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Part I

Supplementary Material
Supplementary Section 1 Runtime and memory profiles on synthetic data

In order to investigate runtime and memory profiles of CorALS in more detail, we conduct a set

of experiments on synthetic data. The basic synthetic dataset is a random matrix with 20,000

features (columns) and 50 samples (rows). In the following experiments, we gradually add more

features and samples, respectively, and analyze the results.

Supplementary Section 1.1 Full correlation matrix calculation

Figure 2 shows the runtime comparison of full correlation matrix calculation on synthetic data.

The baseline data contains 20,000 features and 50 samples indicated by vertical gray lines. We

then gradually modify the number of features and samples along the x-axis, respectively. The

results confirm the trends from real-world data in the main text and exemplify how CorALS out-

performs existing methods (default) in each programming language. In particular, as the number

of features increases, the performance gain grows exponentially as illustrated by the constant

distance of default and CorALS implementations (fast) on the log-log scale (see Figure 2a).

Similarly, while common programming frameworks are more efficient in cases with low fea-

ture to sample ratios, when reducing the number of samples, the performance gain of CorALS

becomes increasingly prominent (see Figure 2b). This illustrates that common programming

frameworks are not optimized for scenarios with high feature to sample ratios, and that CorALS

effectively tackles this issue to enable large-scale correlation analysis in high-dimensional bio-

logical datasets, e.g., in multiomics or single-cell settings.
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Supplementary Section 1.2 Top-k correlation search

The runtime results for the top-k correlation matrix approximation on synthetic data are shown

in Figure 3. The baselines for R, Julia, and Python are implemented by calculating the full cor-

relation matrix, sorting the corresponding absolute correlation values (using respective default

sorting implementations), and selecting the top k entries. The generally longer runtimes of ex-

tracting top k correlations compared to calculating the full correlation matrix in Supplementary

Section 1.1 is due to the time intensive sorting step required to identify the most prominent

correlations. Figures 3a and 3b show that for data with high feature to sample ratios, taking

advantage of the advanced indexing structures (CorALS) yields substantial performance gains

over a sorting-based implementation (default). With an increasing number of features, the con-

stant difference in runtime in the log-log plot implicates exponentially growing performance

gains. At the same time decreasing samples counts illustrate how CorALS can substantially

outperform naive implementations for high feature to sample ratios. It is important to note, that

with growing sample counts the data space becomes sparser (curse-of-dimensionality) which

can reduce the performance of the tree-based indexing method used by CorALS to degrade

to linear runtimes, thus, reducing its runtime advantage. However, the inherent paralleliza-

tion capabilities of the tree-based approach can mitigate this effect. Also, future optimizations,

e.g., based on approximate nearest neighbor search like locality sensitive hashing (1), may fur-

ther improve runtime performance in these scenarios. Furthermore, a particular strength of the

CorALS implementation is its memory footprint as illustrated by Figure 3c which can enable

top-k correlation network construction even on standard laptop computers.

Note that the Python implementation takes advantage of the dualtree approach (2) for speed-

ing up the search. This specialization was only available for the Python implementation of ball

trees (sklearn) but not for the Julia implementation (NearestNeighbors.jl). Thus,

Julia has the potential to gain a performance boost for top correlation extraction. Finally, while
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several k-nearest-neighbor libraries exist, no R library providing ball tree data structure was

available to the authors at the time of writing this manuscript, which is why no corresponding

implementation was included.

Supplementary Section 2 Runtime profiles with multi-core processing

The methods provided by CorALS, e.g., full correlation matrix calculation, top-k correlation

network estimation, are highly parallelizable. This is illustrated in Figure 4 on the Cancer (0.25)

dataset. Similar characteristics apply for differential correlation discovery. This illustrates the

versatility of CorALS and further outlines the advantage over common implementations in state-

of-the-art programming frameworks for data with high feature to sample ratios.

Supplementary Section 2.1 Full correction matrix calculation

Since the full correlation matrix calculation is based on matrix multiplication, it is inherently

parallelized by the underlying matrix routines employed by the different programming frame-

works. In previous experiments, we have specifically disabled this inherent parallelization.

Figure 4a shows the effect of using multiple cores on the full correlation matrix calculation.

Substantial speedups can be achieved. Note that, for this, it can be important to multiply two

physical copies of the original sample-feature matrix as more cores are utilized to gain the most

speedup (compare the runtime of CorALS copy vs. CorALS no copy in Figure 4a).

Supplementary Section 2.2 Top-k correlation network approximation

Additionally, the top k correlation network approximation is inherently parallelizable by con-

currently querying the underlying index structure. This also results in substantial speedups

as the number of used processing units increases as depicted in Figure 4b while the memory

overhead is relatively small.
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Supplementary Section 2.3 Top-k differential correlation network approximation

The parallelization properties of differential correlation discovery is equivalent to top-k corre-

lation network approximation.

Supplementary Section 3 Comparison with existing software libraries

Supplementary Section 3.1 Computation of full correlation matrices

As mentioned in the main manuscript, R in particular has numerous different implementations

to calculate full correlation matrices, likely motivated by the limited performance of the native

cor function. This includes packages like WGCNA (3), Rfast (4), coop (5), and HiClimR (6)

with different advantages and disadvantages. For example, WGCNA can handle small amounts

of missing values, and HiClimR tries to save memory by only calculating the upper half of the

correlation matrix. Supplementary Data 1 shows a performance comparison on a subset of real-

world datasets, illustrating that CorALS outperforms the other implementation, in most cases

with substantial performance gains.

Similarly, the Python ecosystem provides several packages that allow for efficient correla-

tion matrix calculation. This includes for example the DeepGraph package (7), Dask (8), or

Spark (9) However in initial tests, did not come close to the runtime performance provided by

CorALS. For reference, we used a synthetic dataset with 32 211 features and 68 samples which

is equivalent to the pregnancy dataset (PREG). In this setting, and utilizing 64 cores, DeepGraph

takes 1 minute and Dask requires 11 seconds. For Spark, the pyspark.ml.stat.Correla-

tion takes about 7 seconds to finish. All are slower than the CorALS implementation which

only needs roughly 1 second. DeepGraph may be useful when memory resources are limited

since results are directly written to disc. Similarly, Dask supports spilling results to disk which

do not fit into memory. By design, Spark keeps all correlations in memory, but allows to keep
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them distributed if set up accordingly. However, in contrast to CorALS, all above mentioned

libraries require a substantial programming overhead as well as in-depth knowledge about par-

allel processing.

In addition to these two frameworks, Python libraries exist that allow for utilizing GPUs for

correlation computation. This includes for example CuPy (10), or RAPIDS (11). While both

have the potential to rapidly speed up the calculation of the overall correlation matrix (e.g., for

the previous scenario CuPy has similar runtimes as CorALS of around 1 second), their memory

footprint is inherently limited by the available GPU memory which in most cases is substantially

smaller than main memory. In theory, combinations of Dask, CuPy, and RAPIDs are possible

to enable distributing workload across GPUs or utilize a batched approach, however this does

not represent a drop-in replacement and simple interface provided by CorALS and requires

knowledge of the underlying parallelization framework.

Beside R and Python packages there is a variety of other implementations of efficient cor-

relation matrix calculation (e.g., (12)) but they are often not easy to use, and similar to the

previously mentioned approaches do not directly support the selection of top-k correlations

as provided by CorALS. For example, some rely on specialized parallel processing and high

performance computing frameworks (e.g., GPUs, MapReduce, etc.) (13–16) which CorALS

supports through joblib backends. Also, the corresponding implementations are not easily

accessible which is why we do not compare against these methods. Other methods focus on spe-

cialized correlation measures (17,18), such as partial correlation or extract top-k correlations of

pairs items in databases.

Supplementary Section 3.2 Computation of top-k correlation networks

To the best of the author’s knowledge, no implementations for top-k correlation discovery exist.

In particular, none of the methods for full correlation matrix calculation, mentioned in the previ-
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ous section, support the efficient discovery of top-k correlations for a large-scale datasets. This

includes the mentioned R implementations as well as Python based approaches like DeepGraph

or Dask (https://github.com/dask/dask/issues/2859).

Supplementary Section 3.3 Differential analysis of correlation networks

There are a variety of methods for differential network analysis (19–25). While methods like

Discordant (24) and DCARS (25) can be used to calculate differential correlations, do not allow

for top-k functionality and thus will quickly run into memory issues. The closest to CorALS’s

capability to derive top-k differential correlations are DGCA and DiffCorr (19, 23). However,

when testing runtimes, DGCA was substantially slower: for a synthetic dataset of 10000 fea-

tures and 17 samples across two conditions, DGCA ran 2.2 minutes while CorALS required 7.5

seconds (no parallelization, i.e., using a single core). DGCA, provide sampling functionality for

more robust difference estimation which causes longer runtimes and has been disabled for com-

parability in this example. Similarly, DiffCorr, even with disabled adjustment, also exhibits

substantially longer runtimes (1.5 minutes) for the same dataset. Similar sampling techniques

can be implemented in CorALS as exemplified in the Main Article, ”CorALS reveals changes

in correlations across signaling pathways in immune cell types”. Alternatively, CorALS can be

used as an efficient candidate selection step, and the results can then potentially be tested for

their robustness using one of the previously mentioned more robust approaches.

Other methods are based on different network comparison concepts. This includes for ex-

ample chNet (21), which incorporates partial correlation and hierarchical properties. From a

performance perspective, it runs more than 5 minutes on a network with only 1000 features

which is substantially slower that the previously mentioned methods (e.g., chNet runs more

than 5 minutes on 1000 features while CorALS only run 7.5 seconds on 10000 features). Ad-

ditionally, while DINGO (22) looks comparable to CorALS and even incorporates pathway
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analysis into the differential analysis process, unfortunately, no well documented implemen-

tation was found to evaluate against. Finally, BioNetStat (20) compares overall correlation

networks based on centrality and allows to compare across more than two networks, but ex-

hibits runtimes well beyond 3 minutes for a dataset with 10000 features which is substantially

slower than CorALS at 7.5 seconds (no parallelization, i.e., using a single core). Overall, while

there are many methods and flavors available for differential network analysis, they all perform

substantially worse with regard to runtime as outlined above and/or are equally expected to

suffer from memory restrictions. Thus, as some of the discussed packages are frameworks for

more advanced analysis capabilities, CorALS holds substantial potential to further speed up the

corresponding algorithms.

Supplementary Section 4 Time and space complexity analysis

Supplementary Section 4.1 Computation of correlation matrices

Naive. The naive implementation to calculate a correlation matrix consists of two nested loops

along the n1 columns of matrixD1 and the n2 columns for matrixD2. In the context of CorALS,

ni represents the number of features in the data matrix Di. For the sake of the following deriva-

tion, we assume D1 = D2 and thus n := n1 = n2. In each iteration, the correlation is then

calculated using a dot product across the shared number of rows m. This results in a theoret-

ical runtime of O(n2 · m). The space complexity of this computation is based on the size of

the matrix holding all computed correlations O(n2). Note that this space complexity causes

full correlation matrix calculations to quickly exceed memory resources as exemplified in our

experiments (see Supplementary Data 1).

CorALS. For full correlation matrix calculation, CorALS has the same time and space complex-

ity as the naive approach. Like other methods (e.g., coop (5)), CorALS relies on efficiently
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implemented matrix multiplication routines to speed up the calculation of the correlation ma-

trix. The Python implementation of CorALS is based on numpy (currently version 1.20.3

which uses BLAS and LAPACK routines (26, 27) (optionally multi-threaded). In practical set-

tings, this implementation outperforms other implementations which we evaluate empirically

(see Supplementary Data 1).

Other methods. Other methods either use efficient custom C implementations which are often

based on (multi-threaded) nested for-loops (like, e.g., Rfast (4)) or use efficient BLAS and

LAPACK routines (like coop (5)) similar to CorALS. As such their runtime heavily depends on

specific implementation details and, thus, has to be evaluated and compared against empirically

(see Supplementary Section 3). Analogously to CorALS, their space complexity is defined by

the resulting correlation matrix and thus is O(n2).

Supplementary Section 4.2 Estimation of large-scale correlation networks

Naive. The naive implementation of calculating top-k correlations first (i) calculates the full

correlation matrix, then (ii) sorts correlations, and finally (iii) selects and returns the top-k

correlation values. Calculating the full correlation matrix has time complexity of O(n2 · m)

(see above) and space complexity of O(n2). Sorting all n2 correlations, e.g., with Quicksort,

then amounts to a runtime complexity of O(n2 · log(n2)) (28). The selection step (e.g., based

on Introselect (29)) after sorting has runtime complexity of O(n2). The main driver of time

complexity is the sorting step after calculating the full correlation matrix with O(n2 · log(n2)).

The main cost in memory consumption is caused by having to calculate the full correlation

matrix with space complexity of O(n2).

CorALS. CorALS addresses the previously mentioned main drivers of time and space com-

plexity by avoiding calculating the full correlation matrix (step (i)) while at the same time

substantially reducing the number sorted values (step (ii)). For this, CorALS first derives a

10



space partitioning index structure (30). This has a time complexity ofO(n · log(n)) and a space

complexity of O(n) (31). Then, searching for the top-1 correlation for a single feature has a

time complexity of O(log(n)) on average but can degrade to linear runtime with increasing

numbers of samples m with optimal performance if 2m << n (31). In the following, we as-

sume the average case and 2m << n in order to illustrate the practical performance advantage

of CorALS. Furthermore, searching for top-(a k
n
) correlations for a single feature has a time

complexity of O(log(a k
n
) · log(n)) on average, where a is the approximation factor (see Sup-

plementary Section 5) and k is the number of overall correlations to search for. Searching for

the top-(a k
n
) values across all features then results in an overall average time complexity of

O(n · log(a k
n
) · log(n)). This search step then results in n · (a k

n
) = a · k correlation values.

These correlations are then sorted and the top-k correlations are returned. Then, the sorting step

has a time complexity of O(ak · log(ak)). Depending on how k is selected, the theoretical time

complexity analysis can vary, e.g., if k is a constant the time complexity isO(1), if k is selected

depending on the number of features n, time complexity is O(n · log(n)), and if k is selected

based on the overall number of possible correlations n2, time complexity is O(n2 · log(n)). In

any case, the time complexity is substantially lower thanO(n2 · log(n2)) of the naive approach.

Consequently, practical run times can differ based on the dataset and parameters selected by the

user. Similarly, the space complexity of CorALS is dependent on the approximation factor and

selected k: O(a · k).

Supplementary Section 4.3 Differential analysis of correlation networks

Time and space complexity analysis of top-k differential correlation analysis is generally anal-

ogous to top-k correlation analysis. For the naive implentation, two full correlation matrices

are calculated (instead of one) and subtracted. The subsequent steps to extract differntial cor-

relations is then equivalent to top-k correlation calculation. For CorALS differential vectors
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are constructed that replace the correlation projections (see Main Article, ”Differential projec-

tions”). After that, indexing, search, and sorting is equivalent to CorALS’s top-k correlation

calculation approach.

Supplementary Section 5 Approximation properties

Supplementary Section 5.1 Optimal approximation factor

CorALS searches for the top-k correlations by extracting k′ = a k
n

top correlation candidates per

feature and then merging the results across all n features. However, because top-k correlations

may not be equally distributed across all features (i.e., k
n

top-k correlation per feature), CorALS

introduces the approximation factor a that allows to specify a safety margin for cases were more

than k
n

top-k correlations are associated with a single feature. In the following, we examine how

the approximation factor a influences the accuracy of CorALS for returning top-k correlations.

Note that we always assume k ≥ n.

First, if top-k correlations are equally distributed across all features, a = 1 is sufficient.

If this is not the case, we show in Theorem 5.3 the maximum number of top-k correlations

missed as a function of a given correlation-per-feature threshold (where a threshold of t means

we extract the top t correlations per feature by CorALS). Based on this, one can choose a

threshold that will return the top-k correlations with a desired minimum sensitivity, where the

exact sensitivity of CorALS will depend on the correlation matrix itself.

Notation. For the following theorems, we first define a set of notations: Let n be the number of

features, and K be the set of top-k correlations, with k = |K| ≤ n2. Furthermore, let ki = |Ki|

denote the number of local top-k correlations ci,· contributed by feature fi, withKi = {cij | cij ∈

K}. Let F be the set of features with at least one correlation in K, i.e., F = {fi | |Ki| ≥ 1}

Also, without loss of generality, let ∀i < j : ki ≥ kj , i.e., let f1 contribute the largest number

of correlation, f2 the second largest (or equal), and so on. Additionally, let ri(cij) denote the
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rank of cij across all correlations for feature fi, i.e., ri(cij) < ri(cik) ⇒ |cij| > |cik|, and let

Ki|ri≤t = {cij | cij ∈ K ∧ ri(cij) ≤ t} denote the t-ranked local top-k correlations. For this,

the threshold t denotes the number of top t correlations extracted per feature by CorALS, and ri

represents the rank of all cij in Ki|ri≤t, i.e., which have a rank ri(cij) smaller or equal to t. Also,

we define ki|ri≤t = |Ki|ri≤t| and thus ki|ri≤t = min{t, ki}. Note that with K ′ =
⋃n
i=1Ki|ri≤a k

n
,

the set K ′ ∪ {cji | cij ∈ K ′} is exactly the set of correct top-k correlations found by CorALS,

when taking advantage of the symmetry of correlations. Furthermore, we define the set of t-

constrained local top-k values asKi|j≤t = {cij | cij ∈ K∧j ≤ t} and ki|j≤t = |Ki|j≤t|, as those

top-k correlations associated with at least one of first t features (j ≤ t). Consequently, note that

given any feature fi, the number of t-constrained features can not exceed t: ∀i : ki|j≤t ≤ t.

Finally, let kfound(t) and kmissed(t) be the number of top-k correlations found and missed by

CorALS respectively, such that k = kfound(t) + kmissed(t).

Lemma 5.1. Minimum Top-k Correlations. For a threshold t, CorALS finds at least∑n
i=1 ki|ri≤t ≥

∑n
i=1 ki|j≤t top-k correlations. That is kfound(t) ≥

∑n
i=1 ki|ri≤t ≥

∑n
i=1 ki|j≤t.

Proof. Given a threshold t, by definition CorALS extracts ki|ri≤t top-k correlations for each

feature fi resulting in the overall number of found correlations of
∑n

i=1 ki|ri≤t. When exploiting

the symmetry of the correlation matrix, the number of found correlations may be larger. Thus,

kfound(t) ≥
∑n

i=1 ki|ri≤t. Furthermore, since t-constrained top-k correlations are restricted to

correlations involving at least one feature fj up the threshold j ≤ t, while t-ranked features span

any features, it holds that ∀i : ki|i≤t ≤ ki|ri≤t = min{t, ki}. Thus, kfound(t) ≥
∑n

i=1 ki|ri≤t ≥∑n
i=1 ki|j≤t.

Lemma 5.2. Symmetry. Let t be a threshold with 1 ≤ t ≤ n, t ∈ N. Then the number of

top-k correlations contributed by the first t features, i.e.,
∑t

i=1 ki, is i) equal to the number of

t-constrained local top-k correlations summed across all features, i.e.,
∑t

i=1 ki =
∑n

i=1 ki|j≤t,

13



and ii) smaller than or equal to the number of t-ranked local top-k correlations summed across

all features, i.e.,
∑t

i=1 ki ≤
∑n

i=1 ki|ri≤t =
∑n

i=1min{t, ki}.

Proof. For i) let us consider the set of correlations Ki≤t contributed by the first t features. It

holds that:

Ki≤t =
t⋃
i=1

Ki =
t⋃
i=1

{ci,· | ci,· ∈ Ki} =
t⋃
i=1

{ci,· | ci,· ∈ K ∧ i ≤ t} = {ci,· | ci,· ∈ K ∧ i ≤ t}

Note that |Ki≤t| = |
⋃t
i=1Ki| =

∑t
i=1 ki. Now, let Ki≤t = {cj,· | c·,j ∈ Ki≤t} be the set

of ”transposed” correlations. By definition these two sets have the same cardinality: |Ki≤t| =

|Ki≤t|, and when exploiting the symmetry of correlation matrices, i.e., cij = cji, the correlations

in Ki≤t are also part of the top-k correlations, i.e., Ki≤t ⊆ K. Based on this:

t∑
i=1

ki = |Ki≤t| = |Ki≤t| = |{cj,· | c·,j ∈ Ki≤t}|

= |
n⋃
j=1

{cji | cij ∈ Ki≤t}| = |
n⋃
j=1

{cji | cij ∈ K ∧ i ≤ t}|

= |
n⋃
i=1

{cij | cij ∈ K ∧ i ≤ t}| =
n∑
j=1

kj|i≤t =
n∑
i=1

ki|j≤t

Then ii) directly follows from i) as ∀i : ki|i≤t ≤ ki|ri≤t (also see proof for Theorem 5.1).

Theorem 5.3. Given a threshold t, CorALS finds ki|ri≤t = min{t, ki} top-k correlations for

each feature fi. This may result in missed top-k correlations: k = kfound(t) + kmissed(t). Based

on the threshold used, the number of found correlations is always at least:

kfound(t) ≥

{
t
√
k for 1 ≤ t ≤ 3

4

√
k

2t(
√
k + t2 − t) for 3

4

√
k ≤ t

Proof. Let T (t) be the number of features that contribute more or equal to t correlations to K,

i.e., ∀i ≤ T (t) : ki ≥ t and T (t) = |{i | ki ≥ t}|. Let us note that for two thresholds t1 and t2

with t1 smaller than t2, i.e., t1 < t2, we must have that i) the number of features contributing
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at least t1 top-k correlations is greater or equal to the number of features contributing at least

t2 top-k correlations, i.e., T (t1) ≥ T (t2), ii) the number of found top-k correlations is smaller

for t1 than for t2, i.e., kfound(t1) ≤ kfound(t2), and iii) the number of missed correlations is larger

for t1 than for t2, i.e., kmissed(t1) ≥ kmissed(t2). Finally, given the definition of T (t), we must

also have that kfound(t) ≥ tT (t) and that CorALS finds all the top correlations of features fi with

i > T (t).

Next, we will derive two lower bounds on the number of found top-k correlations. For

the first bound, we will take advantage of the fact that CorALS utilizes the symmetry of the

correlation matrix to infer top correlations which might otherwise have been missed due to the

threshold used. Specifically, a top correlation cij might be missed by CorALS when looking at

the top correlations of feature fi, but if it is found when looking at the top correlations of feature

fj as cji, then CorALS will in essence also return cij . Given that CorALS will always return all

top-k correlations located in features fi with i > T (t), all correlations which are ultimately

missed by CorALS must be between features fi and fj with 1 ≤ i, j ≤ T (t). Since there are at

most T (t)2 of these correlations, we must have that kmissed(t) ≤ T (t)2 and thus we have a first

lower bound on the found top-k correlations: kfound(t) ≥ k − T (t)2.

We now derive a second lower bound on the number of found top-k correlations, i.e., we

show that kfound(t) ≥ 1
2
k + tT (t) − 1

2
T (t)2. To show this, we will be looking at the corre-

lations found by CorALS before leveraging the symmetry of the correlation matrix to fill in

possibly-missed correlations. In other words, let k′found(t) and k′missed(t) be the number of top-k

correlations found by CorALS before filling in correlations via symmetry. Naturally, we have

k′found(t) ≤ kfound(t) and k′missed(t) ≥ kmissed(t) since the filling-in process can only increase the

number of found top-k correlations. Now, let us first note that from Theorem 5.1 and Theo-

rem 5.2, k′found(T (t)) ≥︸︷︷︸
Theorem 5.1

∑n
i=1 kri≤T (t) ≥︸︷︷︸

Theorem 5.2

∑T (t)
i=1 ki = tT (t) + k′missed(t). The last

equality is valid since by definition of T (t) the first T (t) features contribute at least t top-k
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correlations. We will use this inequality for the following two cases:

Case 1: t ≤ T (t).

First we note that the top-k correlations found using a threshold of t are a subset of the top-k

correlations found using the larger threshold of T (t). Additionally, by definition of T (t), the

correlations not found using threshold t but found by using threshold T (t) must only involve

the first T (t) features (all other features contribute less than t top-k correlations and thus every

corresponding top-k correlation will be found using a threshold of t). Finally, for these first

T (t) features, a threshold of T (t) can only find up to T (t)− t correlations that are not found by

threshold t. Thus, we get that k′found(T (t)) ≤ k′found(t) + (T (t) − t)T (t). Additionally, due to

Theorem 5.2 (with threshold T (t)), it holds that k′found(T (t)) ≥ tT (t) + k′missed(t). Together we

get

k′found(t) + T (t)(T (t)− t) ≥ k′found(T (t))

≥ tT (t) + k′missed(t)

= tT (t) + k − k′found(t)

⇒ k′found(t) ≥
1

2
k + tT (t)− 1

2
T (t)2

as wanted.

Case 2: T (t) ≤ t.

Reversed to the previous case, here, we note that the top-k correlations found using a threshold

of T (t) are a subset of the top-k correlations found using the larger threshold of t. Additionally,

by definition of T (t), the first T (t) features contribute at least t top-k correlations. Thus, we

find at least t − T (t) more top-k correlation for each of these first T (t) features, when using a

threshold of t rather than T (t). Thus, we have that k′found(t) ≥ k′found(T (t)) + T (t)(t − T (t)).
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This means that

k′found(t) ≥ T (t)(t− T (t)) + k′found(T (t))

≥ T (t)(t− T (t)) + T (t)t+ k′missed(t)

= 2T (t)t− T (t)2 + k − k′found(t)

⇒ k′found(t) ≥
1

2
k + tT (t)− 1

2
T (t)2

as wanted.

Finally, since kfound(t) ≥ k′found(t), we must have that kfound(t) ≥ 1
2
k + tT (t) − 1

2
T (t)2 as

wanted. This gives us two lower bounds for kfound(t), so that

kfound(t) ≥ max(k − T (t)2, 1
2
k + tT (t)− 1

2
T (t)2)

and we can determine which of these bounds holds by analyzing how these two functions behave

in terms of the number of features contributing more than t top-k correlations, i.e., T (t). We

can see that k−T (t)2 = 1
2
k+ tT (t)− 1

2
T (t)2 when T (t) = ±

√
t2 + k− t. Since T (t) ≥ 0, this

means these functions are equal when T (t) =
√
t2 + k− t. When T (t) ≤

√
t2 + k− t, the first

function is greater and kfound(t) ≥ k − T (t)2 ≥ k − (
√
t2 + k − t)2 = 2t(

√
k + t2 − t). When

T (t) ≥
√
t2 + k − t, the second function is greater and kfound(t) ≥ 1

2
k + tT (t) − 1

2
T (t)2 ≥

1
2
k + t(

√
t2 + k − t)− 1

2
(
√
t2 + k − t)2 = 2t(

√
k + t2 − t). Thus, overall, we have kfound(t) ≥

2t(
√
k + t2 − t) whether t ≤ T (t) or T (t) ≤ t.

Finally, we will determine when our bound holds for specific values of t. For this, we first

note that when T (t) ≥
√
k, we will have that kfound(t) ≥ tT (t) ≥ t

√
k, since there are T (t)

features with at least t top-k correlations all of which are found by CorALS. In particular, for

t = 1, we also have that T (1) ≥
√
k. Since T (1) is the number of features with at least 1

correlation in K, we have that T (1) = |F |. However, since a set of F features has less than

|F |2 correlations total, we must have |F |2 ≥ k. Thus, T (1) = |F | ≥
√
k.
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Now, we have shown that for T (t) ≥
√
k, kfound(t) ≥ t

√
k and for all t, kfound(t) ≥

2t(
√
k + t2 − t). However, for a given correlation matrix, we don’t know at which t we will

have that T (t) ≥
√
k and at which t we have that T (t) ≤

√
k. However, we will show that

regardless of which of these two holds for a given t, kfound(t) ≥ min(2t(
√
k + t2 − t), t

√
k)

always holds.

First, let’s note that min(2t(
√
k + t2−t), t

√
k) = t

√
k for 1 ≤ t ≤ 3

4

√
k and min(2t(

√
k + t2−

t), t
√
k) = 2t(

√
k + t2 − t) for t ≥ 3

4

√
k. This can be seen by defining t = r

√
k and solving

t
√
k ≤ 2t(

√
k + t2 − t)⇔ r

√
k
√
k ≤ 2r

√
k(

√
k + (r

√
k)2 − r

√
k)

⇔ rk ≤ 2r
√
k(
√
k + r2k − r

√
k)

⇔ rk ≤ 2rk
√
1 + r2 − 2r2k

⇔ 1 ≤ 2
√
1 + r2 − 2r

⇔ 2r + 1 ≤ 2
√
1 + r2

⇔ 4r2 + 4r + 1 ≤ 4 + 4r2

⇔ 4r + 1 ≤ 4

⇔ r ≤ 3

4

Now, let t′ be the largest threshold such that T (t′) ≥
√
k. Since t′T (t′) ≤ k ≤

√
kT (t′),

we must have t′ ≤
√
k. Thus, by definition of t′, it holds that for a threshold 1 ≤ t ≤ t′,

kfound(t) ≥ t
√
k, and for t ≥ t′, kfound(t) ≥ 2t(

√
k + t2 − t). Next we compare the actual found

values to what min(2t(
√
k + t2 − t), t

√
k) returns with regard to the safe threshold of t ≤ 3

4
to

switch from kfound(t) ≥ t
√
k to kfound(t) ≥ 2t(

√
k + t2 − t).

If t′ ≥ 3
4

√
k, for 1 ≤ t ≤ 3

4

√
k, we are using precisely the correct bound of t

√
k since

thresholds smaller than t′ also yield at least
√
k features that contribute at least t top-k correla-

tions. For 3
4

√
k ≤ t ≤ t′, we are using the lower bound 2t(

√
k + t2− t), which is lower than the

actual lower bound of t
√
k. And then for t ≥ t′, we are once again using precisely the correct

18



bound, i.e., 2t(
√
k + t2 − t). Thus, min(2t(

√
k + t2 − t), t

√
k) holds for any t′ ≥ 3

4

√
k.

Similarly, if t′ ≤ 3
4

√
k, we can see that for 1 ≤ t ≤ t′, we are using precisely the correct

bound of t
√
k. And for t′ ≤ t ≤ 3

4

√
k, we are using the lower bound (t

√
k), which is lower

than the actual lower bound (2t(
√
k + t2− t)). And then for t ≥ 3

4

√
k, we are once again using

precisely the correct bound of 2t(
√
k + t2 − t). Thus, min(2t(

√
k + t2 − t), t

√
k) also holds

for any t′ ≤ 3
4

√
k.

Overall, regardless of when the switch from T (t) ≥
√
k to T (t) ≤

√
k happens for a given

matrix, when we use kfound(t) ≥ min(2t(
√
k + t2 − t), t

√
k) we are always underestimating

what is the true number of found correlations by CorALS. Thus, kfound(t) ≥ min(2t(
√
k + t2 −

t), t
√
k) = t

√
k for 1 ≤ t ≤ 3

4

√
k and kfound(t) ≥ min(2t(

√
k + t2−t), t

√
k) = 2t(

√
k + t2−t)

for t ≥ 3
4

√
k. This concludes the proof of Theorem 5.3.

Corollary 5.3.1. Approximation factor sensitivity. Based on Theorem 5.3, one can either de-

termine the approximation factor a needed to provide a result with a minimum desired sensitivity

s, or derive a minimum sensitivity s based on a given approximation factor a:

Let the desired sensitivity be denoted as s. If the desired sensitivity is s ≤ 0.75, then the

corresponding approximation factor needs to be at least a = s n√
k
. If the desired sensitivity s is

s ≥ 0.75, the approximation factor needs to be at least a = sn
2
√
k
√
1−s .

Equivalently, when formulating k in terms of the overall number of correlations n2, i.e.,

k = rn2, then for a sensitivity of s ≤ 0.75, the approximation factor can be calculated via

a = s√
r
, and for s ≥ 0.75 it can be calculated via a = s

2
√
r
√
1−s .

And finally, given an approximation factor a, the lower-bound sensitivity s can be estimated

via s ≥ a
√
k
n

(s ≥ a
√
r) for a ≤ 3

4
n√
k

(a ≤ 3
4
√
r
), and s ≥ 2a(

√
a2 k

2

n4 +
k
n2 − a k

n2 ) (s ≥

2a(
√
r2a2 + r − ra), otherwise.

Proof. If the sensitivity s desired is such that s ≤ 0.75, Theorem 5.3 implies that choosing

t = s
√
k ≤ 3

4

√
k will result in at least this sensitivity. This corresponds to an approximation
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factor a = s n√
k
. If the sensitivity s desired is such that s ≥ 0.75, Theorem 5.3 implies that

choosing t = s
√
k

2
√
1−s will result in at least this sensitivity. This corresponds to an approximation

factor a = sn
2
√
k
√
1−s .

The sensitivity estimates, s = a
√
k
n

(s = a
√
r) for a ≤ 3

4
n√
k
, are based on a transformation

of the approximation factor formula a = s n√
k
. Similarly, for s = 2a(

√
a2 k

2

n4 +
k
n2 − a k

n2 )

(s = 2a(
√
r2a2 + r − ar) in the case of a ≥ 3

4
n√
k
:

a =
s · n

2
√
rn2
√
1− s

⇔ s = a · 2
√
r
√
1− s

⇔ s2 = a2 · 4r(1− 1)

⇔ s2 = 4a2r − 4a2r1

⇔ s2 + 4a2rp− 4a2r = 0

⇔ s =
−4a2r ±

√
16a4r2 + 16a2r

2

⇔ s = −2a2r ± 2a
√
a2r2 + r

⇔ s = 2a(±
√
r2a2 + r − ar)

And since s is always positive, we get: s = 2a(
√
r2a2 + r − ar).

Supplementary Section 5.2 Experimental approximation properties

Depending on the approximation factor, CorALS for top-k correlation network construction can

return approximation results for which the previous section provided theoretical results and

bounds. However, in practice the number of missed values may be substantially lower than

the derived bounds suggests. To illustrate this Figure 5 shows that CorALS effectively produces

highly accurate approximations when searching for the top-1% of correlations with approxi-

mation factors well above, e.g., the expected recall (sensitivity) of ≈ 0.83 at approximation

factor a = 10. For this, we show precision and recall (sensitivity) with regard to which feature
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pairs have been selected as top k candidates dependent on an approximation factor a. The ap-

proximation factor influences how many correlation values are inspected for each feature when

calculating the overall top k correlations and thus determines how accurate the approximation

will be.

Supplementary Section 6 Details on the feature representations employed
by CorALS

Supplementary Section 6.1 Correlation projections

As mentioned in Main Article, ”Correlation projections”, the concept of correlation projections

allows to derive a direct relationship between the correlation cor(x,y) of any two vectors and

the Euclidean distance de(x̂, ŷ) of their correlation projections (32). In particular, it holds that:

cor(x,y) = 1− de(x̂, ŷ)
2

2
(1)

Proof. The Euclidean distance is defined as: de(x,y) =
√∑

i(xi − yi)2. Let x, y be two fea-

tures with sample vectors x,y containing m samples and x̂, ŷ their respective correlation pro-

jections). Then, employing Main Article, ”Equation 1” and the fact that cor(z, z) = 〈ẑ, ẑ〉 = 1,

it holds that

de(x̂, ŷ) =

√∑
i

(x̂i − ŷi)2

=

√∑
i

(x̂2i − 2x̂iyi + ŷ2i )

=

√∑
i

x̂2i −
∑
i

2x̂iŷi +
∑
i

ŷ2i

=
√
〈x̂, x̂〉 − 2〈x̂, ŷ〉+ 〈ŷ, ŷ〉

=
√

2− 2〈x̂, ŷ〉

=
√

2− 2 · cor(x,y)

(2)
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And thus given the Euclidean distance de(x̂, ŷ), the correlation cor(x,y) can be calculated as

cor(x,y) = 1− de(x̂, ŷ)
2

2

Corollary: cor(x,y) and −de(x̂, ŷ) are order-equivalent, i.e., for any four features x, y, p, q it

holds that

∀x, y, p, q : cor(x,y) > cor(p, q)⇔ −de(x̂, ŷ) > −de(p̂, q̂) (3)

For this, note that
√
2− 2 · cor(x,y) in Equation (2) is a strictly monotone function with regard

to cor(x,y) and lies in an interval of [0, 2] where d(x̂, ŷ) = 0 if cor(x,y) = 1, d(x̂, ŷ) =
√
2

if cor(x,y) = 0, and d(x̂, ŷ) = 2 if cor(x,y) = −1.

CorALS exploits this order-equivalence of Euclidean distance and correlation, e.g., in top

correlation approximation and correlation-based embeddings.

Supplementary Section 6.2 Differential projections

Given the correlation projection ·̂ introduced in Main Article, ”Correlation projections”, and

the definitions in Main Article, ”Differential projections” the subsequent proof shows that δ

and κ provide a dual vector representation so that for any feature pair x and y sampled in two

conditions (or timepoints), i.e., x1,x2 and y1,y2, it holds that

cor(x1,y1)− cor(x2,y2) = 〈δ(x1,x2), κ(y1,y2)〉

Proof. Given Main Article, ”Equation 1” and the correlation projection ·̂ from Main Article,

”Correlation projections”, it holds that

cor(x1,y1)− cor(x2,y2) = 〈x̂1, ŷ1〉 − 〈x̂2, ŷ2〉
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Further, using the following notation for a arbitrary feature z, with m1 and m2 samples per

feature in each condition, respecitvely,

δ(z1, z2) =(δz,1, . . . , δz,m1 , δz,m1+1, . . . , δz,m1+m2) = (z1,1, . . . , z1,m1 , z2,1, . . . , z2,m2)

κ(z1, z2) =(κz,1, . . . , κz,m1 , κz,m1+1, . . . , κz,m1+m2) = (z1,1, . . . , z1,m1 ,−z2,1, . . . ,−z2,m2)

it can be derived that the scalar product of the transformed vectors is equal to the correlation

difference:

〈δ(x1,x2), κ(y1,y2)〉 =
m1+m2∑
i=1

δx,i · κy,i

=

m1∑
i=1

δx,i · κy,i +
m1+m2∑
i=m1+1

δx,i · κy,i

=

m1∑
i=1

x̂1,i · ŷ1,i +
m2∑
i=1

x̂2,i · (−ŷ2,i)

=

m1∑
i=1

x̂1,i · ŷ1,i −
m2∑
i=1

x̂2,i · ŷ2,i

= 〈x̂1, ŷ1〉 − 〈x̂2, ŷ2〉

= cor(x1,y1)− cor(x2,y2)

As mentioned in the main text, similar to the connection of Euclidean distance and basic cor-

relation, the dual feature representations in the differential space exhibits a connection between

Euclidean distance and correlation difference across conditions or timepoints. In particular, for

two features x and y with sample vectors x1, x2 and y1, y2 across two conditions or timepoints,

cor(x1,y1)− cor(x2,y2) and −de(δ(x1,x2), κ(y1,y2)) are order-equivalent and it holds that:

cor(x1,y1)− cor(x2,y2) = 2− de(δ(x1,x2), κ(y1,y2))
2

2
(4)
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Proof. The proof is structurally similar to the one for correlation projections (see above): By

employing Main Article, ”Equation 1” and the fact that cor(z, z) = 〈ẑ, ẑ〉 = 1, it holds that

de(δ(x1,x2), κ(y1,y2)) =

=

√√√√m1+m2∑
i=1

(δx,i − κy,i)2

=

√√√√m1+m2∑
i=1

(δ2x,i − 2δx,iκy,i + κ2y,i)

=

√√√√m1+m2∑
i=1

δ2x,i −
m1+m2∑
i=1

2δx,iκy,i +

m1+m2∑
i=1

κ2y,i

=

√√√√ m1∑
i=1

x̂21,i +

m1+m2∑
i=m1+1

x̂22,i − 2

(
m1∑
i=1

x̂1,iŷ1,i +

m1+m2∑
i=m1+1

x̂2,i(−ŷ2,i)

)
+

m1∑
i=1

ŷ21,i +

m1+m2∑
i=m1+1

(−ŷ2,j)2

=
√
〈x̂1, x̂1〉+ 〈x̂2, x̂2〉 − 2(〈x̂1, ŷ1〉 − 〈x̂2, ŷ2〉) + 〈ŷ, ŷ〉+ 〈ŷ2, ŷ2〉

=
√

4− 2(〈x̂1, ŷ1〉 − 〈x̂2, ŷ2〉)

=
√
4− 2(cor(x1,y1)− cor(x2,y2))

(5)

And thus given the Euclidean distance de(δ(x1,x2), κ(y1,y2)), the correlation difference cor(x1,y1)−

cor(x2,y2) can be calculated as

cor(x1,y1)− cor(x2,y2) = 2− de(δ(x1,x2), κ(y1,y2))
2

2

Corollary: cor(x1,y1)− cor(x2,y2) and −de(δ(x1,x2), κ(y1,y2)) are order-equivalent, i.e.,

∀x, y, p, q :

cor(x1,y1)− cor(x2,y2) > cor(p1, q1)− cor(p2, q2)

⇔ −de(δ(x1,x2), κ(y1,y2)) > −de(δ(p1,p2), κ(q1, q2))

(6)
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For this, note that
√

4− 2(cor(x1,y1)− cor(x2,y2)) in Equation (5) is a strictly monotone

function with regard to cor(x1,y1) − cor(x2,y2) and lies in an interval of [0,
√
8], where for

example

de(δ(x1,x2), κ(y1,y2)) = 0 if cor(x1,y1) = 1 ∧ cor(x2,y2) = −1

de(δ(x1,x2), κ(y1,y2)) =
√
8 if cor(x1,y1) = −1 ∧ cor(x2,y2) = 1

de(δ(x1,x2), κ(y1,y2)) <
√
4 if cor(x1,y1)− cor(x2,y2) < 0

de(δ(x1,x2), κ(y1,y2)) >
√
4 if cor(x1,y1)− cor(x2,y2) > 0

Analogously to correlation projections, CorALS exploits this order-equivalence of Euclidean

distance and correlation for top differential correlation approximation.

Supplementary Section 7 Performance of correlation embeddings

Some t-SNE implementations support pre-computed distance matrices or custom distance func-

tions which can be used to provide correlation-based distance information; however this is often

inefficient. For example, calculating standard feature embeddings for the relatively small preg-

nancy dataset (see Main Article, ”Table 1”) with Scikit-learn’s (33) t-SNE implementation

requires ∼ 500 MB of memory and takes ∼ 10 minutes. However, providing a pre-computed

distance matrix, which can be used to incorporate correlation information, increases memory

consumption to∼ 16 GB. Alternatively, using a corresponding custom distance metric increases

runtimes from ∼ 10 minutes to several hours making this approach infeasible. In contrast, by

projecting the features onto correlation vectors, CorALS establishes an order equivalence be-

tween Euclidean distance and correlation as introduced in Main Article, ”Correlation embed-

dings”. This allows to directly employ distance-based embeddings methods like t-SNE on the

projected features without adding substantial computational overhead or requiring implemen-
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tations that support customized distance information.

Supplementary Section 8 Addendum to ”Large-scale multiomics correla-
tion analysis across pregnancy”

As mentioned in Main Article, ”Large-scale multiomics correlation analysis across pregnancy”,

this experiment demonstrates CorALS’s potential in multiomics studies by analyzing feature

correlations in a dataset containing 3rd trimester and postpartum biospecimens from healthy

pregnant women. The following paragraphs represent a more detailed and extended version of

the analysis in the main text.

As previously described in the main text, a particularly striking feature in Main Article,

”Figure 2” is the batch of correlation edges between the transcriptome (cell-free RNA) and the

immunome that appears in the third trimester but vanishes postpartum. A closer examination of

the relevant features reveals a module of genes positively correlated with an intracellular signal-

ing response - p38 phosphorylation - across several immune cell subsets. P38-family proteins

are mitogen-activated protein kinases (MAPKs) specifically induced by stimuli such as oxida-

tive stress and inflammation. P38 are essential for both innate immunity via the response to

endotoxin and in adaptive immunity via the mediation of T-cell activation (34). During gesta-

tion, oxidative stress arises from maternal adaptations to fetal growth. There is also evidence

that p38 plays a role in the regulation of pregnancy and parturition, but its exact mechanism

is still poorly understood (35). On the other hand, the cell-free RNA features (e.g., RFX-

ANK,ZNF831,SH3BP5,150ICA1, and GATAD1) with the most associations (i.e. edges) with

p38 phosphorylation have previously been reported to be associated with immune function or

pregnancy. Regulatory Factor X Associated Ankyrin Containing Protein (RFXANK) is a known

transcriptional regulator of certain MHCII genes, which are responsible for antigen presentation

in adaptive immunity (36). Zinc Finger Protein 831 (ZNF831) is involved in the adaptive im-
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mune response and has been linked to preeclampsia, an inflammatory and hypertensive disorder

of pregnancy (37, 38). SH3 Domain Binding Protein 5 (SH3BP5) and Islet Cell Autoantigen 1

(ICA1) have also been associated with preeclampsia via transcriptional and epigenetic mech-

anisms respectively (39, 40). Finally, GATA Zinc Finger Domain Containing 1 (GATAD1) is

a transcription factor downregulated in preeclamptic placentas via epigenetic processes (41).

Gene ontology enrichment analysis of the set of genes correlated with at least one mass cytom-

etry pP38-related feature in the third trimester showed an enrichment of pathways related to

chromatin remodeling, including histone acetylation, chromatin silencing, and chromatin orga-

nization. While no definite conclusions can be drawn, these results can be used for biological

hypothesis generation. Specifically, they highlight the potential of exploring the mechanistic

role of p38 in pregnancy and also offer multiple candidate genes which might be involved in

this process.

Another set of note-worthy edges with large correlation differences from the third trimester

to postpartum is the batch of edges between the cell-free RNA modality and the microbiome. A

woman’s vaginal, oral, and gut microbial landscapes play key roles in the healthy progression

of pregnancy, specifically through nutrient metabolism and immune regulation (42). Further

interrogation of this batch of edges reveals a module of genes (e.g., KYNU, ZC3H12D, and

MAP3K14) with previously characterized connections to the microbiome and pregnancy in

the literature. Kynureninase (KYNU) plays a role in tryptophan biosynthesis, through which

it has been associated with the crosstalk between the host and the microbiome in the gut and

across multiple dermal pathologies (43–45). Moreover, KYNU is essential for proper embry-

onic development and gestation, outlining a connection between the microbiome and a healthy

pregnancy (46). Zinc Finger CCCH-Type Containing 12D (ZC3H12D) is a negative regulator

of toll-like receptor signaling and inflammation (47, 48) which has been found to be differen-

tially methylated during pregnancy and particularly in the cord blood of pregnancies affected by
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prematurity or a hypertensive disorder (49, 50). Furthermore, there is evidence of regulation of

the methylation of ZC3H12D by gut microbiota (51). Mitogen-Activated Protein Kinase Kinase

Kinase 14 (MAP3K14) is a crucial activator of the non-canonical NF-kB pathway, a signaling

pathway implicated in placental function and the duration of pregnancy (52, 53). MAP3K14

has also been shown to be essential in the maintenance of gut microbial homeostasis through

its activity in dendritic cells (54). Other relevant genes in this set included GIPC PDZ Do-

main Containing Family Member 1 (GIPC1), Complement C1q B Chain (C1QB), and Basic

Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which have all been associated with

the microbiome across multiple tissues (55–59). Altogether, this batch of edges between the

cell-free RNA modality and the microbiome modality highlight the different ways the maternal

microbial landscape can directly impact the progression of pregnancy through interactions with

immune and metabolic biological processes.

Similarly, there are various smaller batches of correlations between cell-free RNA and the

protein-related modalities (plasma and serum based proteome measurements) that change sub-

stantially between the two timepoints. Some of these include correlations involving immune

cytokines like IFN-γ, IL-10, and IL-1RA, metabolic proteins like GPD1, and growth factors

like PDGFBB.

Supplementary Section 9 Addendum to ”Correlated functional changes
across immune cells”

As mentioned in Main Article, ”Correlated functional changes across immune cells”, CorALS

enables the analysis the coordination of individual cells across concerted immune responses

based on their functional correlation. Particularly, Main Article, ”Figure 3” visualizes the

amount and direction of change in the relative number of functional cell correlations attributed

to individual cell type pairs within the top-k functional cell correlations between the third
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trimester and postpartum. These changes mostly revolve around B cells and CD56dimCD16+

NK cells. While a detailed analysis may be of interest, we focus on these changes as an exam-

ple in order to illustrate the complementary perspectives enabled by CorALS.

CD56dimCD16+ NK cell correlation changes. Peripheral NK cells are connected to im-

portant processes during pregnancy. For example, peripheral CD56dimCD16+ NK cells have

been shown to promote tolerance early in pregnancy (60), and there is evidence of increased

activation of this cell subset during the second and third trimesters, possibly due to increased

pro-inflammatory stimuli from monocytes and dendritic cells (61). In line with this, Main Arti-

cle, ”Figure 3” indicates that CD56dimCD16+ NK cells in the third trimester functionally align

to classical and intermediate monocytes, which have also been previously described to acti-

vate during late pregnancy (62, 63). While further work would be needed to determine the

mechanism underpinning these changes in correlations, pregnancy-related hormones have been

demonstrated to modulate the function of both NK cells and monocytes (64, 65), pointing to-

wards a candidate source of the observed immune orchestration.

B cell correlation changes. The role of B cells during pregnancy has only recently come into

focus. Particularly, studies have highlighted their immunosuppressive potential in maintaining

maternal-fetal tolerance and how the dysregulation of immunosuppressive B cells can lead to

adverse pregnancy outcomes (66,67). Previous work reported altered levels of B cell activation

markers in the serum of pregnant women in the third trimester when compared to the postpartum

period and to healthy controls (68). Along these lines, the changes in correlations observed

in Main Article, ”Figure 3” suggest that, in the third trimester, B cells increase in signaling

response similarity to innate immunosuppressive cell subsets such as the monocytic myeloid-

derived suppressor cells (M-MDSCs). This may be a response to control systemic inflammation

and prevent early parturition or a result of the altered B-cell marker profile in the blood reported

to occur at the end of pregnancy.
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The previous observations suggest that B cells and CD56dimCD16+ NK cells acquire an

intracellular signaling signature in the third trimester that overlaps with functional signatures of

innate immune cells, as suggested by the increased relative number of correlations between B

cells and M-MDSCs and between CD56dimCD16+ NK cells and classical as well as intermediate

monocytes. Postpartum, these two cell types and various T cell subsets shift functionally to

more similar signalling response signatures, suggesting a return to their pre-pregnancy state and

the postpartum release of the pregnancy-associated Th2 polarization of the T cell compartment.

Supplementary Section 10 A brief history on the correlation coefficient

The history of the correlation coefficient goes back over one hundred years, with most of its

theoretical evolution before 1920. Incidentally, last year 2020, marked the 100th anniversary

since the celebrated Karl Pearson article “Notes on the history of correlation” was published

in the journal Biometrica. In this historical overview article (69), Pearson tried to connect

all the factors that contributed to the development of the correlation coefficient from different

scientists. He argued that to understand the assertions of correlational calculus, one must go

back to Gauss’s fundamental memoirs on least squares. In fact, and this might come as a surprise

to the reader since the concept of correlation often appears before regression in Statistics books,

the concept of regression and least squares preceded the concept of correlation historically (70).

One of the commonly known first insights on regression (also known as reversion) came from

Sir Francis Galton when he was interested in comparing the sizes of daughter peas against

the sizes of mother peas (70). Pearson concluded his article by saying that the paper was a

“long step from Francis Galton’s “reversion” in sweet pea seeds to the full theory of multiple

correlation.”

There are many diverse ways to view the correlation coefficient (we use the terms Pearson’s

correlation coefficient and correlation coefficient interchangeably in this paper), and the authors
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of (71) discuss thirteen of them. Perhaps the most common way to think about the correlation

coefficient is to go back to the proposed statement by Karl Pearson in 1895, named the Pearson

product-moment correlation coefficient. We provide a more algebraic variant of the original

formula from Pearson’s 1895 paper in Equation 7.

r =

∑
i

(xi − µx)(yi − µy)√∑
i

(xi − µx)2
∑
i

(xi − µx)2
(7)

Here, µi represents the mean across all samples for a given variable i. To incentivize the intu-

ition behind this formula, we can go back to one of the earliest examples on the topic: sweet

peas. What Galton wanted to understand was the relationship between the size of a parent sweet

pea and a child sweet pea by collecting many measurements from different parents and children.

A key component to note here is that Galton was not interested in a generational difference, i.e.

he did not want to compare children pea sizes to parents pea sizes, and instead, wanted to com-

pare multiple parent-child sizes pairs to each other. This is crucial to see, as it can help us

realize what the formula is trying to measure for two variables—how two variables change to-

gether while not biasing the relation by the rate of change. In the numerator, this is achieved by

centering both vectors by subtracting out the mean of each variable, and the denominator scales

both vectors to have equal units. For any two vectors, the correlation value r is between−1 and

+1 and this can be shown by using the Cauchy-Schwarz inequality (71).

Arguably, the idea of correlation made its earliest appearance in biology but it quickly tran-

scended to other fields. In an article published by Galton in 1889, he states “Correlation of

structure is a phrase much used in biology, and not least in that branch of it which refers to

heredity” (72). Prior to that, Galton’s cousin, Charles Darwin published his book “The Varia-

tion of Animals and Plants Under Domestication” in 1868 and used the concept of correlation

multiple times (73). Since then, the concept of correlation has made it to a diverse set of fields

such as physics, astronomy, chemistry, psychology, and more. In these fields, and many oth-
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ers, the notion of correlation matrices emerged—i.e. matrices where every entry represents a

correlation coefficient between a pair of features. The wide presence of correlation matrices

in multiple fields can be justified by realizing the predictive power that correlations have. For

instance, realizing a strong correlation between a given disease severity and the presence of a

certain level of a protein in the body can help us understand the disease and help guide the drug

manufacturing process. And, in fact, the concept of correlations analysis has survived the test

of time in biology and is widely used. At the time of writing this manuscript, we found that a

search of the term “correlation” on bioRxiv revealed 63,942 articles out of the 94,234 articles

present at the time. This is 67% of all articles on bioRxiv!
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Part II

Supplementary Algorithms
Supplementary Algorithm 1: Top k correlation network approximation

Input : X ∈ Rm×n (sample-vector matrix),
k (number of top correlations to retrieve),
a (approximation factor)

Output: C (approximation of top k correlations)
F ′ (feature pairs F ′ corresponding to C)

// initialize
k′ := a ·

⌈
k
n

⌉
X̂ := preprocess each column x̂ so that x̂ = x−µx

‖x−µx‖ (see Main Article, ”Equation 1”)

T := build tree(X̂ ∪ −X̂)

// for each query feature in X̂ , search tree T for k′ nearest neighbors
D,F := search(T, X̂, k′)

// merge results from individual queries into a global top k estimate
D′, F ′ := merge(D,F )

// convert Euclidean distance to correlation values (for each d ∈ D)
C := 1− D2

2
(see Main Article, ”Equation 2”)
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Part III

Supplementary Figures and Tables

Supplementary figures and tables are listed on the following pages.

34



1 0 1
correlation

0.0

0.5

1.0

1.5

2.0

Eu
cli

de
an

 d
ist

an
ce

Supplementary Figure 1: Illustration of the relationship between feature correlations and
Euclidean distance after applying CorALS’s correlation projection. Corresponding sample
vectors were transformed using CorALS’s correlation projection scheme and their correlations
and Euclidean distances calculated.
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Supplementary Figure 2: Full correlation matrix - Runtimes on synthetic data. Runtime
comparison of CorALS (in seconds) for calculating the full correlation matrix on synthetic data,
respectively, for the programming languages Julia, Python, and R, using a single thread. The
CorALS implementations substantially outperform traditional correlation functions.
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Supplementary Figure 3: Top k correlation network approximation - Runtimes and mem-
ory consumption on synthetic data. Subfigures (a) and (b) show timing comparisons between
sorting based (default) and CorALS’s tree-based (CorALS) approaches on synthetic data for
the programming languages Julia, Python, and R using a single thread. (c) visualizes the cor-
responding memory consumption including minimal error bars. For the individual bars, the
measure of center is the arithmetic mean with error bars representing the confidence interval of
CI=0.95; individual data points are too dense to visualize.
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Supplementary Figure 4: Parallelization experiments for full and top-k correlation compu-
tation. Runtime and memory comparisons of CorALS on synthetic data as a function of the
number of cores used. Blue lines refer to runtime, grey bars refer to memory consumption. Both
implementations (full correlation and top-k) are inherently parallelizable. For full correlation
matrix computation it can be important to provide a copy of the original sample-feature matrix
as more cores are utilized to gain the most speedup (see copy vs no copy).
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Supplementary Figure 5: Top-k correlation approximation - Quality. Precision and recall
(sensitivity) of CorALS’s top-k approximation approach in the preeclampsia, pregnancy, and
cancer datasets as a function of the approximation factor used.
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Supplementary Figure 6: Individual top-k functional correlations of single cells for the third
trimester of pregnancy and postpartum. Both panels visualize cells arranged by cell types
(scatter plots along the circle) and their overall top-k (k=0.01%) functional correlations (edges)
for a single sample of our bootstrapping procedure used in Main Article, ”Large-scale multi-
omics correlation analysis across pregnancy”. For visualization purposes, the number of cells
per cell type is limited to 1,000, and edges are limited to cell type pairs that exhibit very large
effect sizes (Cliff’s δ, threshold t = 0.622) with regard to their difference in the relative number
of top-k correlations across the third trimester and postpartum. The scatter plots of single cells
for each cell type are visualized using CorALS’s correlation-based t-SNE embeddings.
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twice no-dual joint

Preeclampsia 16.6 18.7 14.3
Pregnancy 1:57.1 4:34.1 1:49.2

Cancer (0.25) 33:07.0 55:58.8 32:54.4

Preeclampsia 1.0 GB 0.7 GB 0.7 GB
Pregnancy 2.4 GB 1.3 GB 1.3 GB

Cancer (0.25) 8.7 GB 4.8 GB 4.1 GB

Supplementary Table 1: Full correlation matrix - Runtime and memory for different top-k
search techniques. The runtime is shown in the top and memory bottom half of the table. twice
refers to running the top k search twice for extracting positive and negative correlations, while
joint refers to jointly building a ball tree based on positive and negative features. The latter has
marginal runtime advantages and reduces memory requirements by half.
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cor WGCNA coop Rfast HiClimR

Preeclampsia 7.9 2.8 1.7 2.3 10.2
Pregnancy 1:16.5 10.1 6.9 9.0 1:28.7

Cancer (0.25) 19:40.3 1:37.2 failed 1:11.5 19:57.0
Cancer (0.50) 1:33:24.5 10:51.3 failed 9:11.9 -
Cancer (1.00) - - - - -

Single Cell - - - - -

Preeclampsia 2.1 GB 2.1 GB 2.1 GB 2.1 GB 6.4 GB
Pregnancy 7.7 GB 7.8 GB 7.7 GB 7.8 GB 23.3 GB

Cancer (0.25) 31.2 GB 31.3 GB - 31.5 GB 94.1 GB
Cancer (0.50) 124.7 GB 125.0 GB - 125.4 GB -
Cancer (1.00) - - - - -

Single Cell - - - - -

CorALS CorALS (top-k) CorALS (top-k, parallel)

Preeclampsia 1.0 14.3 2.4
Pregnancy 3.9 1:49.2 5.7

Cancer (0.25) 33.9 32:54.4 59.6
Cancer (0.50) 2:20.0 2:10:25.2 2:58.4
Cancer (1.00) - 8:42:12.9 11:25.3

Single Cell - 16:10.1 1:46.9

Preeclampsia 2.5 GB 0.7 GB 3.4 GB
Pregnancy 8.2 GB 1.3 GB 4.5 GB

Cancer (0.25) 31.5 GB 4.1 GB 8.7 GB
Cancer (0.50) 125.9 GB 14.3 GB 21.1 GB
Cancer (1.00) - 53.5 GB 65.1 GB

Single Cell - 33.2 GB 38.7 GB

Supplementary Table 2: Runtime comparison of various libraries for efficient correlation
matrix calculation. Runtimes are reported in (hours:)minutes:seconds (top half of
the table) and memory consumption is reported in gigabytes (GB). None of the compared meth-
ods uses only native code as CorALS does. coop fails on large datasets (failed). Dashes (-)
represent the lack of runtime measurements for examples exceeding our server resources. The
CorALS reference implementation in Python outperforms all compared libraries on the given
tasks. We also include CorALS’s top-k (k=0.01%) correlation extraction for direct comparison.
This illustrates the ability of CorALS to enable correlation analysis for large scale datasets in
settings with limited memory (note that is also sorts and extracts the top-k correlations which
non top-k variants do not inherently support).
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Short Name Long Name

mDCs Myeloid Dendritic Cells
pDCs Plasmacytoid Dendritic Cell
ncMCs Non-classical Monocytes
intMCs Intermediate Monocytes
cMCs Classical Monocytes
M-MDSC Monocytic Myeloid-Derived Suppressor Cells
B Cells B Cells
Memory CD8+CD25- T Cells Memory CD8+CD25- T Cells
Naı̈ve CD8+CD25- T Cells Naı̈ve CD8+CD25- T Cells
Memory CD8+CD25+ T Cells Memory CD8+CD25+ T Cells
Naı̈ve CD8+CD25+ T Cells Naı̈ve CD8+CD25+ T Cells
Memory CD4+CD25- T Cells Memory CD4+CD25- T Cells
Naı̈ve CD4+CD25- T Cells Naı̈ve CD4+CD25- T Cells
Memory CD4+CD25+ T Cells Memory CD4+CD25+Foxp3- T Cells
Naı̈ve CD4+CD25+ T Cells Naı̈ve CD4+CD25+Foxp3- T Cells
Naı̈ve Tregs Naı̈ve Regulatory T Cells
Memory Tregs Memory Regulatory T Cells
γδ T Cells γδ T Cells
CD56bright CD16- NK Cells CD56bright CD16- NK Cells
CD56dim CD16+ NK Cells CD56dim CD16+ NK Cells

Supplementary Table 3: Cell type name abbreviations. The left columns (short name) defines
a more concise naming scheme for the cell types listed in the right column (long name).
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