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Supplementary Algorithm 1 Sequential search for active learning/training of DNOs and GPs .

1: Input: Number of iterations: niter

2: Initialize: Train GP/DNO on initial dataset of input-output pairs
GP: D0 = {xi, yi = G(xi)}ninit

i=1 DNO: D0 = {xi, yi = G(xu,iΦ(x1, ...xm),xz,i)}ninit
i=1

3: for n = 1 to niter do
4: Select next sample xn by maximizing∗ acquisition function a(x):

∗Maximization using Monte Carlo, See Section Monte Carlo Optimization of Acquisition Functions
and Supplementary Information Section 7

xn = argmax
x∈X

(a(x; y),Dn−1)

5: Evaluate objective function at xn and record yn
6: Augment dataset: Dn = Dn−1 ∪ xn, yn
7: Retrain GP/DNO.
8: end for
9: return Final GP/DNO Model

Supplementary Algorithm 2 Sequential selection of samples for batch sampling.
1: Evaluate acquisition function for nq query points.
2: for Acquisition samples smaller than batch size na < nb

3: Choose the maximum score, max(a) = a(xc), from nq points.
4: Augment xa with chosen point, xc.
5: Compute the distances, r, between the chosen point and the remaining query points.
6: Eliminate all samples from nq where r < rmin.
7: end for
8: return samples for the next experiment: xa

1 SIR Pandemic Model
We implement a simple Susceptible, Infected, Recovered (SIR) model proposed by [1] and reintroduced by
[2],

dS

dt
= −βIS + δR (1)

dI

dt
= βIS − γI (2)

dR

dt
= γI − δR, (3)

where δ is the rate of immunity loss, γ is the recovery rate, and β is the infection rate. Here we take δ = 0
and γ = 0.1 and adjust β from a scalar to a stochastic infection rate, β(t), defined as

β(t) = β0(xΦ(t) + ϕ0), (4)

where Φ(t) is found via a Karhunen-Loeve expansion of a radial basis kernel with σ2
β = 0.1 and length scale

ℓβ = 1, β0 = 3 × 10−9, and ϕ0 = 2.55, to ensure all infection rates are non-negative. Initial conditions for
the model are I0 = 50 with total population P = 108, and a step size of 0.1 days is used over 45 days.

2 Dispersive Nonlinear Wave Equation: Majda, McLaughlin, and
Tabak Model

The Majda, McLaughlin, and Tabak [3] (MMT) model is a dispersive nonlinear wave equation used for
studying 1D wave turbulence. Under appropriate choice of parameters it is associated with the formation of
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intermittent events [4]. It is described by

iut = |∂x|α u+ λ |∂x|−β/4

(
||∂x|−β/4

u
∣∣∣2 |∂x|−β/4

u

)
+ iDu, (5)

where u is a complex scalar, exponents α and β are chosen model parameters, and D is a selective Laplacian
(described further below). This model gives rise to four-wave resonant interactions that, especially when
coupled with large scale forcing and small scale damping, produces a family of spectra revealing both direct
and inverse cascades [3, 5]. A realization of the MMT model is shown in Supplementary Figure 1 that
demonstrates these complex dynamical properties. Not only does this model provide a rich dynamical
response, but also presents a unique utility as a physical model for extreme ocean waves, or rogue waves
[6, 7, 8]. Hence, its study is an ideal test bed for both examining the numerical difficulties of predictive
models and uncovering insights to physical, real-world applications.

For both ease of computation and for discussion of the terms in the MMT model, we transform the
equation into wavenumber space. The pseudodifferential operator |∂x|α, via the Fourier transform in space
becomes: ̂|∂x|α u(k) = |k|αû(k) where k is the wavenumber in x. This formulation may be similarly defined
on a periodic domain. We choose α = 1/2 and β = 0 as done in [4], reducing equation (5) to

û(k)t = −i|k|1/2û(k)− iλ|û(k)|2û(k) + D̂u(k) + f(k), (6)

where f(k) is a forcing and D̂u(k) is a selective Laplacian of the form:

D̂u(k) =

{
− (|k| − k∗)2 û(k) |k| > k∗

0 |k| ≤ k∗
(7)

where k∗ presents the lower bound of wavenumbers subject to dissipation. For the model considered in
this study we choose λ = −0.5, k∗ = 20, f(k) = 0, dt = 0.001, and a grid that is periodic between 0-1
with Nx = 512 grid points. To propose a stochastic and complex initial condition, u(x, t = 0), we take the
complex-valued kernel

k(x, x′) = σ2
ue

i(x−x′)e−
(x−x′)2

ℓu , (8)

with σ2
u = 1 and ℓu = 0.35. We then parametrize the stochastic initial conditions by a finite number of

random variables, x, using the Karhunen-Loeve expansion of the kernel’s correlation matrix,

u(x, t = 0) ≈ xΦ(x), ∀ x ∈ [0, 1) (9)

where x ∈ Cm is a vector of complex coefficients and both the real and imaginary components of each
coefficient are normally distributed with zero mean and diagonal covariance matrix Λ, and {Λ,Φ(x)} contains
the first m eigenpairs of the correlation matrix. This gives the dimension of the parameter space as 2m to
account for the real and imaginary components of each coefficient. The presented 2D, 4D, 6D, 20D results
correspond to m = 1, 2, 3, 10. For all cases, the random variable xi is restricted to a domain ranging from -6
to 6, in that 6 standard deviations in each direction from the mean.

3 Efficient Estimation of Structural Fatigue for Ship Design
The LAMP-based problem aims to efficiently estimate the VBM statistics of a unique ship, the ONR

topsides flare variant, to inform future design decisions. This real-life industrial application brings significant
complexity and numerous challenges. These are documented at length in Guth and Sapsis (2022) [9] and we
strongly refer the reader to the above paper as we closely follow their implementation. Briefly, we describe
the inputs and outputs below.

Similar to the previous problems, we parametrize a low-dimensional projected subspace of wave episodes
using a Karhunen Loève series expansion [10, 11] of the stochastic surface waves, described by a power spectral
density such as the JONSWAP spectrum. We next use the proprietary code LAMP (Large Amplitude Motion
Program, v4.0.9, May 2019) [12] in order to calculate the forward problem of specific VBM response to a
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a) b)

Supplementary Figure 1: The MMT emits many nonlinear phenomena in finite time, from focusing
to dispersion.a) A realization of the MMT model (α = 1/2, β = 0, λ = −0.5) we discover with DNO-BED,
where a benign initial condition leads to an extreme, rogue wave. b) Wave height of selected times from a).

specific wave episode. A specific wave episode, described by the parametrization x, is mapped onto a VBM
time series y(t), whose duration is related to the original interval of the Karhunen Loève expansion.

Finally, as the LAMP code is proprietary and cannot be shared, we perform our active search in a
precomputed dataset of 3000 (expensive simulations) LHS samples in 10D, with each input variable varying
from [−4.5, 4.5]. This data is provided with the code.

4 Gaussian Process Regression
For low-dimensional problems, Gaussian process (GP) regression [13] is the “gold standard” for Bayesian
design. There are several attractive qualities of GPs. They are agnostic to the details of a black-box process
(just like neural networks described next) and they clearly quantify both the uncertainty in the model and
the uncertainty associated with noise. GPs are also relatively easy to implement and cheap to train.

A Gaussian process f̄(x), where x is a random variable, is completely specified by its mean function m(x)
and covariance function k (x,x′). For a dataset D of input-output pairs ({x,y}) and a Gaussian process with
constant mean m0, the random process f̄(x) conditioned on D follows a normal distribution with posterior
mean and variance

µ(x) = m0 + k(x,x)K−1 (y −m0) (10)

σ2(x) = k(x,x)− k(x,x)K−1k(x,x) (11)

respectively, where K = k(x,x) + σ2
ϵ I. Equation (10) can predict the value of the surrogate model at any

sample x, and (11) to quantify uncertainty in prediction at that sample [13]. Here, we chose the radial-basis-
function (RBF) kernel with automatic relevance determination (ARD),

k (x,x′) = σ2
f exp

[
− (x− x′)

⊤
L−1 (x− x′) /2

]
, (12)

where L is a diagonal matrix containing the lengthscales for each dimension and the GP hyperparameters
appearing in the covariance function (σ2

f and L in (11) are trained by maximum likelihood estimation).
One setback from the above expression is the inference step in GP regression, where each iteration requires

the inversion of the matrix K. Typically performed by Cholesky decomposition, the inversion cost scales
as O(n3), with n being the number of observations [13, 14]. This means that as problems grow to infinite
dimensions, inevitably requiring larger datasets, GPs become prohibitively costly. We will show here that
as the need for data increases, GPs become much more computationally intensive than our next surrogate
model, neural networks.
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5 Deep Neural Operators and DeepONet
Unlike GPs, Deep Neural Operators or Deep Neural Networks, do not suffer from data-scaling challenges
and are our primary model class for consideration in this manuscript. Deep Neural Networks, when cast as
neural operators [15], are specifically well-suited for characterizing infinite dimensional systems, as they may
map functional inputs to functional outputs. Although our work is general for any neural network approach,
we leverage the architecture proposed by [16] for approximating nonlinear operators: DeepONet.

DeepONet seeks approximations of nonlinear operators by constructing two deep neural networks, one
representing the input function at a fixed number of sensors and another for encoding the “locations” of
evaluation of the output function. The first neural network, termed the “branch”, takes input functions, u,
observed at discrete sensors, xi, i = 1...m. These input functions can take on several representations, such
as initial conditions (i.e. u0) or forcing functions. The second neural network, termed the “trunk”, should
be seen as an encoder for inherent qualities of the operator, denoted as z (referred to as y in [16], but
changed here for typical active sampling notation). For example, a variable coefficient or exponent in the
true nonlinear operator, G, alternatively, and the usual use case for DeepONet, the trunk variable can refer
to the evaluation of the operation to an arbitrary point in time and/or space. Together, these networks seek
to approximate the nonlinear operation upon u and z as G(u)(z) = y, where y will denote the scalar output
from the u, z input pair.

Given a set of input-output pairs, {[u, z], G(u)(z)}, DeepONet seeks to minimize the difference between
the true operator, G(u)(z), and the dot product between two neural networks g(u) and f(z). These network’s
level of expressivity is governed by the number of neurons (n), the number of layers (lb, lt for branch and
trunk, respectively), and activation functions. Under sufficient training DeepONet can meet any arbitrary
error, ϵ, as

| G(u)(z)− ⟨g (u (x1) , u (x2) , · · · , u (xm))︸ ︷︷ ︸
branch

, f(z)︸︷︷︸
trunk

⟩| < ϵ. (13)

Thus, DeepONet can, to an arbitrarily small precision, approximate an infinite dimensional nonlinear oper-
ator G(u)(z). However, the functions g and f are typically trained under the assumption of plentiful data.
We are interested in how DeepONet can be optimally trained with the least amount of data to discover and
quantify extreme events.

DeepONet is attractive for these tasks as neural nets generalize well and are incredibly fast to evaluate
(compared to their experimental/simulation counterparts) for arbitrarily chosen points. However, there is
little work on how one optimally selects the best samples to train a neural net. Previously, the approach taken
has included creating an appropriate basis for specific operators that are used to train DeepONet [17]. For the
problems we are interested in (i.e. rare and extreme events), this appropriate basis is unknown. Therefore,
we envision DeepONet will provide a flexible model to learn seen data, and then provide early predictions
of where danger and uncertainty lie in the input/output space through DeepONet’s parameterization, that
we may then query the underlying system to best inform DeepONet.

5.1 Approaches for quantifying uncertainty in Deep Neural Networks
There are several techniques for quantifying uncertainty in neural networks and three categorizations of these
techniques we wish to mention: single deterministic networks, Bayesian neural network inference approaches,
and ensemble methods (see [18] and [19] for comprehensive reviews of these methods for uncertainty quantifi-
cation). Unfortunately, a complex array of advantages and disadvantages of each approach provides no clear
favorite. Single model, i.e. deterministic, methods [20, 21] use one forward pass of a deterministic network
to learn both the mean and variance of a labeled output. Using only one model leads to cheap training and
evaluation. Unfortunately, this single opinion of the underlying system results in substantial sensitivity, an
unattractive quality for regression problems quantifying physical instabilities/extreme events. Bayesian neu-
ral networks [22, 23, 24, 25] encompass a broad variety of stochastic DNNs that combine Bayesian inference
theory with the expressiveness, scalability, and predictive performance enjoyed by deep neural networks.
Although the supporting theory behind Bayesian methods, as well as empirical results, imparts faith that
such models will lead to the greatest chance of success, they do come with a significant disadvantage, com-
plexity. Bayesian neural networks are significantly more complex than standard neural networks and can be
exhausting to train, making them difficult to implement. From an academic viewpoint, this can be overcome.

4



DeepONet: NLS/MMT with Stacked Real and Imaginary Inputs
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Supplementary Figure 2: The application of the MMT, SIR, and LAMP operators to DeepONet.

However, as a study concerned with translating DNNs and active learning to practical engineering systems
that solve real-world problems, we opt for using the straight-forward ensemble approach. An approach that
seats itself between the single deterministic model and the infinite model representations of Bayesian neural
networks.

6 DeepONet Setup
Application of the MMT, SIR, and LAMP models to the DeepONet architecture requires a well-posed dis-
tinction between the functions and parameters that belong in the branch and trunk networks. Supplementary
Figure 2 provides a visual of the function/parameter delineations and the architecture for each modeling
task.

In this work, we provide all input initial conditions as functions to the branch network. Because of the
requirement that all inputs to DeepONet take on real values, the MMT setup requires that we split the input
function, u, into its real (ur) and imaginary (ui) components. It is critical to keep both components, as each
contains unique and coupled information that is propagated in the MMT operation (this is not necessary for
the real-valued SIR or LAMP model). We then stack these components as a vector by x position/sensor with
the imaginary component directly following the real component at each x position. Technically, the ordering
of the inputs does not matter, due to the linear nature of the first layer, but the ordering of the inputs must
remain consistent. For increased speed, we also reduce the sensor number of xm sensors from the 512 used
for the direct MMT calculation to 128 points for DeepONet (this corresponds to 256 total inputs values
because of the real and imaginary components), 125 points for the SIR infection rate, and 1024 points for
the LAMP wave episode. We also give the length scale and variance as input parameters, where applicable,
as they define the kernel that emits the Karhunen-Loeve expansion functions. The input functions directly
recognize adjustments to these parameters.

The trunk contains parameters that are intrinsic to the MMT, SIR, and LAMP operations. For MMT,
these comprise both time and space (t, x) and the chosen constants α, β, λ, k∗. Regarding BED, we may
assign each of these parameters to an appropriate prior distribution, such as uniform for space and time. In
this study, we choose all values to remain constant and although the trunk is straightforward to implement,
it is simply a redundant network here.

We provide the hyperparameters and other quantities used for the various MMT cases performed through-
out the manuscript in Supplementary Table 1. In addition to the hyperparameters, we use the ReLu activa-
tion function, a learning rate of lr = 0.001, and 1000 epochs for each training procedure. For the SIR search,
the same hyperparameters are used with 8 branch layers, 1 redundant trunk layer, and 300 neurons. For the
LAMP search, the same hyperparameters are used with 5 branch layers, 1 redundant trunk layer, and 200
neurons.

7 Monte Carlo Optimization at 20D

Here we show that acquisition samples found through Monte Carlo (MC) searches consistently outperform
those selected by optimizers using gradient descent algorithms (when reasonably similar computation times
are considered). To demonstrate this behavior, we test four methods for finding 50 batched acquisition
samples for the 20D MMT case at 500, 2500, and 5000 training samples, N = 2 ensemble members, and
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Case Neurons Branch Layers Ensemble Size Experiments
MMT: 2− 6D 200 5 10 10

MMT: 8D Batching 200 5 10 10
MMT: 8D Ensemble, n ≤ 2500 200 5 2,4,8,16 10
MMT: 8D Ensemble, n > 2500 200 6 2,4,8,16 10

MMT: 20D, n ≤ 2500 200 5 2 25
MMT: 20D, n > 2500 200 6 2 25

LAMP: 10D 200 5 2 10
SIR: 2D 300 8 2,8 1

Supplementary Table 1: Hyperparameters used for all cases. All trunk layers = 1 due to their redun-
dancy.

Samples L-BFGS-B MC: 105 MC+L-BFGS-B MC: 106

500 122± 7 3.6± 0.1 123± 5 27± 1
2500 126± 6 4.0± 0.2 125± 5 26± 2
5000 127± 8 3.7± 0.1 135± 7 27± 3

Supplementary Table 2: MC is faster than built-in optimizers. Mean compute times (k = 25) for batch
minimization (nb = 50) of the 20D US-LW acquisition function with ± one standard deviation. Best values
are bold.

over 25 independent experiments. The four approaches are listed below, with each case choosing the 50 best
samples with Supplementary Algorithm 2:

1. L-BFGS-B algorithm, implemented within the scipy Python package, 102 random LHS initial points.

2. MC with 105 random uniform initial samples (sampled from a uniform distribution for speed)

3. MC with 105, best 100 samples (Supplementary Algorithm 2) passed to L-BFGS-B.

4. MC with 106 random uniform initial points.

Supplementary Table 2 and Supplementary Table 3 provide the mean computation times and scores for
all cases, respectively. The mean computation times (± one standard deviation) are clearly faster for MC
methods, by 5-fold, compared to any approach with the L-BFGS-B algorithms. We also note that only the
first ensemble member is used for computing and querying pµ for speed, as well as likely better performance.

Supplementary Table 3 provides the mean scores (over all chosen batch samples and experiments, n =
1250), as well as the mean best and worst sample for each experiment (n = 25). It is critical to note that
at these high dimensions the difference between acquisition scores can be hundreds of orders of magnitude
different (this is a direct result of weights define by the ratio of two PDFs computed over 20 dimensions).
To navigate this computational challenge, we take the log10 of the scores and apply a negative sign such
that lower scores are optimal (i.e. − log10(a(x))). Considering the mean of all chosen points, we see that
a naive use of the L-BFGS-B optimizer finds scores that are ≈ 50 orders of magnitude worse than the 106

MC approach, regardless of the training complexity of the model. The L-BFGS-B optimizer only provides
a marginal advantage for finding the best sample in any random instance, however, the standard deviation
is 30 orders of magnitude and suggests the approach is terribly inconsistent. Juxtaposing the min and max
results, we see that the MC method only varies by approximately 10 orders of magnitude compared to the
80 orders of the L-BFGS-B.

Overall, the MC method provides greater consistency in finding several attractive acquisition points,
while also enjoying ease of implementation and better computational efficiency. Of course, if given enough
computational resources and time, the L-BFGS-B method permits pinpointing exceptional acquisition points.
Approaches combining both MC and L-BFGS-B, where the MC samples are further optimized (as also
implemented here) or performed from more LHS points, can either refine or enrich the set of acquisition
points.
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Samples L-BFGS-B MC: 105 MC+L-BFGS-B MC: 106

Mean (k = 1250)
500 110± 18 70± 5 66± 6 60± 4
2500 104± 16 67± 5 63± 5 56± 4
5000 110± 17 76± 4 67± 8 64± 4

Min k = 25
500 42± 32 57± 6 53± 16 52± 5
2500 44± 32 53± 4 48± 10 47± 6
5000 53± 21 60± 5 48± 11 54± 3

Max k = 25
500 126± 7 73± 3 70± 3 63± 3
2500 117± 6 70± 3 65± 3 60± 3
5000 125± 5 80± 2 72± 2 67± 2

Supplementary Table 3: MC optimization provides consistently improved acquisition scores over
built-in optimizers. Top rows: The mean and standard deviation of all 1250 chosen acquisition samples
for the four methods on DNOs trained with 500, 2500, and 5000 samples. Middle rows: The mean and
standard deviation of the best acquisition samples for the 25 experiments. Bottom rows: The mean and
standard deviation of the worst chosen acquisition samples (i.e. the least optimal sample of the batch). All
values are − log10(a(x)). Best values are bold.

We believe the results found here are chiefly because of the non-convexity of the acquisition function.
We may recall the highly non-convex behavior of the 2D acquisition fields in figure 2b), even with as little as
≈ 10 samples. This non-convex nature emits many local minima that require many initial samples to provide
confidence that the chosen optima are nearly global. This makes the task for built in optimizers extremely
difficult, especially for high dimensional problems, and lead to optimizations that become easily fooled or
stuck. This difficulty is so challenging that the sparse MC sampling of only 106 points, an extremely sparse
sampling of a 20D space, easily outperforms the optimizers.

8 DNO & Likelihood-Weighted Sampling Implementation Tips
While many of these tips are general to neural network implementation, we reiterate them here to assist
others in reproducing these results and applying the method to new stochastic problems.

1. The input function to the DNO should be scaled to vary within values of -1 and 1.

2. The quantity of interest, or output, should also be scaled and normalized to values between -1 and 1.

3. Users should ensure that the DNO is indeed fitting the outputs. This is typically observed with final
training errors that are multiple orders of magnitude below the initial training error at epoch 0. To
adjust, increase training epochs, layers, and/or width of neurons. Otherwise, the scaling above may
have not been appropriately performed.

4. While we did not experience problems, the weights, w(x), could be negatively affected by the output
PDF, pµ(µ), in pathological cases. Monitoring the output PDF and its impact on the weights is
recommended. We also stress that our approach assumes that extreme events are also rare, as this
approach brings attention to the tails. If extremes are not rare, they are not contained within the tails.

5. We found consecutive training and evaluation runs of Tensorflow with the same kernel resulted in
slowing speeds. To combat this, after a round of training, evaluation, and determination of the next
acquisition samples are completed, Python is closed and a new instance is loaded for the next step.
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