datasets using an
80%−20% split. Then, we create confusion sets by gradually increasing the entropy in the training
data through randomizing the labels in increments of 10%. Using a cross entropy loss function, we
train the neural network to zero error on the original training dataset (i.e. with no randomization).
Then we calculate the effective dimension using the trained parameters, as well as the test error
on the test dataset. Next, we repeat this process by training the same model to zero error on each
of the confusion sets and calculate the resulting effective dimension and test error.

We plot the normalized effective dimension and test error over the increasing degree of ran-
domization in Supplementary Figure 9. As we would expect, the test error (also referred to as the
generalization error) increases as the randomization in the training set increases. This is because
the model is being trained on data that is increasingly noisy and eventually starts to overfit the
data (i.e. starts to fit the noise). Thus, the model’s ability to accurately classify the test data
diminishes and it’s generalization error increases.

Similarly in that regard, if a proposed capacity measure accurately captures generalization
ability, we would expect to see an increasing capacity as the percentage of randomized labels in the
confusion set increases. Intuitively, this is because the model requires more expressive power to
fit these random labels which leads to overfitting and a higher generalization error. The effective
dimension displays exactly this behavior, increasing as the entropy in the training data increases
and in line with the generalization error. This experiment nicely motivates that the effective
dimension can be used to capture a model’s generalization ability.

Supplementary Figure 9: Generalization behavior of the effective dimension. On the left,
we plot the normalized effective dimension for the same network trained on confusion sets with
increasing randomization, averaged over 10 different training runs, with one standard deviation
above and below the mean. The effective dimension correctly increases as the data becomes “more
random” and is thus, able to accurately capture a model’s generalization behavior. The test error,
also referred to as generalization error, is plotted on the right. As the noise in the data increases,
we see the generalization error increasing as the model starts to overfit (i.e. fit the noise).
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5.3 Removing the rank constraint via discretization

The aim of this section is to find a suitable generalization of the results in Section 5.1 when the
Fisher information matrix does not satisfy the bound ||∇θ log F̂ || ≤ Λ. Indeed, this is a rather
strong bound as it forces F̂ to have constant rank, so it is desirable to find a variant of Lemmas 1
and 2 that do not require such an assumption.

Our approach to this general problem is based on the idea that, in practical applications, the
Fisher matrix is evaluated at finitely many points, so it makes sense to approximate a statisti-
cal model with a discretized one where the corresponding Fisher information matrix is piecewise
constant.

Let Θ = [−1, 1]d and consider a statistical model MΘ := {p(·, ·; θ) : θ ∈ Θ} with a Fisher
information matrix denoted by F (θ) for θ ∈ Θ. Given an integer κ > 1, we consider a discretized
version of the statistical model. More precisely, we split Θ into κd disjoint cubes {Gi}κ

d

i=1 of size
2/κ. Then, given one of these small cubes Gi, we consider its center xi and we split Gi into 2d

disjoint simplices, where each simplex is generated by xi and one of the faces of ∂Gi. We denote the
set of all these simplices by {Θ`}m`=1, where m = 2dκd. Note that {Θ`}m`=1 is a regular triangulation
of Θ.

Now, let M(κ)
Θ := {p(κ)(·, ·; θ) : θ ∈ Θ} be a discretized version of MΘ such that p(κ) is affine

on each simplex Θ`. For this, it suffices to define p(κ)(·, ·; θ) = p(·, ·; θ) whenever θ coincides with
one of the vertices of Θ` for some `, and then one extends p(κ) inside each simplex Θ` as an affine
function. Note that, with this definition, the Fisher information matrix of the discretized model
F (κ)(θ) is constant inside each simplex Θ`. We note that, by construction, θ 7→ p(κ)(·, ·; θ) is still
M1-Lipschitz continuous. Indeed, recall that we defined p(κ) = p on the vertices of the simplices
and then we extended p(κ) as an affine function inside each simplex. With this construction, the
Lipschitz constant of p(κ) is bounded by the Lipschitz constant of p (since the affine extension does
not increase the Lipschitz constant).

The risk function with respect to the discretized model is denoted by R(κ).

Theorem 6 (Generalization bound for effective dimension without rank constraint). Let Θ =
[−1, 1]d and consider a statistical model MΘ := {p(·, ·; θ) : θ ∈ Θ} satisfying Equation (4) from the
main document. For κ ∈ N, let M(κ)

Θ := {p(κ)(·, ·; θ) : θ ∈ Θ} be the discretized form as described
above. Let d

(κ)
γ,n denote the effective dimension of M(κ)

Θ as defined in the main document. Further-
more, let L : P(Y)×P(Y)→ [−B/2, B/2] for B > 0 be a loss function that is α-Hölder continuous
with constant M2 in the first argument w.r.t. the total variation distance for some α ∈ (0, 1]. Then,
there exists a dimensional constant cd such that for γ ∈ (0, 1] and for all n ∈ N, we have

P

(
sup
θ∈Θ
|R(κ)(θ)−R(κ)

n (θ)| ≥ 4M

√
2π log n

γn

)
≤cd

(
γn1/α

2π log n1/α

)d(κ)γ,n1/α

2

exp

(
−16M2π log n

B2γ

)
, (7)

where M = Mα
1 M2.

To prove the statement of the theorem we need a preparatory lemma that is the discretized
version of Lemma 1.

Lemma 7. Let Θ = [−1, 1]d, and let N (κ)(ε) denote the number of boxes of side length ε required
to cover the parameter set Θ, the length being measured with respect to the metric F̂

(κ)
ij (θ). Under

the assumption of Theorem 6, there exists a dimensional constant cd <∞ such that for γ ∈ (0, 1]
and for all n ∈ N, we have

N (κ)

(√
2π log n

γn

)
≤ cd

(
γn

2π log n

)d(κ)γ,n/2

.

Proof. Recall that we work in the discretized model M(κ)
Θ , so our metric F̂

(κ)
ij (θ) is constant on

each element Θ` of the partition. So, we fix `, and we count first the number of boxes of side length
ε required to cover Θ`.
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Up to a rotation, we can diagonalize the Fisher information matrix F̂ (κ)|Θ` as diag(s2
1, . . . , s

2
d).

Note that Θ` has Euclidean diameter bounded by 2κ−1 and volume κ−d. Also, if Bε(θ̄`) is a ball
centered at θ̄` ∈ Θ` and of length ε, then

Bε(θ̄`) ∩Θ` :=
{
θ ∈ Θ` :

d∑
i=1

s2
i [(θ − θ̄`) · ei]2 ≤ ε2

}
.

Then, the number of balls of size ε needed to cover Θ` is bounded by

ĉd

d∏
i=1

⌈
2κ−1ε−1si

⌉
≤ ĉd2dκ−d

d∏
i=1

⌈
ε−1si

⌉

≤ ĉd2dκ−d
√√√√ d∏
i=1

(
1 + ε−2s2

i

)
= ĉd2

d

∫
Θ`

√
det
(

idd + ε−2F̂κ(θ)
)

dθ ,

where ĉd is a positive dimensional constant, and the last equality follows from the fact that the
volume of Θ` is equal to κ−d and that F̂ (κ) is constant on Θ`.

Summing this bound over ` = 1, . . . ,m, we conclude that (note that VΘ = 2d)

N (κ)(ε) ≤ ĉd2d
m∑
`=1

∫
Θ`

√
det
(

idd + ε−2F̂ (κ)(θ)
)

dθ = ĉd4
d 1

VΘ

∫
Θ

√
det
(

idd + ε−2F̂ (κ)(θ)
)

dθ .

Applying this bound with ε =
√

2π log n/(γn) and recalling the definition of the effective dimen-
sion, the result follows.

Proof of Theorem 6. We start be noting that Lemma 2 remains valid for the discretized setting
and under the assumption of Theorem 6, where Lemma 2 does not require the full rank assumption
of the Fisher information matrix, i.e.,

P
(

sup
θ∈Θ
|R(κ)(θ)−R(κ)

n (θ)| ≥ ε
)
≤ 2N (κ)

(( ε

4M

)1/α
)

exp

(
− nε

2

4B2

)
, (8)

where N (κ)(ε) denotes the number of balls of side length ε, with respect to F̂ (κ), required to
cover the parameter set Θ. This can be seen by going through the proof of Lemma 2. Hence, by
Lemma 7, we find for ε = 4M

√
2π log n/(γn)

P
(

sup
θ∈Θ
|R(κ)(θ)−R(κ)

n (θ)| ≥ 4M
√

2π log n/(γn)

)

≤ 4cd

(
γn1/α

2π log n1/α

)d(κ)γ,n1/α

2

exp

(
−16M2π log n

B2γ

)
. (9)

Remark 8 (How to choose the discretization parameter κ). In this remark we discuss conditions
such that the generalization bound of Theorem 6 for the discretized model M(k)

Θ is a good ap-
proximation to a generalization bound of the original model MΘ. Assume that the model MΘ

satisfies an additional regularity assumption of the form ‖∇θF̂ (θ)‖ ≤ Λ for some Λ ≥ 0 and for
all θ ∈ Θ, then choosing the discretization parameter κ � Λ ensures that that MΘ ≈M(κ)

Θ and
F (θ) ≈ F (κ)(θ). Furthermore,

√
n � κ is required to ensure that the balls used to cover each

simplex of the triangulation are smaller than the size of each simplex.
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