
nature computational science

https://doi.org/10.1038/s43588-023-00440-3Article

Score-based generative modeling for de 
novo protein design

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s43588-023-00440-3


 
Supplementary Figure 1. 2D matrix distributions. We analyzed joint distributions of 6D coordinates in adjacent residues 
between true and generated samples to further assess generation quality of ProteinSGM. We see a clear concordance 
between generated and true samples, suggesting that ProteinSGM has learned native biophysical constraints.



 

 
Supplementary Figure 2. Rosetta energies and Ca RMSDs with Rosetta pipeline. (left) 
Rosetta energy before FastRelax remains relatively high for generated structures, but 
full-atom relaxation with constraints allows effective energy minimization to bring 
energies closer to the true distribution. (right) Minimized structures from 6D coordinates 
were compared with their native structures to assess fidelity of the Rosetta protocol. We 
observe that across all steps, mean Ca RMSDs are lower than 1A, suggesting the 
protocol is suited for reproducible generation of structures from 6D coordinates. 
  



 
Supplementary Figure 3. Additional scTM analysis. (A) Since predicted structures with 
low pLDDT (low confidence) are generally unreliable, we filter OmegaFold structures at 
different cutoffs and analyze changes to the scTM > 0.5 proportion. With no filtering, a > 
70 pLDDT filter, and a > 90 pLDDT filter, we obtain 90.2%, 78.3%, and 24.5% scTM > 
0.5 in the generated samples and 92.5%, 88.9%, and 48.3% in the true samples, 
respectively. Though there is a notable difference between generated and true samples 
with more stringent pLDDT filters, we observe that at a > 70 pLDDT filter corresponding 
to confident predictions, more than 78% of the generated samples are designable with a 
protein sequence. (B) We analyze the relationship between scTM (designability) and 
max-TM (similarity to training data), and observe that there is a positive correlation 
between scTM and max TM-score. This is expected since structures with closer 
similarity to PDB structures are, by definition, realizable with a protein sequence, and 
therefore should have an scTM > 0.5. 



 

Supplementary Figure 4. Per-length analysis of (A) scTM, (B) max TM-score, and (C) 
Rosetta energy. We observe that there is consistency across all metrics between 
structures of different lengths. However, there is a slightly lower max TM-score and 
higher Rosetta energy for shorter structures, which may be explained by the lower 
number of short domains in the training set and the lower number of stabilizing 
interactions in shorter proteins, respectively. 
  



 

 
 

Supplementary Figure 5. Examples of generated structures. Rosetta-generated 
backbones are in green, and the best OmegaFold structure is shown in blue. 
  



 
Supplementary Figure 6. Failure modes of ProteinSGM. (A) We observe that in a few 
cases, ProteinSGM generates long helices that may not exist in nature. (B) Since beta 
sheets are more difficult to model, some generated backbones display loop-like 
structures that are not visualized as beta sheets due to incorrect placement of hydrogen 
bonds. 
  



 

Supplementary Figure 7. Melting curves of two α proteins (A and B) monitoring the 

variation of the CD signal at 222 nm are shown with the temperature (25-80 °C). The 

number in the graph indicates the melting temperature (Tm) values of each protein. 

 

  



 

 

 
Supplementary Figure 8. Runtime analysis by length. (A) Sampling from ProteinSGM 
is uniform across all lengths since the dimensionality of the generated matrices is fixed. 
(B) With the ProteinMPNN + OmegaFold pipeline, OmegaFold dominates most of the 
runtime, yet is relatively fast at < 30 seconds per structure. (C) With the Rosetta 
pipeline, initial backbone generation with MinMover is relatively fast at < 2 minutes per 
structure, but FastDesign and FastRelax can take up to 3 hours per structure. 
ProteinSGM, ProteinMPNN, and OmegaFold runtimes were measured using a single 
NVIDIA V100, while Rosetta was run with 2 cores and 8GB of RAM. Standard 
deviations for Rosetta iterations are shown in red. ProteinSGM was sampled with batch 
size 16, and ProteinMPNN was run in batch mode with 12 input structures and 8 
sampled sequence per structure, so runtime may vary with different batch sizes. 
  



Supplementary Table 1. Mean absolute error of input 6D coordinates and 6D 
coordinates recovered after MinMover and FastRelax. 
 

 6D coordinate MinMover FastRelax 

Generated 

d (Cβ - Cβ) 0.373Å 0.469Å 

ω 14.6° 23.2° 

θ 9.38° 15.3° 

φ 4.43° 7.29° 

True 

d (Cβ - Cβ) 0.147Å 0.349Å 

ω 4.97° 18.83° 

θ 4.04° 12.33° 

φ 2.05° 6.07° 

 
  



Supplementary Table 2. Estimated secondary structure content (%) of unconditional 
samples by BeStSel [29]. Structure ID corresponds to the subfigure denoted in 
Figure 4. 
 

  Structure ID 

Secondary Structure A B C D E 

a-helix 
Helix1 (regular) 77.4 78.3 43.7 73.5 49.1 

Helix2 (distorted) 21.8 21.1 23.2 17.1 21.6 

Anti-parallel beta sheet 

Anti1 (left-twisted) 0 0 0 0 0 

Anti2 (relaxed) 0 0 0.8 0 0 

Anti3 (right-twisted) 0.9 0.6 28.7 2.5 0 

Parallel beta sheet 0 0 0 0 0 

Turn 0 0 0 1.5 0 

Others* 0 0 3.5 5.3 29.3 

 
* 3,10-helix, π-helix, β -bridge, bend, loop/irregular and invisible regions 
 




