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Supplementary Section 1  Validation of G-SchNet for OE62 
To ensure that the trained autoregressive, generative deep neural network, G-SchNet,1 predicts 

sensible structures that resemble the molecules in the original data set (OE62),2 we carried out a two-

fold analysis. First, we generated a data set of 100k molecules with G-SchNet with molecules that 

contain up to 100 atoms. We then randomly selected 400 data points and optimized them with 

PBE+vdW3-5 and tight basis set settings using FHI-aims.6 For structure relaxations, the same protocol 

reported for the OE62 data set was used (see also Methods section on quantum chemistry 

calculations).  

The optimized molecular geometries were then aligned with the G-SchNet predicted molecules and 

the root mean squared deviations (RMSD) were computed. The distribution of RMSD values is shown 

in Supplementary Figure 1. In addition to the RMSDs, sample molecules are shown. The G-SchNet 

predicted structures are solid, while the density functional theory (DFT)-optimized structures are 

shown slightly transparent. The left-most molecule shows the structure with lowest RMSD of 0.022 Å, 

where both structures are almost identical. The second pair of two structures illustrates deviations of 

around 0.5 Å (i.e., 0.46 Å and 0.48 Å) and deviations are representatives for most of the predicted 

molecules with G-SchNet. The next pair of two structures to the right have an RMSD at around 1.09 Å 

und 1.18Å. At RMSD > 1Å, deviations between G-SchNet-predicted structures and DFT-optimized 

structures become clearly visible but can be deemed minor. The molecule with the largest deviation 

of 3.00 Å is shown on the right and shows a geometry that GSchNet predicts to be more strongly 

distorted than the DFT reference result. 

 

Supplementary Figure 1: Validation of G-SchNet predicted structures. The root mean squared deviations (RMSD) of 
molecules predicted with G-SchNet were compared to structures obtained after structure relaxation with the reference 
density functional theory method. Exemplary molecules are shown, where the G-SchNet predicted structure (solid colors) is 
overlaid with the DFT-optimized structure (transparent). Examples for molecules that have very low RMSD, RMSD at around 
0.5 Å, 1.1-1.2 Å, and >3 Å are illustrated. 

In addition to the RMSD, we compared distributions of some the most common bond lengths and 

bond angles. This analysis is based on the validation of G-SchNet that was carried out for the QM9 

data set in Ref. 1. The distributions for C-C-C bond angles, C-O-C bond angles, C-O bond distances, C-

C-O bond angles, C-H bond distances, and ring sizes of molecules in the OE62 data set and molecules 

predicted by G-SchNet can be seen in Supplementary Figure 2. As can be seen, the distributions are 

very similar and indicate that, at least for the illustrated bonds and angles, G-SchNet structures 

resemble the molecular structures of the OE62 data set. The similarity of G-SchNet structures 



 

compared with molecules of the OE62 data set can be further assessed from Figure 1b, which shows 

the elemental composition of molecules with respect to the amount of carbon. Besides the amount 

of lithium and arsenic, which appear to differ strongly in the plot but in reality deviate only minorly 

due to the log-scale used for better visibility of elements with negligible amounts, the molecular 

compositions are very similar. 

 

Supplementary Figure 2: Comparison of structures predicted with G-SchNet with structures of the OE62 data set. a) 
Probability distribution of C-C-C bond angles, b) C-O-C bond angles, c) C-O bond distances, d) C-C-O bond angles, e) C-H 
bond distances, and f) ring sizes of molecules in the OE62 data set and G-SchNet-predicted molecules. 

Supplementary Section 2  Validation of SchNet+H for G-SchNet-predicted structures 
To assess the influence of structural differences on the electronic properties of molecules, i.e., orbital 

energies and quasiparticle energies, we predicted orbital energies of the 400 molecules used for 

validation of G-SchNet in Supplementary Figure 3, as obtained from G-SchNet and after structure 

optimization with DFT. The orbital energies of DFT-optimized structures predicted with SchNet+H are 

plotted against orbital energies obtained from DFT (PBE07,8 and tight basis set settings) using the DFT-

optimized molecules as inputs. The mean absolute error (MAE) is about 0.24 eV (Supplementary 

Figure 3a). For comparison, the error of SchNet+H orbital energies for G-SchNet predicted structures 

compared to orbital energies obtained with DFT using DFT-optimized structures are only slightly 

larger, i.e., 0.26 eV (Supplementary Figure 3b). The same test was executed with SchNet+H for 

quasiparticle energies. The MAE error obtained using DFT-optimized and G-SchNet predicted 

structures is about 0.25 eV and 0.28 eV, respectively. Scatter plots of quasiparticle energies using G-

SchNet-predicted structures for SchNet+H predictions can be seen in Supplementary Figure 3c. For 

comparison, the error of SchNet+H for molecules in the test data of the OE62 data set is about 0.13 

eV. The method can be deemed sufficiently accurate for the purpose of high-throughput targeted 

design of functional organic molecules. 



 

Supplementary Figure 3: Validation of SchNet+H for G-SchNet generated structures. a) Scatter plots of SchNet+H predicted 
orbital energies and PBE0 orbital energies for structures obtained from G-SchNet and for b) optimized structures with 
PBE+vdW and the tight basis set settings. The same procedure as in the original data set was carried out to relax molecules. 
c) Scatter plots of SchNet+H predicted quasiparticle energies and reference G0W0@PBE0 quasiparticle energies for molecules 
obtained from G-SchNet without additional DFT optimization. 

Supplementary Section 3 Validation of molecules at the edges of of the distributions 

To assess the reliability of SchNet+H predictions, two SchNet+H models were employed that were 

trained on different random train/test splits of the same dataset.  By computing the deviation of ΔE, 

EA, and IP values between the two models, which should be well below the MAE of the individual 

models, it is possible to identify structures for which quasiparticle energies are predicted with high 

uncertainty. The threshold was set to the MAE of the models that was determined for a given data 

set. This approach is known as query by committee. 9,10 

To further validate the predictions of SchNet+H for molecules obtained in the last biasing steps of the 

fundamental gap, ΔE, the electron affinity, EA, and the ionization potential, IP, G0W0@PBE0 

calculations were carried for 66, 79, and 33 data points, respectively. These data points were obtained 

by taking every 50th data point of molecules in the last 3 loops that had a ΔE or EA small than their 

mean minus standard deviation and an IP larger than their mean plus standard deviation of the model. 

In this way, 99, 86, 71 geometries were obtained for ΔE, EA, and IP, respectively. These were, as done 

in the original data set, optimized with PBE+vdW using first light and later tight settings of the basis 

set. The relaxed geometry was then used to compute G0W0@PBE0 values at the complete basis set 

limit. Therefore, two calculations were carried out, once with the QZVP basis set and once with the 

TZVP basis set. G0W0@PBE0 values at the complete basis set limit were extrapolated from TZVP and 

QZVP quasiparticle energies by a linear fit using the procedure employed for the GW100 benchmark 

set11 with the script obtained from NOMAD of ref. 2. Out of all calculations, 66, 79, and 33 converged 

Supplementary Figure 4: Validation of electronic properties of generated molecules. a) Fundamental gaps, ΔE, b)
electron affinities, EA, and c) ionization potentials, IP, for molecules of the original data set and G-SchNet generated 
structures of the last 3 biasing steps predicted with SchNet+H and computed with G0W0@PBE0.   



 

for ΔE, EA, and IP, respectively. The reference values are plotted against the SchNet+H predictions in 

Supplementary Figure 4. In addition, the G0W0@PBE0 values of the original data set are shown. It is 

clearly visible that molecules predicted in the last iterations of the biasing process exhibit properties 

at the edges or outside of the training set. 

As can be seen, SchNet+H accurately predicts the trends of almost all molecules correctly. There is 

one data point for the EA, which is predicted with a large error. The mean absolute error for ΔE, EA, 

and IP of molecules of the last biasing steps are 0.4 eV, 0.6 eV, and 0.4 eV, respectively. Given the fact 

that these molecules are at the edge of the originally learned distribution exhibiting electronic 

properties outside the training set and the use case of computationally efficient high-throughput 

screening, the accuracy can be deemed sufficient.  

The smallest ΔE value computed with G0W0@PBE0 was 3.2 eV, while the smallest ΔE value of the 

OE62 data set is 4.8 eV, which is 1.6 eV larger. The mean ΔE value of the molecules recomputed is 3.9 

eV, which is still smaller than the smallest value found in the OE62 data set. The mean ΔE value of the 

OE62 data set is 8.1 eV. 

The largest EA value computed with G0W0@PBE0 was 6.6 eV, while the largest EA value of the OE62 

data set is 2.4 eV, which is 4.2 eV larger. The mean EA of the molecules recomputed is 4.6 eV, which 

is still much larger than the largest value found in the OE62 data set. The mean EA of the OE62 data 

set is -0.7 eV. 

The smallest IP computed with G0W0@PBE0 was 4.2 eV, while the smallest IP of the OE62 data set is 

5.0 eV, which is 0.8 eV larger. The mean IP of the molecules recomputed is 5.0 eV, while the mean IP 

of the OE62 data set is 7.4 eV. 

Supplementary Section 4  Iterative biasing 
For biasing of G-SchNet towards large EA, we selected all molecules with a target property, P, that was 

larger than the mean of each property, �̅�, plus the corresponding standard deviation, 𝜎𝑃: 𝑃 = �̅� + 𝑥 ∙

𝜎𝑃 . For biasing of G-SchNet towards small IP, ΔE, and SCScore, we selected all molecules with a target 

property, P, that was larger than the mean of each property, �̅�, minus the corresponding standard 

deviation, 𝜎𝑃: 𝑃 = �̅� − 𝑥 ∙ 𝜎𝑃. For single property biasing we set x to 1. In case of biasing towards two 

properties, x was set to 0.5. The number of valid molecules generated in each loop and the number of 

molecules selected for biasing G-SchNet are shown in Supplementary Datafile 1. 

 

Supplementary Section 5  Computational costs of quantum chemistry calculations and 

machine learning training and predictions 
The computational costs for G0W0@PBE0 and SchNet+H quasiparticle energies are compared in 

Supplementary Table 1. As can be seen, the computational costs of G0W0@PBE0 calculations are 

extremely large with several 1000 CPUhs for molecules larger than 80 atoms. The computational costs 

for SchNet+H predictions are almost independent of atom size and are averaged from predictions 

made for over 10k molecules. Dell PowerEdge C6420 compute nodes each with 2 x Intel Xeon Platinum 

8268 (Cascade Lake) were used for molecules with up to about 45 atoms and Dell PowerEdge R640 

nodes each with 2 x Intel Xeon Platinum 8268 (Cascade Lake) were used for larger molecules. 

SchNet+H predictions were carried out on Dell PowerEdge R740 nodes each with 3 x NVIDIA RTX 6000 

24 GB RAM GPUs. 



 

As can be seen in Supplementary Table 1 the screening of several hundred thousand molecules is 

computationally extremely costly and can be regarded as infeasible, especially because high memory 

nodes are necessary for molecules larger than about 45 atoms. In contrast, SchNet+H is 

computationally efficient enough to predict several hundred thousand molecules within less than a 

day. Note that the costs of obtaining G0W0@PBE0 calculations are more expensive than PBE0 

calculations, because two calculations are carried out: The first step is the prediction of orbital 

energies at PBE0 level of theory and the second step is the correction of these energy levels with a Δ-

ML model for G0W0@PBE0. Since two slightly differently trained SchNet+H models were executed 

each time G-SchNet generated structures were screened, one loop took approximately 2 days on a 

GPU. G-SchNet training on OE62 data took approximately 1 week, while biasing took less than 1 day 

on a GPU.  

 

Supplementary Section 6  Clustering and principal component analysis (PCA) 
The variance covered by the first 5 principal components using descriptors of molecules of the OE62 

data and of all molecules as input are shown in Supplementary Figure 6. 

Type of calculation Molecule 
size 

QC [CPUh] SchNet+H 
[GPUh] 

PBE0 42 7.1  4.4∙10-5 

G0W0@PBE0 CBS 42 502 1.8∙10-4 

PBE0 85 47.3 4.4∙10-5 

G0W0@PBE0 CBS 85 4,126 1.8∙10-4 

Supplementary Table 1: Computational costs of quantum chemical calculations and machine learning predictions. The 
computational costs of calculating PBE0 orbital energies and G0W0@PBE0 quasiparticle energies at the complete basis set 
(CBS) limit with density functional theory and SchNet+H are compared for two molecules of different sizes. Dell PowerEdge 
C6420 compute nodes each with 2 x Intel Xeon Platinum 8268 (Cascade Lake) were used for molecules with up to about 45 
atoms and Dell PowerEdge R640 nodes each with 2 x Intel Xeon Platinum 8268 (Cascade Lake) were used for larger molecules. 
SchNet+H predictions were carried out on Dell PowerEdge R740 nodes each with 3 x NVIDIA RTX 6000 24 GB RAM GPUs. 

 



 

In addition to the representation of the chemical space spanned by principal components obtained 

from the OE62 data set and the structural descriptors, we carried out PCA using bonding descriptors 

of the OE62 data set. The chemical space spanned by the OE62 data represented by the first two 

principal components of the bonding descriptors can be seen in Supplementary Figure 5. The plots 

verify results found by using structural descriptors (Figure 2b, d, and f) and suggest similar relevant 

regions in chemical space for small fundamental gaps and large electron affinities and different 

important regions in chemical space that make up small ionization potentials. Also here, we can see 

that generated molecules are within the regions covered by molecules in the OE62 data set. 

Supplementary Figure 6: Variance in principal components. a) Variance of the 
first 5 principal components (PCs) obtained for the structural descriptor, i.e., 
SOAP, b) and the bonding descriptor, for molecules of the OE62 data set. c) 
Variance of the first 5 principal components (PCs) obtained for the structural 
descriptor, i.e., SOAP, d) and the bonding descriptor, for molecules of the OE62 
data set and the generated molecules used for biasing towards small 
fundamental gaps. 

Supplementary Figure 5: Chemical space spanned by OE62 data. Distribution of data points in chemical space made up by 
principal components obtained from OE62 data using bonding descriptors and results from biasing towards a) small 
fundamental gaps, ΔE, b) large electron affinities, EA, and c) small ionization potentials, IP. The color code indicates the 
biasing step. The plots are complementary to Figure 2 in the main text panels b, d, and f. 



 

Supplementary Figure 7 shows the clusters plotted against the first principal components (PCs) 

obtained from structural descriptors and ΔE colored with respect to the loops (panel a) and clusters 

found (panel b). The subclusters are shown in panel c.  

 

 

Supplementary Figure 7: Clustering analysis for biasing G-SchNet towards small fundamental gaps, ΔE. A) Data points 

obtained from OE62 and G-SchNet colored according to iterations and b) colored according to clusters found. C) 10 

representatives of each cluster obtained with subclustering using centroids of b) as inputs SC indicates sub cluster. 

 

Supplementary Section 7  Molecular features 

Supplementary Figure 8 shows functional groups that are represented frequently in molecules that 

have a small ΔE value. These molecular groups are parsed in SciFinder and are found in applications 

and are discussed in the main text.12-14 

Supplementary Figure 8: Functional groups represented in molecules with small fundamental gaps. Molecules strongly 
represented in the data set biased towards small fundamental gaps and generated with G-SchNet that are also found in the 
data set in Ref.44. 



 

Supplementary Section 8  Knock-out study 
 

To analyze whether G-SchNet can predict bonding patterns that are not present in the original data 

set, we eliminate all molecules containing cyano groups of the OE62 data set. These are molecules 

that have a C-N bond length of less than 1.25 Å, as C-N triple bonds are usually in the range of 1.15 Å. 

The modified OE62 data set is used to train a new G-SchNet model, which is then used to predict new 

molecules and is biased against small ΔE. As can be seen in Supplementary Figure 9a, the ΔE values 

iteratively decrease, when biased against them, which is expected. Supplementary Figure 9b shows 

that already after the first biasing step, G-SchNet predicts molecules with increased number of cyano 

groups. The trend of increased number of cyano groups in molecules with small ΔE values is thus 

retained.  

 

Supplementary Figure 9: Knock-out study. A) Distribution of fundamental gaps, ΔE, and b) C-N bond lengths of molecules in 
the OE62 data set excluding molecules with a C-N bond length < 1.25 Å and of molecules generated with G-SchNet biased 
against ΔE. 

 

Supplementary Section 9  Multi-property biasing 
As discussed in the main text in section 3.2 and 3.3, the synthetic complexity of molecules increases 

when minimizing the fundamental gap (see Figure 3h). This effect seems to revert after the third loop, 

when the complexity of synthesizability drops and becomes more favorable towards the end of the 

biasing process. However, it does not return to its original, lower distribution. This lowering of the 

complexity of synthesizability is possibly due to the fact that molecules become smaller with 

iterations, which generally reduces synthetic complexity.15 The conclusion that our method is 

successful in finding rules in molecules that could be potentially relevant to optoelectronics, but that 

the molecules we generate are possibly too complex to synthesize, is not very encouraging. Therefore, 

we further sought to investigate the potential of the method to simultaneously optimize multiple 

properties, i.e., small fundamental gaps and low synthetic complexity of molecules.  



 

The molecules selected for biasing G-SchNet initially are shown in Supplementary Figure 10. This 

image shows the fundamental gap against the SCScore of 340k molecules obtained from the OE62 

data set and predicted with G-SchNet. The orange distribution is used for biasing G-SchNet initially. 

The results, i.e., the sulfur nitrogen and selenium content (panel a), the elemental distribution in 

molecules (panel b), and the C-N bond lengths (panel c) are shown in Supplementary Figure 11. In 

addition to Figure 4 in the main text. The plots are complementary to Figure 4 in the main text, but 

contain results obtained by multi-property biasing, i.e., biasing towards small fundamental gaps and 

small SCScore, instead of results obtained only from biasing towards a single property, i.e., small 

fundamental gaps 

 

Supplementary Figure 10: Molecules selected for multi-property biasing. Fundamental 
gap of molecules plotted against synthetic complexity score (SCScore) of molecules of the 
OE62 data set and generated with G-SchNet trained on the OE62 data set (blue 
distribution). The distribution of molecules selected for biasing towards small 
fundamental gaps are shown in orange. Some example molecules with small fundamental 
gaps and synthetic complexity (orange area) are shown right to the plot. 

Supplementary Figure 11: Cluster analysis for molecules with small fundamental gaps and small SCScore. a) Distribution of 
sulfur (S), nitrogen (N), and selenium (Se), b) elemental distribution and c) distribution of C-N bond lengths of molecules 
generated during biasing towards small fundamental gaps, ΔE, and small synthetic complexity score (SCScore).  
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