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Dear Professor Gomez-Bombarelli,

Your manuscript "Machine-learning-accelerated simulations enable heuristic-free
surface reconstruction" has now been seen by 3 referees, whose comments are
appended below. You will see that while they find your work of interest, they have
raised points that need to be addressed before we can make a decision on
publication.

The referees’ reports seem to be quite clear. Naturally, we will need you to address
all of the points raised.

While we ask you to address all of the points raised, the following points need to be
substantially worked on:

- Please provide quantitative comparisons of your approach to existing methods in
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order to demonstrate the level of improvement over the state-of-the-art.

- Please provide experiments on additional benchmark systems, such as Si(111).

- Please discuss, in the Discussion section, the limitations of your work

- Please provide additional methodological and experimental details, as noted by the
referees.

You will also need to make some editorial changes so that it complies with our Guide
to Authors at https://www.nature.com/natcomputsci/for-authors.

In particular, I would like to highlight the following points of our style:

Figure legends must provide a brief description of the figure and the symbols used,
including definitions of any error bars employed in the figures.

Please use the following link to submit your revised manuscript and a point-by-point
response to the referees’ comments (which should be in a separate document to any
cover letter):

[REDACTED]

** This url links to your confidential homepage and associated information about
manuscripts you may have submitted or be reviewing for us. If you wish to forward
this e-mail to co-authors, please delete this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy
of your manuscript files that indicates your revisions by making use of Track Changes
or similar mark-up tools. Please also ensure that all correspondence is marked with
your Nature Computational Science reference number in the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your
text, to assist us in the editorial stage.

To improve transparency in authorship, we request that all authors identified as
‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System
(MTS), prior to acceptance. ORCID helps the scientific community achieve
unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on *‘Modify my Springer Nature
account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

We hope to receive your revised paper within three weeks. If you cannot send it
within this time, please let us know.

We look forward to hearing from you soon.

Best regards,
Kaitie

Kaitlin McCardle, PhD
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Nature Computational Science

Reviewers comments:
Reviewer #1 (Remarks to the Author):

The manuscript by Xiaochen Du et al. presents a computational framework termed
“Heuristic-Free Surface Reconstruction (HFSurfRecon)” for predicting surface phase
diagrams of complex, multi-component materials. A new algorithm, the Virtual
Surface Site Relaxation-Monte Carlo (VSSR-MC) sampling algorithm, is presented to
efficiently sample across surface configurations and compositions in the semi-grand
canonical ensemble. Energy evaluations are first carried out with a classical force field
for the GaN surface. Then a neural network force field (NFF) is trained as part of the
computational framework for the more challenging SrTiO3(001) surface. The training
of the NFF is carried out using uncertainty-driven active learning to simultaneously
improve the accuracy of the NFF and the statistics of the sampling of surface
reconstructions.

I believe this work is of quite high novelty and will be of high interest to the
community. In particular, I think the approach of combining discrete sampling using
fixed adsorption sites with NFF continuous relaxation is very powerful. However, while
the use of fixed, virtual adsorption sites makes the sampling efficient, it is also a main
drawback of the method, since it would not be able to tackle more complex off-lattice
surface reconstructions. These limitations are, however, clearly outlined in the
discussion.

The development of the NFF is state-of-the-art, with the inclusion of both active
learning and adversarial attack to iteratively improve the NFF.

My recommendation would be to consider this manuscript for publication, although I
am a little unsure about the practical usefulness of this method, given that off-lattice
surface reconstructions are out of the reach, and given that such reconstructions
have frequently been reported in the literature.

Addressing the below points could help to clarify this point and other minor points
related to the methodology itself:

1) It would be useful to provide some concrete examples of other surfaces where this
method can (i.e. known reconstructions follows virtual site geometries) or cannot be
applied to make it easier to judge the practical usefulness of this method.

2) It seems that the method still requires the user to specify the cell size, which
determines the periodicity of surface reconstructions that can be found. How were the
cell sizes chosen in this work? And is it correctly understood that this choice still
needs guidance from experimental work? If yes, this point should also be discussed in
connection with the other limitations of this method.

3) What is meant by “heuristic-free” in the naming of the method?

4) Why is the predicted force standard deviation and not the predicted energy
standard deviation used in the active learning? And is an ensemble size of 3 large
enough to reliably estimate the standard deviation?

5) I did not understand the point “no additional runs varying pO were necessary”.
Couldn’t there in practice exist surface reconstructions that would not follow the O:Sr
and O:Ti stoichiometries from the bulk? Why were these not considered here?

6) DFT with the PBE functional is known to exhibit a very high error for the 02
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molecule in the gas phase. Were any corrections applied to remedy this? If not, could
this error influence the presented results?

7) The sentence “The Perdew-Burke-Ernzerhof (PBE) functional within the
generalized-gradient approximation (GGA) were utilized [53] along with the Hubbard
U correction [54] for spin-polarized calculations” does not make sense. The Hubbard
U correction is a correction for the self-interaction error in DFT, and it must be stated
exactly which U value was used for a given element, since this is an empirical
parameter. Please comment on the value used, and whether it is appropriate to use a
fixed value for all chemical environments of the given element.

8) Reading through the README on the Github page, I could not find any actual
installation instructions? Only System requirements. I may have overlooked this, in
that case, please clarify.

Reviewer #1 (Remarks on code availability):

Reading through the README on the Github page, I could not find any actual
installation instructions? Only System requirements. I may have overlooked this, in
that case, please clarify.

I have not reviewed the code itself.

Reviewer #2 (Remarks to the Author):

The manuscript presents a methodological framework for efficiently exploring
complex surface reconstructions of multi-component materials under challenging
environments. Accurate determination of surface structures is crucial for
understanding material properties and performance in applications such as catalysis
and energy storage. However, accurately predicting surface energies and effectively
sampling surface compositions and configurations poses significant challenges.
Machine-learning force fields (MLFFs) offer a potential solution to these challenges
due to their lower computational cost compared to density-functional theory (DFT)
calculations and their high accuracy. However, the authors claimed that the
development of MLFFs with an efficient sampling scheme that can explore
compositional and configurational spaces in a heuristic-free manner is currently
lacking. To overcome these limitations, they propose a workflow called Heuristic-Free
Surface Reconstruction (HFSurfRecon), which combines MLFFs with active learning
(AL) and the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) sampling
algorithm. The framework is validated through case studies on the GaN(0001) surface
using a classical force field and the SrTiO3(001) surface using a neural network force
field. The results demonstrate the effectiveness of the AL strategy in conjunction with
VSSR-MC sampling, as it acquires new data points from DFT calculations only in
relevant regions of the surface phase space. The generated surface phase diagram
aligns well with existing literature and reveals previously unknown low-energy surface
terminations. The manuscript is highly relevant to the community, and the study is
well-executed. However, some statements made in the manuscript raise questions
and require further clarification or justification.

Major comments

1. The authors employed the VSSR-MC sampling algorithm to explore compositional
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and configurational search spaces and to sample complex, stable surface structures. I
understand that semi-grand-canonical sampling is only the addition and removal of
particles. The authors later (in section 4.1) mention that they also do canonical
sampling, but it is unclear what the trial moves are there. Swaps? Simultaneous
addition and removal?

2. Closely related to comment 1, while the algorithm focuses on high-likelihood
virtual sites related to the symmetry of the pristine slab, there is no mention of
atomic displacements or rearrangements of coordinates of any kind. In my opinion,
this completely fails to explore the configurational space of surface reconstructions,
and it is possible that non-trivial surface reconstructions deviating from slab
symmetry can be easily missed. And these reconstructions can still exhibit periodicity
and should not be considered amorphous (e.g., Si(111) DAS reconstructions). This
could be okay, as long as the method essentially samples site occupations, but this is
unclear in the text. It would be beneficial for the authors to clarify whether they have
considered these possibilities and the potential impact on the sampling process. Or
else, the sentence "Our algorithm can be easily applied to any surface of interest and
paves the way to study unknown multi-component materials under challenging
environments such as in aqueous electrochemistry" is a little bit of an overstatement.

3. The authors performed latent space clustering based on the geometries obtained
from VSSR-MC sampling. They embedded the geometries using the first three
principal components, capturing over 90% of the variances. However, the details of
how the samples were clustered into different clusters are not clearly explained. The
authors should provide further clarification regarding the clustering methodology they
employed, as there are various clustering algorithms available that could have been
used.

4. The authors use two model surfaces of GaN(0001) and SrTiO3(001) to validate the
framework. However, that Si(111) is not mentioned bothers me in particular because
it exhibits one of the most complex surface reconstructions known to date, and
cheap, accurate potentials are available for it (either Stillinger-Weber or GAP). I think
it would have been a much more convincing benchmark than GaN(0001) that then
would really justify publication in a prestigious journal like npj Comp. Mat.

5. The authors mentioned that a total of 6500 structures for SrTiO3(001) were
generated over six iterations, with fewer than 5,000 structures used for training the
final NFF. It thus appears that approximately 80% of the sampled structures required
DFT calculations. This raises some ambiguity since the authors selected surfaces
based on the highest force standard deviation rather than high energy. Also, it would
be interesting to know if there are structurally similar or nearly identical samples in
the training set. If so, wouldn't sparsifying the new samples effectively reduce the
total number of required DFT calculations while maintaining the accuracy of the NFF
(also potentially speed up the NFF potential)? Considering the good extrapolability of
the NN-based force field, such a large amount of training data may not be necessary
to obtain an accurate MLFF for a single surface orientation. As it stands right now, the
approach by the authors is not data efficient at all — and thus not really compatible
with other already existing approaches in the literature.

6. Although the samples from the VSSR-MC algorithm are obtained by varying the
chemical potential of Sr from -12 to 0 eV, it is unclear how the stable surfaces for
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each chemical potential were selected for further DFT calculations and refinement of
the training data. The authors seem to use NFF energy (after screening with force
standard deviation) in the selection process. It would be worth considering using
surface free energy (by varying the chemical potential) instead of NFF energy to
identify the relevant structures for further DFT calculations. This could naturally
expand the compositional search space to surface structures stable under more
extreme conditions. Currently, Fig 5(c-e) shows a limited number of structures found
at I <= -5 or >= 5 with the current settings.

7. Fig 4(b) demonstrates the correlation between force standard deviation and force
mean absolute error. However, the details of the figure are not explained in the
manuscript. The meaning of the colormap terms “estimated density” and “binned
average” is unclear. The authors should provide a more detailed explanation of these
terms or simplify the figure to enhance clarity.

8. The active learning workflow for the SrTiO3 model system achieved decent
accuracy of the NFF at the 6th generation employed by the authors. However, it
would be helpful to know if the number of generations would differ when applying this
workflow to other systems with varying levels of complexity. Is the total number of
generations fixed, or are there other criteria for determining when to stop the
generations, such as energy or force thresholds?

9. The manuscript does not clearly describe how the authors perturbed the given
structure in the adversarial attack process. Since there are no specifically defined
collective variables in these systems, further elucidation is needed regarding how the
perturbation was implemented in their system. Additional details regarding the
methodology of the adversarial attack would be beneficial.

Minor comments

1. On page 2, the authors mentioned that "Machine learning (ML) force fields are
much faster than DFT calculations while preserving accuracy [21, 22], but they have
not been connected to an efficient sampling scheme to explore the phase space of
multi-component surfaces in a heuristic-free fashion." seems a bit overstated. There
are many works that connect ML and heuristic-free sampling. The authors should
provide more detailed comparisons of their methodologies to others in the literature.
At present it seems that they do not have a good overview of the field or try to
oversell the novelty of their approach.

2. At least, in fairness to the very active community of surface structure
determinations, referring to new MLFF fitting + sampling frameworks (such as that in
Ref. 14 and 23) seems to be cutting it a bit short. A few others for a more balanced
view might include:

https://doi.org/10.1103/PhysRevLett.124.086102
https://doi.org/10.1103/PhysRevlLett.125.206101
https://doi.org/10.1063/5.0071249

https://doi.org/10.1063/5.0121748

https://doi.org/10.1103/PhysRevB.105.245404

3. The global optimization literature is immense, and the authors do not even
mention e.g. basin hopping, genetic algorithms, AIRSS, etc. Admittedly, there are not
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too many GO works for surfaces and surface reconstructions, but this is precisely
because of the particular complexity of the problem, which makes it expensive at the
ab initio level. This is a good motivation for this work but not clearly mentioned.
Nonetheless, there are some GO works, so giving a reflection of this literature is
appropriate. E.g.:

TiO2 reconstructions https://doi.org/10.1103/PhysRevLett.113.266101 (GA/USPEX)
Molecular adlayers: https://doi.org/10.1021/acs.nanolett.7b01637
https://doi.org/10.1002/advs.202000992 and others from the group
https://doi.org/10.1021/acs.nanolett.5b03388

SrTiO3: https://doi.org/10.1103/PhysRevB.90.035424 (AIRSS)

Si(111): https://doi.org/10.1021/acs.jpca.2c00647 (basin hopping vs GA)

4. The authors do perform relaxation after every MC move, so effectively this is a
form of basin hopping and it would be nice of them to cite the original paper:
https://doi.org/10.1021/jp970984n

5. In section 4.4, a kcal/mol unit has been used, but using a consistent eV unit for
energy might be preferable.

6. In Fig 5(b), what are the ticks at the right y-axis (denoted as red and orange ticks
with values of 1 and 15) besides scales of oxygen partial pressure? Please add a
proper explanation in the caption or main text.

7. In Fig 5(c-e), what is the specific value of oxygen chemical potential? Please add
the text.

8. The authors mentioned that “The goal of using adversarial attack for the final AL
generation was to make the force field more robust for low-energy structures.” Could
this be justified?

9. In Fig C2, the test data seems to include very large force components close to 100
eV/AR, and the NFF model surprisingly predicts well of these large forces. Does your
final training data also include these high-force configurations? If so, were they only
selected and added during the initial generations of NFF when its prediction of
energies and forces was poor?

Reviewer #3 (Remarks to the Author):

Du et al. present a computational technique to obtain atomistic models for ideal, i.e.,
defect-free surfaces under varying external conditions, which is an important problem
in material science with important implications e.g. in heterogeneous catalysis. They
present what they call a "heuristic-free surface reconstruction framework" hinging on
the "Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC)" sampling algorithm to
automate the exploration of configurational space and its concommitant potential
energy surface.

The presented applications of this methodology to the GaN(0001) and SrTiO3(001)
surfaces seem to have been carried out very carefully. Existing atomistic models
available in the literature are being reproduced for both surface and suggest
additional 2x2-reconstructions for SrTiO3(001), one of which is energetically
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favorable and thus might also be experimentally relevant. Figure 3a) does provide a
glimpse of how the virtual adsorption sites have been chosen for GaN(0001).
However, I miss details on how this can be done (heuristic-free!) in general. Since
this is an essential and distinguishing feature of the suggested VSSR-MC algorithm, a
discussion how such choices can be easily validated - if e.g. specified by parameters
that incluence the virtual site density. Reconstructions with larger supercells cannot
be discovered as the presented approach requires a (surface) super cell to be
specified a priori. Consequently, it is not able to explore arbitrarily large NxM-
reconstructions (e.g. the famous Au(111) heringbone reconstruction), which might
also be based on surface unit cells that are rotated with respect to the primitive
surface unit cell. The discussion (in Section 3) mentions this systematic limitation in
the context of amorphous overlayers, but does not discuss the aforementioned
implications. Furthermore, the present formulation of the VSSR-MC algorithm
neglects vibrational entropy in the underlying surface Gibbs free energy (see Section
4.5 and Appendix B). These can play a curical role to stabliliz particular surface
structures (and reconstructions) over others in particular when varying external
conditions. Consequently, this limitation should be discussed as well.

Altogether, I do not recommend publication of the manuscript in Nature
Computational Science in its present form. Considering other computational
approaches presented in the literature before (see e.g. Refs. 1 and 2 - neither of
which is cited), I fail to see the "groundbreaking" aspects of the work presented here.

[1] S. A. Meldgaard et al., Structure prediction of surface reconstructions by deep
reinforcement learning, J. Phys.: Condens. Matter 32 404005 (2020).

[2] Yu Han et al., Prediction of surface reconstructions using MAGUS, J. Chem. Phys.
158, 174109 (2023).

minor issues:

- Section 2.1, 2nd paragraph:

"Runs are conducted at different external conditions such as pressure, ..., and applied
electrical potential."

This is somewhat confusing. If I understand correctly, those two external conditions
are not varied in the present work, so the authors should modify/extend this sentence
accordingly.

- Section 4.5 and Appendix B:
Appendix B repeats a lot of the contents of Section 4.5 and does not to add much
over it. So the authors should reconsider whether the former is really needed.

Reviewer #3 (Remarks on code availability):
I have glimpsed at the Python source code and had a good impression regarding the

coding style. However, due to lack of time I did not manage to run the code for any
of the provided examples.

‘ Author Rebuttal to Initial comments
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NATCOMPUTSCI-23-0568: Machine-learning-accelerated simulations enable heuristic-free surface reconstruction
Reviewer #1 (Remarks to the Author):

The manuscript by Xiaochen Du et al. presents a computational framework termed “Heuristic-Free Surface
Reconstruction (HFSurfRecon)” for predicting surface phase diagrams of complex, multi-component materials. A new
algorithm, the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) sampling algorithm, is presented to efficiently
sample across surface configurations and compositions in the semi-grand canonical ensemble. Energy evaluations are
first carried out with a classical force field for the GaN surface. Then a neural network force field (NFF) is frained as part
of the computational framework for the more challenging SrTiO3(001) surface. The training of the NFF is carried out
using uncertainty-driven active learning to simultaneously improve the accuracy of the NFF and the statistics of the
sampling of surface reconstructions.

| believe this work is of quite high novelty and will be of high interest to the community. In particular, | think the approach
of combining discrete sampling using fixed adsorption sites with NFF continuous relaxation is very powerful. However,
while the use of fixed, virtual adsorption sites makes the sampling efficient, it is also a main drawback of the method,
since it would not be able to tackle more complex off-lattice surface reconstructions. These limitations are, however,
clearly outlined in the discussion.

The development of the NFF is state-of-the-art, with the inclusion of both active learning and adversarial attack to
iteratively improve the NFF.

My recommendation would be to consider this manuscript for publication, although | am a little unsure about the practical
usefulness of this method, given that off-lattice surface reconstructions are out of the reach, and given that such
reconstructions have frequently been reported in the literature.

We thank the Reviewer for the positive feedback. We want to highlight two reasons our method is not fixed to
on-lattice surface reconstructions or reconstructions that exactly follow virtual site geometries. First, our virtual sites
contain all possible adsorption sites generated algorithmically, much more than the number of on-lattice sites. As an
example, our 2x2 SrTiO:(001) surface has 16 lattice sites, but ~100 virtual sites. Second, by performing relaxations after
discrete sampling, we can access the rest of the configurational space. Our GaN(0001) surface demonstrates one such
reconstruction that does not obey the bulk lattice structure (the reconstructed layer has a rotated lattice with respect to
the pristine surface). We have updated Section 2.2.1 to highlight this. For SrTiOz(001) surfaces, the algorithm
enumerated through many off-lattice structures before determining reconstructions that follow the bulk lattice symmetries
are the most stable. We do anticipate that amorphous structures might be harder but not impossible and have edited
Section 2.1 and the Discussion section to better refiect our point of view. We have also created an additional figure,
Fig. C4 to better convey the strengths and limitations of our approach.

Addressing the below points could help to clarify this point and other minor points related to the methodology itself:

1) It would be useful to provide some concrete examples of other surfaces where this method can (i.e. known
reconstructions follows virtual site geometries) or cannot be applied to make it easier to judge the practical usefulness of
this method.

We have added the Si(111) reconsfructions as proposed by Reviewer 2 to our manuscript in Section 2.2.2 and
created Fig. C5 to illustrate the results. These reconstructions neither follow bulk lattice geometries nor virtual site
geometries. In a separate work, we are studying the much less understood amorphous reconstruction of SrirOz(001) in
electrochemistry conditions (additional pH and electrical potential) using our HFSurfRecon algorithm.

2) It seems that the method still requires the user to specify the cell size, which determines the periodicity of surface
reconstructions that can be found. How were the cell sizes chosen in this work? And is it correctly understood that this
choice still needs guidance from experimental work? If yes, this point should also be discussed in connection with the
other limitations of this method.

Yes, the cell size will have to be picked in advance. We chose a small unit cell size commensurate with other
cited computational studies to demonstrate our method. But our method is not limited to the cell sizes that we hayve
chosen. Since our future goal is to apply our work to new multicomponent systems, we envision larger unit cell sizes and
experimental collaborations to inform our work and verify our results. We have updated Section 3 to better reflect this
point.

3) What is meant by “heuristic-free” in the naming of the method?
It means no manual construction of trial surfaces (compositions or configurations) by a human is required. The
surface phase diagram is automatically generated based on the sampling results.

4) Why is the predicted force standard deviation and not the predicted energy standard deviation used in the active
leaming? And is an ensemble size of 3 large enough to reliably estimate the standard deviation?

In active leaming, we improve the NFF by obtaining ground-truth samples (using DFT) in regions of high error.
Since we do not know the error beforehand (before performing DFT calculations), we use prediction standard deviation
as a proxy for prediction error. In the present (see Fig. 4(b)) and previous works by our research group [R1] and others
[R2], we have found that the force standard deviation as predicted through an ensemble neural network has a stronger
correlation with force error than the energy standard deviation with energy error. In our work, an ensemble size of 3 was
sufficient to give a reliable estimate of force standard deviation that correlates well with force emror at each generation,
which we show in Fig. C8. We have edited Sections 4.3 and 4.4 to refiect this information.

References:

[R1] Schwalbe-Koda, D., Tan, A. R. & Gomez-Bombarelii, R. Differentiable sampling of molecular geometries
with uncertainty-based adversarial attacks. Nat Commun 12, 5104 (2021).

[R2] Gasteiger, J., Giri, S., Margraf, J. T. & Gunnemann, S. Fast and Uncertainty-Aware Directional Message
Passing for Non-Equilibrium Molecules. arXiv.org hitps://arxiv.org/abs/2011.14115v3 (2020).
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NATCOMPUTSCI-23-0568: Machine-learning-accelerated simulations enable heuristic-free surface reconstruction

5) 1 did not understand the point “no additional runs varying pO were necessary”. Couldn’t there in practice exist surface
reconstructions that would not follow the O:Sr and O:Ti stoichiometries from the bulk? Why were these not considered
here?

Exactly, our code is designed to handle reconstructions that do not follow bulk stoichiometries. In fact, unlike
previous works, our SGC VSSR-MC code does not require the specification of surface stoichiometries or specific
stoichiometric ratios to the bulk. During VSSR-MC runs, our code visited many stoichiometries (a total of 683 unique
ones) and many do not follow the bulk stoichiometries, e.g., O37Sr17Ti18 and O395r15Ti13, and assigned high surface
energies to these structures. As a result, the stable surface structures that we find in the phase diagram (Fig. 5(b)) follow
the bulk stoichiometries. By “no additional runs varying yO were necessary,” we meant that we ran VSSR-MC only at pO
= 0. This was possible due to the way we are modeling our slab (the pristine surface was stoichiometric to the bulk). A
decrease in yO has the same effect on surface free energies as a decrease in uSr by the same amount (Equation 7).
We have included these clarifications in Section 2.3.2.

6) DFT with the PBE functional is known to exhibit a very high error for the O2 molecule in the gas phase. Were any
corrections applied to remedy this? If not, could this error influence the presented resulis?

Thank you for pointing this out. We did not correct for oxygen overbinding in the gas phase. Using the method
by Wang et al. [R3] of computing the difference between experimental and DFT formation energies of binary metal
oxides, we find each O atom was calculated by DFT to be more stable by around 0.5 eV in the gas phase. This means
oxygen should be more likely to adsorb onto surfaces than in our simuiations. The results that might be affected would
be the surface phase diagram Fig. 5(b) and the surface free energy plots at different ySr, Fig. 5(c-e). Recalculating our
surface free energy plets, we find that the DL TiO:z (Fig. 5(c)) and SL TiOz (Fig. 5(d)) terminations are still the lowest
energy structures at pSr = -10 eV and pSr = -7 eV respectively as predicted by our NFF and confirmed with DFT. For the
SL SrO structure, it became the 12" lowest energy structure at pSr = -4 eV as predicted by our NFF, but according to
DFT it sfill has the lowest surface free energy. Altogether, we should still see three stable phases on the phase diagram,
although the cross-over points changed. In Equation 7 we demonstrate that the increase in Eoz is analogous to an
increase in pO and thus our new phase diagram would be shifted downwards. Nevertheless, the trend of Fig. 5(b)
should stay the same and our conclusions do not change. We have added to Section 4.5 to clarify our procedure.

Reference:

[R3] Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U
framework. Phys. Rev. B 73, 195107 (2006).

7) The sentence “The Perdew-Burke-Emzerhof (PBE) functional within the generalized-gradient approximation (GGA)
were utilized [53] along with the Hubbard U correction [S4] for spin-polarized calculations” does not make sense. The
Hubbard U correction is a correction for the self-interaction error in DFT, and it must be stated exactly which U value was
used for a given element, since this is an empirical parameter. Please comment on the value used, and whether it is
appropriate to use a fixed value for all chemical environments of the given element.

Thank you for spotting this error. We did not use the Hubbard U correction in SrTiO: and have revised Section
4.7. We followed the Materials Project guidelines for our calculations. \Yalues of the U parameter for Ti have yet to be
calibrated on the Materials Project (https://docs.materialsproject.org/methodology/materials-methodology/calculation-
details/qga+u-calculations/hubbard-u-values).

8) Reading through the README on the Github page, | could not find any actual installation instructions? Only System
requirements. | may have overlooked this, in that case, please clarify.

We thank the Reviewer for letting us know. The README was written as a procedure to be followed in order.
We assumed the reader to be familiar with GitHub and will download the repository to a local directory before proceeding
with the instructions. We have updated our Overview and Setup section in the README to make this clearer. Our

GitHub repository is available here: https://github.com/learningmatter-mit/surface-sampling.
Reviewer #1 (Remarks on code availability):
Reading through the README on the Github page, | could not find any actual installation instructions? Only System

requirements. | may have overlooked this, in that case, please clarify.
| have not reviewed the code itself.
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NATCOMPUTSCI-23-0568: Machine-learning-accelerated simulations enable heuristic-free surface reconstruction
Reviewer #2 (Remarks to the Author):

The manuscript presents a methodological framework for efficiently exploring complex surface reconstructions of multi-
component materials under challenging environments. Accurate determination of surface sfructures is crucial for
understanding material properties and performance in applications such as catalysis and energy storage. However,
accurately predicting surface energies and effectively sampling surface compositions and configurations poses
significant challenges. Machine-leaming force fields (MLFFs) offer a potential solution to these challenges due to their
lower computational cost compared to density-functional theory (DFT) calculations and their high accuracy. However, the
authors claimed that the development of MLFFs with an efficient sampling scheme that can explore compositional and
configurational spaces in a heuristic-free manner is currently lacking. To overcome these limitations, they propose a
workflow called Heuristic-Free Surface Reconstruction (HF SurfRecon), which combines MLFFs with active learning (AL)
and the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) sampling algorithm. The framework is validated through
case studies on the GaN(0001) surface using a classical force field and the SrTiO3(001) surface using a neural network
force field. The results demonstrate the effectiveness of the AL strategy in conjunction with VSSR-MC sampling, as it
acquires new data points from DFT calculations only in relevant regions of the surface phase space. The generated
surface phase diagram aligns well with existing literature and reveals previously unknown low-energy surface
terminations. The manuscript is highly relevant to the community, and the study is well-executed. However, some
statements made in the manuscript raise questions and require further clarification or justification.

We thank the Reviewer for their detailed evaluation of our manuscript.

Major comments

1. The authors employed the VSSR-MC sampling algorithm to explore compositional and configurational search spaces
and to sample complex, stable surface structures. | understand that semi-grand-canonical sampling is only the addition
and removal of particles. The authors later (in section 4.1) mention that they also do canonical sampling, but it is unclear
what the frial moves are there. Swaps? Simultaneous addition and removal?

The canonical sampling for GaN(0001) was done with swaps between adsorption sites, with the number of Ga
adsorbates pre-defined. We have updated Sections 2.2.1 and 4.1.

2. Closely related to comment 1, while the algorithm focuses on high-likelihood virtual sites related to the symmetry of the
pristine slab, there is no mention of atomic displacements or rearrangements of coordinates of any kind. In my opinion,
this completely fails to explore the configurational space of surface reconstructions, and it is possible that non-trivial
surface reconstructions deviating from slab symmetry can be easily missed. And these reconstructions can still exhibit
periodicity and should not be considered amorphous (e.g., Si(111) DAS reconstructions). This could be okay, as long as
the method essentially samples site occupations, but this is unclear in the text. It would be beneficial for the authors to
clarify whether they have considered these possibilities and the potential impact on the sampling process. Or else, the
sentence "Our algorithm can be easily applied to any surface of interest and paves the way to study unknown multi-
component materials under challenging environments such as in aqueous electrochemistry” is a little bit of an
overstatement.

The Reviewer is correct in that the coordinates of the virtual adsorption sites, once defined, are fixed. The
discrete sampling step (atom addition, identity change, or removal) is always done at fixed sites. However, as the
Reviewer noted in Minor comments 4, we perform relaxation of the surface and adsorbed atoms after each MC move,
which allows us to explore the configurational space. The energy and structure saved (if the MC move is accepted)
comrespond to the relaxed structure. In the GaN{0001) case, we did see pericdic surface reconstructions deviating from
slab symmetry (the reconstructed layer has a rotated iattice with respect to the pristine surface). We have updated
Section 2.2.1. For SrTiO5(001), the most stable surfaces were shown to be closely aligned with the bulk after many off-
lattice structures with lower symmetry were enumerated. We have also added a clarifying figure, Fig. C4, to show the
strengths and limitations of our approach.

3. The authors performed latent space clustering based on the geometries obtained from VSSR-MC sampling. They
embedded the geometries using the first three principal components, capturing over 90% of the variances. However, the
details of how the samples were clustered into different clusters are not clearly explained. The authors should provide
further clarification regarding the clustering methodology they employed, as there are various clustering algorithms
available that could have been used.

The clustering of our embedded geometries is achieved through hierarchical agglomerative clustering on the
first three principal components. This is a bottom-up clustering methed where initially, each data point forms its own
cluster. Then, pairs of clusters are successively merged based on their closeness, defined by a Euclidean distance
metric. We used Ward's method in our linkage computation, which minimizes the total within-cluster vanance. The
number of clusters can be tuned. To save on compute time, a first-pass clustering was run for every 1000 samples to
yield around 100-200 structures at each pSr. Structures across all uSr were pooled together for a second clustering step
to select around 800 structures per AL generation. We have edited Section 4.4 to make our clustering method clearer.
We also have an example in our GitHub repository "tutoriaisfiatent_space_clustering.ipynb’.

4. The authors use two model surfaces of GaN(0001) and SrTiO3(001) to validate the framework. However, that Si(111)
is not mentioned bothers me in particular because it exhibits one of the most complex surface reconstructions known to
date, and cheap, accurate potentials are available for it (either Stillinger-Weber or GAP). | think it would have been a
much more convincing benchmark than GaN(0001) that then would really justify publication in a prestigious journal like 11
npj Comp. Mat.
We thank the Reviewer for this suggestion. We originally wanted our tool to focus on sampling the free-energy
landscapes across compositions and configurations of multi-component materials instead of optimizing the configuration
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of a particular surface. We have since performed experiments on the Si(111) 3x3, 5x5, and 7x7 surfaces that we
summarize in Section 2.2.2 with the Stephenson, Radny & Smith (SRS) modified Stillinger-Weber potential [R4] and
have added Fig. C5 to describe the resuits.

For the 3x3 surface, using the same sampling approach as GaN(0001) (pymatgen virtual site generation,
canonical sampling at fixed number of adsorbates, and single annealing step) was sufficient to recover the dimer-
adatom-stacking-fault (DAS) reconstruction in Fig. C5(a).

For the larger 5x5 and 7x7 surfaces, we use an additional measure to improve convergence: exponentially
decaying distance bias in trial move selection to favor swaps between closer virtual sites. For the 5x5 surface in Fig.
C5(b), we sampled DAS-like structures within the thermal energy (25.7 meV/atom) accessible at room temperature in a
single MC chain. Including these low-energy structures as seeds in subsequent VSSR-MC runs allowed us fo recover the
5x5 DAS target. Additionally, VSSR-MC also sampled the pristine surface, which is about 2 meV/atom of the DAS
structure according to the SRS potential.

For the 7x7 surface in Fig. C5(c), we saw various pristine-like structures with four adatoms (due to
stoichiometry differences) during our VSSR-MC runs. These surfaces are also similar in energy compared with the DAS
target (3.5 meV//atom higher in energy). Using the same strategy as in the 5x5 surface, we similarly obtained low energy,
DAS-like structures, which upon further VSSR-MC runs resulted in the 7x7 DAS target structure.

In summary, VSSR-MC was able to thoroughly sample the phase space of Si surface reconstructions and not
only recover the DAS structures, but also discover unexpected low-energy structures using the SRS potential. We further
describe our methodology in Sections 4.1, 4.2 & 4.8 and update the Abstract, Section 1, and Section 3.

Compared with previous method development studies that used Si(111) as a benchmark, the work by Han et al.
[RS] demonstrated only the 3x3 reconstruction. In the GOFEE method by Bisho and Hammer [R6], they used the full
6mm symmetry to achieve the Si(111) 7x7 reconstruction while our method does not require enforcing celi symmetry a
priori.

In a work that focused on the comparison of genetic algorithms (GA) and basin hopping (BH) for Si{(111)
reconstructions, Bauer et al. [R7] utilized custom trial moves for covalent structures that might not translate well to metais
and metal oxides. They also started their runs from a perturbed version of the reconstructed surface, unlike the random
initial structures we did. Finally, it appears both GA and BH did not discover the pristine and pristine-like reconstructions
for 5x5 and 7x7 respectively, which are well within the thermally accessible window. This suggests their methods might
not be comprehensive in their exploration of the phase space under non-zero temperature conditions and are better
suited to pure energy minimization, rather than free energy minimization, which is the intended objective of VSSR-MC.

References:

[R4] Stephenson, P. C. L., Radny, M. W. & Smith, P. V. A modified Stillinger-Weber potential for modelling
silicon surfaces. Surface Science 366, 177-184 (1996).

[RS] Han, Y. et al. Prediction of surface reconstructions using MAGUS. The Journal of Chemical Physics 158,
174109 (2023).

[R6] Bisbo, M. K. & Hammer, B. Efficient Global Structure Optimization with a Machine-Leamed Surrogate
Model. Phys. Rev. Lett. 124, 086102 (2020).

[R7] Bauer, M. N., Probert, M. I. J. & Panosetti, C. Systematic Comparison of Genetic Algorithm and Basin
Hopping Approaches to the Global Optimization of Si(111) Surface Reconstructions. J. Phys. Chem. A 126, 3043-3056
(2022).

5. The authors mentioned that a total of 6500 structures for SrTiO3(001) were generated over six iterations, with fewer
than 5,000 structures used for training the final NFF. It thus appears that approximately 80% of the sampled structures
required DFT calculations. This raises some ambiguity since the authors selected surfaces based on the highest force
standard deviation rather than high energy.

Also, it would be interesting to know if there are structurally similar or nearly identical samples in the training set.
If so, wouldn't sparsifying the new samples effectively reduce the total number of required DFT calculations while
maintaining the accuracy of the NFF (also potentially speed up the NFF potential)?

Considering the good extrapolability of the NN-based force field, such a large amount of training data may not
be necessary to obtain an accurate MLFF for a single surface orientation. As it stands right now, the approach by the
authors is not data efficient at all — and thus not really compatible with other already existing approaches in the literature.

We want to clarify that the structures selected from latent space ciustering for DFT evaluation constitute a
subset of the total number of structures sampled from YSSR-MC. The 6500 structures mentioned here were all
evaluated using DFT but fewer than 5000 were used for training because initially we reserved a set of structures at each
iteration for validation and testing. In our manuscript, we only showed the MC-sampled test set (which is obtained by
running VSSR-MC with the 6% generation NFF mode!) as we believe it is more representative of our use case. We have
updated Section 2.3.1 to clarify our AL data acquisition method and the size of the training dataset.

As in our comment to Reviewer 1, we selected surfaces for DFT evaluation using force vanance because itis a
better estimate of the NFF uncertainty compared with energy varnance.

At each AL generation, we have measures to avoid structure duplication. For our first generation structures and
our adversarial attack structures, we used a symmetry equivalence checker
(“ase.utils_structure_comparator. SymmetryEquivalenceCheck’) to identify duplicate structures. In our latent space
clustering method, we are already sparsifying our samples by avoiding the selection of similar structures. Without
clustering, there would be many more than 6500 structures. While we do not expect duplicates between AL generations
because of the large configurational space and each generation using NFFs with different parameters, we agree that it
might be worthwhile to consider the similarity of new structures generated at each AL iteration with the existing dataset to
reduce the number of DFT calculations.

For a neural network force field, the training speed scales favorably as O(N) in the number of structures
(datapoints) and evaluation speed stays constant with the number of structures. Given the relatively small number of

12



natureresearch

NATCOMPUTSCI-23-0568: Machine-learning-accelerated simulations enable heuristic-free surface reconstruction

training structures, we are not too concerned about slower training speeds. General-purpose universal machine learning
potentials are trained on millions of structures.

We politely disagree with the Reviewer that NN-based force fields have good exirapoiability and that our
approach is not data efficient. Machine leaming extrapolation has been a challenge [R1, R8] and NN-based interatomic
potentials are notoriously brittle outside of the training distributions (they are overfit, as opposed to classical potentials
which are typically less accurate but more robust, since they are relatively underfit). In other works that we compare to in
Table C1 (appended in this Response as Table R1), they require hundreds or thousands of structures to train a
machine leaming force field for few distinct compositions (usually 10s) and in some instances only one composition. Our
NFF mode! considers as many compositions sampled during our VSSR-MC algorithm runs (more than 600 disfinct
compositions in our case) and requires fewer than 5000 single-point DFT calculations to achieve a good performance.

Reference:

[R8] Unke, O.T., Chmiela, S., Sauceda, H.E., Gastegger, M., Poltavsky, |., Schitt, K.T., Tkatchenko, A., Muller,
K.-R.: Machine Learning Force Fields. Chemical Reviews 121(16), 10142-10186 (2021).
hitps://doi.org/10.1021/acs.chemrev.0c01111.

6. Although the samples from the VSSR-MC algorithm are obtained by varying the chemical potential of Sr from -12to 0
eV, it is unclear how the stable surfaces for each chemical potential were selected for further DFT calculations and
refinement of the training data. The authors seem to use NFF energy (after screening with force standard deviation) in
the selection process. It would be worth considering using surface free energy (by varying the chemical potential) instead
of NFF energy to identify the relevant structures for further DFT calculations. This could naturally expand the
compositional search space to surface sfructures stable under more exfreme conditions. Currently, Fig 5{c-e) shows a
limited number of sfructures found at I' <= -5 or >= 5 with the current settings.

We thank the Reviewer for their comment. The surfaces used for further DFT calculations were obtained either
from latent space clustering or from adversarial attack. in the latent space clustering method, structures sampled from
VSSR-MC were pooled together after an initial clustering step regardless of the Sr chemical potential for the second
clustering step. We have updated Section 4.4 to clarify this procedure. There was no energy consideration in the
clustering selection process. In adversarial attack, there were no changes in composition, and thus the NFF energy is
monotonic with respect to the surface free energy across configurational changes.

VSSR-MC in the semi-grand canonical ensemble samples according to the grand potentiai, which is equivaient
to the surface free energy after approximations (Equation B10). Fig. 5(c-e) show surface free energy as a function of
the difference in the number of Sr and Ti atoms. The surface free energies for structures with I <= -5 or >= 5 are high at
all chemical potentials, which is why we naturally sample fewer siructures in this range using our semi-grand canonical
MC acceptance criterion.

7. Fig 4(b) demonstrates the comrelation between force standard deviation and force mean absolute error. However, the
details of the figure are not explained in the manuscript. The meaning of the colormap terms “estimated density” and
“binned average” is unclear. The authors should provide a more detailed explanation of these terms or simplify the figure
to enhance clarity.

We appreciate the Reviewer's observation. We have revised Fig. 4 and its associated description in the
manuscript. To elucidate, the term ‘estimated density’ refers to the estimated probability density at any given point on the
plot. This density essentially quantifies the frequency or occurrence of data points in a specific region of the graph. The
term "binned average' is derived by partitioning the force SD represented on the horizontal axis, into uniformly sized bins.
Similarly, the force MAE values, indicated on the vertical axis, are also divided into corresponding bins. For each bin, we
compute the average force MAE, which is subsequently plotted against the median force SD of the corresponding bin.
The binned average' thus visualizes the average force MAE for respective force SD ranges. The best-fit line in the graph
has been computed using these 'binned average’ values to better illustrate the correlation between force SD and force
MAE.

8. The active learning workflow for the SrTiO3 model system achieved decent accuracy of the NFF at the 6th generation
employed by the authors. However, it would be helpful to know if the number of generations would differ when applying
this workflow to other systems with varying levels of complexity. Is the total number of generations fixed, or are there
other criteria for determining when to stop the generations, such as energy or force thresholds?

Thank you for the insightful query. As observed in our study, the NFF accuracy improvements began to plateau
between generations 4 and 5 (refer to Fig. 4(d)), and the convergence of VSSR-MC sampled structures from
generations 384 to S is evident (as depicted in Fig. 4(c)). Based on these findings, we halted further VSSR-MC sampling
after the Sth generation and carried out a final round of adversarial attack.

We agree that a more precise or automated stopping criterion could be beneficial. An approach could invoive
reducing the number of new structures per generation to approximately 100-200. This would increase the number of
acfive learning generations, allowing for more granular observation of improvements. The trade-off is the added
computational cost associated with training the neural networks.

Using force or energy thresholds as a stopping criterion is an excellent suggestion. However, considering the
diversity of systems we work with, setting a universal cutoff point is challenging. We anticipate that as we continue to
explore more surfaces, we will be able to establish more robust guidelines regarding the number of generations,
structures per generation, and suitable force and energy emor thresholds.

We have updated Section 2.3.1 to reflect our point of view.

9. The manuscript does not clearly describe how the authors perturbed the given structure in the adversarial attack
process. Since there are no specifically defined collective variables in these systems, further elucidation is needed
regarding how the perturbation was implemented in their system. Additional details regarding the methodology of the
adversarial attack would be beneficial.
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We used the published code and many of the default settings in the referenced adversarial attack paper by
Schwalbe-Koda et al. [R1], which is described in Section 4.4. We have since rewritten the relevant paragraphs and
added more details regarding the adversarial attack methodology and the perturbation method. We clarified the purpose
and functionality of the adversarial loss function, L,4,, underscoring that it aims to optimize atomic displacements,
denoted as & to maximize the predicted Boltzmann probabilities and the vanance of predicted forces. Additionally, we
have provided more detail on how the perturbation was conducted, specifying that each atom's nuclear coordinates are
perturbed independently in an effort to maximize the adversarial loss function.

Minor comments

1. On page 2, the authors mentioned that "Machine learning (ML) force fields are much faster than DFT calculations
while preserving accuracy [21, 22], but they have not been connected to an efficient sampling scheme to explore the
phase space of multi-component surfaces in a heuristic-free fashion.” seems a bit overstated. There are many works that
connect ML and heuristic-free sampling. The authors should provide more detailed comparisons of their methodologies
to others in the literature. At present it seems that they do not have a good overview of the field or try to oversell the
noveity of their approach.

It is frue that there are several works employing ML and sampling to study surfaces. We apologize for any
oversight in citing relevant literature. However, our definition of heuristic-free sampling is that a human is not involved in
either the compositional or configurational selection of guess structures. Many of the previous works have the
configurational aspect but not the compositional aspect. We have edited Section 1 to include this literature and added a
comparison in Table C1 (Table R1 in this Response) with all other cited works. Additionally, we emphasize our active
leaming algorithm automatically sampled over 600 different compositions of Sr, Ti, and O to achieve an NFF with force
MAE of 100 meV/A and energy MAE of 5.18 meV/atom by training on an average of only 8 structures per composition.
This is better than the work of Xu et al. that relied on manual construction of a POy dataset with 95 distinct compositions
at over 500 structures per composition to attain a force MAE of 230 meV/A and energy MAE of 6 meV/atom. Even
though Wanzenback et al. obtained a superior force MAE of 77 me\V/A and energy MAE of 0.836 me\/atom for their
NFF, they fitted on a single composition of SrTiO; requiring 3000 single point DFT calculations, 3 orders of magnitude
higher than what we required per composition. Finally, we highlight that throughout our work, we only performed a total of
6500 single point DFT calculations compared with 33,000 for Wanzenbock et al. and 250,265 for Xu et al.

2. At least, in faimess to the very active community of surface structure determinations, referring to new MLFF fitting +
sampling frameworks (such as that in Ref. 14 and 23) seems to be cutting it a bit short. A few others for a more balanced
view might include:
https://doi.org/10.1103/PhysRevl ett. 124086102
https://doi.org/10.1103/PhysRevl ett. 125.206101
https://doi.org/10.1063/5.007 1249
https://doi.org/10.1063/5.0121748
o : Eare

03/}
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We thank the Reviewer for pointing out these works. Some of these works we have seen, and some are new to
us. Again, we apologize for not citing these works earlier. We have included these citations in Section 1. We also
appended an additional table in Table C1 (appended in this Response as Table R1) to show the improvement of our
HFSurfRecon method over these works and other previously cited works.
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Table R1. Comparison of HF SurfRecon with existing computational methods for surface reconstruction.
HRSurfRecon automatically samples across many surface compositions and configurations while training an accurate
NFF for low-cost energy prediction. Under “Algorithm®, we have evolutionary aigorithms (EA), Gaussian process
regression (GPR), molecutar dynamics (MD), simulated annealing (SA), Gaussian approximation potential (GAP), basin
hopping (BH), reinforcement leaming (RL), random sfructure search (RSS), grand canonical Monte Cario (GCMC),
Markov-chain Monte Carlo (MCMC), and covariance matrix adaptation evolution strategy (CMA-ES). Under "Best
surrogate mode! performance”, “F” refers to Force MAE while “E” refers to Energy MAE.

References:

[R9] Bisbo, M. K. & Hammer, B. Giobal optimization of atomic structure enhanced by machine leaming. Phys.
Rev. B 105, 245404 (2022).

[R10] Merte, L. R. et al. Structure of an Ultrathin Oxide on Pt35Sn(111) Solved by Machine Leaming Enhanced
Global Optimization. Angewandte Chemie International Edition 61, 202204244 (2022).

[R11] Timmemann, J. et al. IrO; Surface Complexions Identified through Machine Learning and Surface
Investigations. Phys. Rev. Lett. 125, 206101 (2020).

[R12] Timmemann, J. et al. Data-efficient iterative training of Gaussian approximation potentials: Application to
surface structure determination of rutile IrO2 and RuO2. The Journal of Chemical Physics 155, 244107 (2021).

[R13] Renne, N. et al. Atomistic structure search using local surrogate model. The Jounal of Chemical Physics
157, 174115 (2022).

[R14] Meidgaard, S. A., Mortensen, H. L., Jergensen, M. S. & Hammer, B. Structure prediction of surface
reconstructions by deep reinforcement leaming. J. Phys.: Condens. Matter 32, 404005 (2020).

[R15] Wang, Q., Oganov, A. R., Zhu, Q. & Zhou, X .-F. New Reconstructions of the (110) Surface of Rutile TiOz
Predicted by an Evolutionary Method. Phys. Rev. Lett. 113, 266101 (2014).

[R16] Schusteritsch, G. & Pickard, C. J. Predicting interface structures: From SrTiO; to graphene. Phys. Rev. B
90, 035424 (2014).

[R17] Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic Prediction of Surface Phase Diagrams Using Ab Initio
Grand Canocnical Monte Carlo. J. Phys. Chem. C 123, 2321-2328 (2019).

[R18] Hess, F. & Yildiz, B. Polar or not polar? The interplay between reconstruction, Sr enrichment, and
reduction at the Lag7sSr02sMn0O: (001) surface. Phys. Rev. Mater. 4, 015801 (2020).

[R19] Wanzenbock, R. et al. Neural-network-backed evolutionary search for SrTiOz(110) surface
reconstructions. Digital Discovery 1, 703710 (2022).

[R20] Xu, J., Xie, W., Han, Y. & Hu, P. Atomistic Insights into the Oxidation of Flat and Stepped Platinum
Surfaces Using Large-Scale Machine Leaming Potential-Based Grand-Canonical Monte Carlo. ACS Catal. 12, 14812—-
14824 (2022).

3. The global optimization literature is immense, and the authors do not even mention e.g. basin hopping, genetic
algorithms, AIRSS, etc. Admittedly, there are not too many GO works for surfaces and surface reconstructions, but this is
precisely because of the particular complexity of the problem, which makes it expensive at the ab initio level. Thisis a
good motivation for this work bulnotclealymentioned Nonetheless, there are some GO works, so giving a reflection of
this literature is appropriate. E.g

Tio2 teeonsuuebons m#dnl mﬂ) 1103!PI_!M 113.266101 (GA/USPEX)

Molecular adlayers )8 i 021/a anole
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https://doi.org/10.1021/acs.nanolett. 5Sb03388 15
SrTiO3: hitps://doi.org/10.1103/PhysRevB.90.035424 (AIRSS)

Si(111): https://doi.org/10.1021/acs.jpca.2c00647 (basin hopping vs GA)
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We thank the Reviewer again for providing these references for global optimization. We agree that these
references are important — and that the field of giobal optimization is immense. We do highlight that our algorithm is less
of a global optimization for energy, and rather it seeks to sample free energy, which necessarily mandates acquiring
statistics. We have added references to these works in Section 1 and for the works directly related to surface
reconstruction (highlighted above), we have added a comparison in Table C1 (Table R1 in this Response).

4. The authors do perform relaxation after every MC move, so effectively this is a form of basin hopping and it would be
nice of them to cite the original paper: -/ldoi.
We thank the Reviewer for the reference and have cited the basin hopping paper in Section 1.

5. In section 4.4, a kcal/mol unit has been used, but using a consistent eV unit for energy might be preferable.
We agree and have updated the units in Section 4.4.

6. In Fig 5(b), what are the ticks at the right y-axis (denoted as red and orange ticks with values of 1 and 15) besides
scales of oxygen partial pressure? Please add a proper explanation in the caption or main text.

The smaller scales (located on the phase diagram and denoted in orange and red) represent an abbreviated
range, only marked at the endpoints of 1 and 15. Correspondingly, the larger scales, stretching in equal intervals from 1
to 15, depict the negative logarithm (-log) of oxygen partial pressure values at distinct temperatures: orange corresponds
to -log pO2 at 900 K, while red is for -log pO2 at 1250 K. These larger scales provide a detailed division for better
resolution of the variation in oxygen partial pressure across these two temperatures. We have summarized these details
into the caption in Fig. 5(b).

7. In Fig 5(c-e), what is the specific value of oxygen chemical potential? Please add the text.
pO =0 eV for all subfigures in Fig. 5{c-e). We have updated the figures.

8. The authors mentioned that “The goal of using adversarial attack for the final AL generation was to make the force
field more robust for low-energy structures.” Could this be justified?

The purpose of employing adversarial attacks, as presented in the reference paper [R1], is to train an NFF to
efficiently encompass the entire phase space of molecular dynamics (MD) simulations. This strategy aims to mitigate the
risk of dramatic failures that may occur when encountering infrequent events not captured in the training data. Our use of
adversarial attacks shares this objective—we strive to enhance the resilience of our NFF.

However, it is worth noting that our work differs in that we do not perform MD simulations. Given that our VSSR-
MC method can automatically reject high energy states, we can focus our attention on boistering the NFF's capability to
effectively relax lower-energy structures. We have imposed an energy limit on our seed sfructures at 1000 kcalimol (43.4
eV) above the lowest NFF energy structure. This allows us to focus solely on structures that lie roughly within the bottom
quartile of the NFF energy spectrum. In Fig. 4(c), we demonstrate that the energies of the new structures we generate
do not stray excessively high, due to the thermodynamic-iikelihood-weighted adversarial loss function.

9. In Fig C2, the test data seems to include very large force components close to 100 eV/A, and the NFF model
surprisingly predicts well of these large forces. Does your final training data also include these high-force configurations?
If so, were they only selected and added during the initial generations of NFF when its prediction of energies and forces
was poor?

Yes, our training data include these high-force compositions and configurations ranging in magnitude up to 150
eV/A. The vast majority of high-force structures were added in the first AL generation (random structures) and the two
adversarial attack AL generations (generations 2 and 6). Since adversarial attack uses all available data at each
generation, generated structures include those with high force components. The three VSSR-MC AL generations
produced structures with low force values (mostly 50 eV/A or less). These forces are not closer to 0 because we did not
fully relax structures in the NFF VSSR-MC runs. We have added details on the number of maximum steps for our
relaxation runs into Section 4.1. The force distribution over AL generations is summarized in Fig. C6.
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Reviewer #3 (Remarks to the Author):

Du et al. present a computational technique to obtain atomistic models for ideal, i.e., defect-free surfaces under varying
external conditions, which is an important problem in material science with important implications e.g. in heterogeneous
catalysis. They present what they call a "heuristic-free surface reconstruction framework" hinging on the "Virtual Surface
Site Relaxation-Monte Carlo (VSSR-MC)" sampling algorithm to automate the exploration of configurational space and
its concommitant potential energy surface.

We thank the Reviewer for reviewing our manuscript. We would like to emphasize that our VSSR-MC algorithm
automatically samples not only the configurational space, but more importantly, the compositional space that many other
works do not.

The presented applications of this methodology to the GaN(0001) and SrTiO3(001) surfaces seem to have been carried
out very carefully. Existing atomistic models available in the literature are being reproduced for both surface and suggest
additional 2x2-reconstructions for SrTiO3(001), one of which is energetically favorable and thus might also be
experimentally relevant.

Figure 3a) does provide a glimpse of how the virtual adsorption sites have been chosen for GaN(0001).
However, | miss details on how this can be done (heuristic-free!) in general. Since this is an essential and distinguishing
feature of the suggested VSSR-MC algorithm, a discussion how such choices can be easily validated - if e.g. specified
by parameters that influence the virtual site density.

Our virtual adsorption sites are defined algorithmically using existing software packages: pymatgen and CatKit
{see Section 4.2). Our YSSR-MC algorithm is not sensitive to the exact placement of virtual sites, i.e., distance from
pristine surface or the site density. Both pymatgen
{’pymatgen.analysis.adsorption.Adsorbate SiteFinder find_adsorption_sites’) and CatKit
(" catkit.gen.adsorption.get_adsorption_sites’) produce well-covered, visually dense adsorption sites with minimal
changes from default settings. For GaN(0001), we used both pymatgen and CatKit to generate adsorption sites that
worked equally well. The only change from default parameters is to set the symmetry reduce option for both methods to
False to obtain more virtual sites. Within CatKit, adsorption sites are defined on the same plane as the surface and
depend on another method to adsorb atoms at the comrect distance from the surface. Converting CatKit coordinates to
virtual sites for use in VSSR-MC required additional steps. Thus, for SrTiOz(001), we only used pymatgen virtual sites.

For SrTiO3(001), we chose to place the adsorption sites at 1.55 A (cf. 1.96 A lattice parameter in the unit cell)
from the pristine surface. This does not change the density of sites or site patterns in any way. We also emphasize that
this distance is arbitrary; testing different adsorption site distances up to 1.70 A in early runs showed adsorbates
consistently relaxed to a similar distance away from the pristine surface. Similarty, for SrTiO3(001), we disabled
symmetry reduction of sites.

We have updated Section 4.2 to elaborate on the algonthmic generation of virtual sites. We have also included
an additional figure to show both the pymatgen and CatKit virtual sites for GaN(0001) as well as our pymatgen virtual
sites for SrTiOz(001) in Fig. C7.

Reconstructions with larger supercells cannot be discovered as the presented approach requires a (surface)
super cell to be specified a priori. Consequently, it is not able to explore arbitrarily large NxM-reconstructions (e.g. the
famous Au(111) heringbone reconstruction), which might also be based on surface unit cells that are rotated with respect
to the primitive surface unit cell. The discussion (in Section 3) mentions this systematic limitation in the context of
amorphous overlayers, but does not discuss the aforementioned implications.

Yes, the cell size will have to specified a priori, as in other works. We also mentioned in Section 3 that“...
larger ones [unit celis] could show more complex reconstruction pattemns.” However, our VSSR-MC algorithm, as
demonstrated in the GaN(0001) contracted Ga overlayer reconstruction, can already recover rotated unit cells with
respect to the surface unit cell. We have updated Section 2.2.1 to highlight this fact. We have also created an additional
figure, Fig. C4 to better convey the strengths and limitations of our approach. Our algorithm can be extended fo larger
supercells, which might require fransfer leaming of the interatomic potential trained on smaller unit cells as in
Wanzenbock et al. [R18]. We have added a line in Section 3 to reflect the modifications anticipated to apply our work to
larger unit celis of multicomponent materials.

Furthermore, the present formulation of the VSSR-MC algorithm neglects vibrational entropy in the underlying surface
Gibbs free energy (see Section 4.5 and Appendix B). These can play a crucial role to stabilize particular surface
structures (and reconstructions) over others in particular when varying extemal conditions. Consequently, this limitation
should be discussed as well.

We agree with the Reviewer there could be instances where vibrational effects play an important role in
determining surface stability, especially at higher temperatures. We have supplemented Section 3 (Discussion).

Altogether, | do not recommend publication of the manuscript in Nature Computational Science in its present form.
Considering other computational approaches presented in the literature before (see e.g. Refs. 1 and 2 - neither of which
is cited), | fail to see the "groundbreaking™ aspects of the work presented here.

[1]1S. A. Meldgaard et al., Structure prediction of surface reconstructions by deep reinforcement learning, J. Phys.:
Condens. Matter 32 404005 (2020).
[2] Yu Han et al., Prediction of surface reconstructions using MAGUS, J. Chem. Phys. 158, 174109 (2023).
We thank the Reviewer for pointing out these works. We note that Ref. 2 was only published shortly before our 17
manuscript submission. We have included these works in the references. Our HFSurfRecon framework presented in the
submitted manuscript offers several key advantages over the methodologies in Meldgaard et al. and Han et al., making it
a superior choice for predicting complex maternial surfaces. The main strengths of HFSurfRecon are its ability to:
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1. Sample across arbitrarily many compositions: The HF SurfRecon framework enables efficient and accurate
exploration of complex, stable surface structures across both compositions and configurations. This advantage
is particularly important compared to Meidgaard et al., which requires a fixed composition, and Han et al., which
manually specifies limited compositions for the investigated surfaces.

2. Utilize a simple, heuristic-free sampling strategy: Our method does not require manual specification of grid
sizes, as seen in Meldgaard et al. and does not require manual guesses of the number of adsorbed species,
unlike in both references. Our approach to sampling and opfimization is more straightforward in contrast to the
complicated trial moves and heuristics involved in Han et al. This makes our proposed method more general
and less dependent on problem-specific expertise.

3. Learn accurate ML force fields while sampling: In Meldgaard et al., the authors themselves note, ... finding
the optimal structure is still a time-consuming process due to costly computational chemistry methods such as
density functional theory (DFT) and the immense configurational and compositional space.” The uncertainty-
driven active leaming (AL) strategy in HF SurfRecon works in tandem with VSSR-MC sampling to acquire new
DFT data points only in relevant regions of the surface phase space. In fewer than 5,000 DFT single-point
calculations, the NFF can be trained to obtain accurate energy predictions for many distinct chemical
compositions (683 in our SrTiO; example). This approach is more data-efficient than the RL-based approach in
Meldgaard et al., which requires 1,000-10,000 DFT single-point calculations for a single composition, and the
genetic-algorithm-based method in Han et al., which neither develops a tandem training-sampling methed nor
uses an existing active leaming framework.

4. Produce various reconstructions of a 3-component material and beyond: HFSurfRecon is demonstrated to
be effective in predicting multiple phases of the complex SrTiO:(001) and revealing new low-energy surface
terminations. This accomplishment contrasts with Han et al., which is limited to a maximum of two-component
structures, SiC and SnO;, and optimizes for only a single phase in each material. This stands in similar contrast
to Meldgaard et al., which focuses on optimizing for only one siructure in each of TiOz(001) and SnO2(110).

In conclusion, the submitted manuscript offers a more versatile and efficient method for predicting material surfaces

and interfaces, overcoming the limitations of Meldgaard et al. and Han et al. We believe HFSurfRecon is a

significant advancement that will be a powerful tool for researchers to study a wide range of matenial surfaces and

interfaces under various conditions.

We show a fable summarizing the disfinguishing features between our method and the two references.

Bampiec a0t Traine for most ot DFT par
compositions? ‘emergy modal? for saoh cystem ‘oomposition
Meidgaard et ol ASLA (RL + DFT) No No, DFT i 2(M0,, Sn0;) 1 1000 sing'e poirt.
Hanetal. MAGUS (EA) Manualy spectiied | No, DFTiprelrained FF = 2{Sn0,, 8IC) <10 >10 reimxabions
Du ot al. [Precent work] HFSudRecon Automaio Yo, NFF F: 100 moViA 3(8rM0,) 833 <B cingle point
{VSSR-MC + NFF) E: 6.18 moViatom

We would also like to refer the Reviewer to our comments to Reviewer 2 and our new Table C1 (Table R1 in
this Response) that further illusirate the improvement of our method over a more comprehensive set of
previous works.

minor issues:

- Section 2.1, 2nd paragraph:

"Runs are conducted at different external conditions such as pressure, ..., and applied electrical potential.*

This is somewhat confusing. If | understand cormrectly, those two extemnal conditions are not varied in the present work, so

the authors should modify/extend this sentence accordingly.
Thank you, we have made the changes.

- Section 4.5 and Appendix B:
Appendix B repeats a lot of the contents of Section 4.5 and does not to add much over it. So the authors should

reconsider whether the former is really needed.
We acknowledge that Section 4.5 overlaps quite a bit with Appendix B and have removed details from Section

4.5
Reviewer #3 (Remarks on code availability):
| have glimpsed at the Python source code and had a good impression regarding the coding style. However, due to lack

of time | did not manage to run the code for any of the provided examples.
We thank the Reviewer for their confidence in our coding style.
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Triggered By
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CC

BCC
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: 1st November 23 09:13:37

: Kaitlin McCardle

: kaitlin.mccardle@us.nature.com

: rafagb@mit.edu

: computationalscience@nature.com

: kaitlin.mccardle@us.nature.com
: AIP Decision on Manuscript NATCOMPUTSCI-23-0568A
: Our ref: NATCOMPUTSCI-23-0568A

1st November 2023
Dear Dr. Gomez-Bombarelli,

Thank you for submitting your revised manuscript "Machine-learning-accelerated
simulations enable heuristic-free surface reconstruction" (NATCOMPUTSCI-23-
0568A). It has now been seen by two of the original referees and their comments are
below. The reviewers find that the paper has improved in revision, and therefore we'll
be happy in principle to publish it in Nature Computational Science, pending minor
revisions to satisfy the referees' final requests and to comply with our editorial and
formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist
detailing our editorial and formatting requirements in about a week. Please do not
upload the final materials and make any revisions until you receive this additional
information from us.

TRANSPARENT PEER REVIEW

Nature Computational Science offers a transparent peer review option for original
research manuscripts. We encourage increased transparency in peer review by
publishing the reviewer comments, author rebuttal letters and editorial decision
letters if the authors agree. Such peer review material is made available as a
supplementary peer review file. Please remember to choose, using the
manuscript system, whether or not you want to participate in transparent
peer review.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the
interest of confidentiality. If you are concerned about the release of confidential data,
please let us know specifically what information you would like to have removed.
Please note that we cannot incorporate redactions for any other reasons. Reviewer
names will be published in the peer review files if the reviewer signed the comments
to authors, or if reviewers explicitly agree to release their name. For more
information, please refer to our <a href="https://www.nature.com/documents/nr-
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transparent-peer-review.pdf" target="new">FAQ page</a>.

Thank you again for your interest in Nature Computational Science. Please do not
hesitate to contact me if you have any questions.

Sincerely,

Kaitlin McCardle, PhD
Senior Editor
Nature Computational Science

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are
encouraged to do so. Please note that it will not be possible to add/modify ORCIDs at
proof. Thus, please let your co-authors know that if they wish to have their ORCID
added to the paper they must follow the procedure described in the following link
prior to acceptance: https://www.springernature.com/gp/researchers/orcid/orcid-for-
nature-research

Reviewer #1 (Remarks to the Author):

I have reviewed the author’s answers to the points raised by both myself and
reviewer 2, and I think they have addressed them all satisfactory.
I believe the manuscript is now suitable for publication.

Reviewer #1 (Remarks on code availability):

I have only skimmed through the README file. I appreciate the updates made to the
Overview and Setup section and have no further comments.

Reviewer #3 (Remarks to the Author):

In my opionion, the authors have addressed many of the reviewers' points clearly and
adequately.

However, their response to my question about the VSSR-MC algorithm is very
technical, i.e., mainly pointing to routines from the pymatgen and catkit Python
packages which the authors employ for creating virtual sites in their code. This does
not elucidate how this is / can be done in general, e.g., for stepped metal surfaces
where bonding of adatoms is not directional" and thus not favors sharp, distinct sites
like in all the examples (only semicondutor and insulator surfaces!) for which the
approach is demonstrated here.

Furthermore, I am still very skeptic about calling the approach "heuristic free". The
dictionary definition of "heuristic" in the context of computing is "proceeding to a
solution by trial and error or by rules that are only loosely defined." For that reason,
any computational approach relying on a Monte Carlo technique can hardly be called
"heuristic free".
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Since these are crucial points of the current study, which have also been brought up
by the other reviewers, I expect them to be (better) addressed - so that a broad
readership obtains a realistic impression about the approach described here.
Therefore, I recommend further revision of the manuscript before I can recommend
publication.

minor issues:

- The bibliography still contains a lot of verbatim LaTeX elements and thus requires a
type-setting overhaul.

Reviewer #3 (Remarks on code availability):

I have glimpsed at the Python source code during the first iteration and had a good
impression regarding the coding style. It is my understanding that the authors have
not modified the code since. Consequently, I have not look at the code during this
(second) iteration..

‘ Author Rebuttal, first revision:

Reviewer #1:

Remarks to the Author:

| have reviewed the author’s answers to the points raised by both myself and reviewer 2, and | think they have
addressed them all satisfactory.

| believe the manuscript is now suitable for publication.

We thank the Reviewer for their positive feedback.

Reviewer #3:
Remarks to the Author:
In my opionion, the authors have addressed many of the reviewers' points clearly and adequately.

We thank the Reviewer for their positive feedback.

However, their response to my question about the VSSR-MC algorithm is very technical, i.e., mainly pointing to
routines from the pymatgen and catkit Python packages which the authors employ for creating virtual sites in their
code. This does not elucidate how this is / can be done in general, e.g., for stepped metal surfaces where bonding of
adatoms is not directional" and thus not favors sharp, distinct sites like in all the examples (only semicondutor and
insulator surfaces!) for which the approach is demonstrated here.

VSSR-MC, with its discrete sampling followed by continuous relaxation strategy, is indeed designed with the flexibility
to handle various surface geometries, including stepped metal surfaces. Generally speaking, virtual sites should
entirely cover the surface and may overlap. In the case of stepped metal surfaces, the edges and terraces should be
covered. Even if the bonding of adatoms is not directional, complete coverage of the surface ensures that the
relevant reconstructions can be sampled. More virtual site layers can be added if necessary. The virtual sites can be
constructed manually or retrieved from higher-fidelity simulations. We mention pymatgen and CatKit because they
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are two well-used tools within the materials science community, and they can automatically generate desired virtual
sites with negligible computational cost.

Furthermore, | am still very skeptic about calling the approach "heuristic free". The dictionary definition of "heuristic" in
the context of computing is "proceeding to a solution by trial and error or by rules that are only loosely defined." For
that reason, any computational approach relying on a Monte Carlo technique can hardly be called "heuristic free".

We have changed all instances of “heuristic-free” to “automatic.” “HFSurfRecon” has been changed to
“‘AutoSurfRecon.” We believe “automatic” will better describe the behavior of not having manual constructions by
humans.

Since these are crucial points of the current study, which have also been brought up by the other reviewers, | expect

them to be (better) addressed - so that a broad readership obtains a realistic impression about the approach
described here. Therefore, | recommend further revision of the manuscript before | can recommend publication.

We hope the Reviewer will find these changes satisfactory.
minor issues:

- The bibliography still contains a lot of verbatim LaTeX elements and thus requires a type-setting overhaul.

We have fixed issues related to the bibliography section.

’ Final Decision Letter:

Date: 13th November 23 16:55:27
Last Sent: 13th November 23 16:55:27

Triggered
By:

From: computationalscience@nature.com
To: rafagb@mit.edu
CC: computationalscience@nature.com
Subject: Decision on Nature Computational Science submission NATCOMPUTSCI-23-0568B
Message: 13th November 2023

Kaitlin McCardle

Dear Dr. Gomez-Bombarelli,
I am delighted to tell you that your manuscript NATCOMPUTSCI-23-0568B has been
accepted for publication in Nature Computational Science.

As discussed, due to the exceptional nature of your work, we will publish your paper on
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an accelerated schedule. Please carefully review the details below and contact us
immediately at computationalscience@nature.com if you have any travel plans
or other conflicts that may make you unable to respond to us for the next 5-7
days.

In approximately 2 business days you will receive a link to choose the appropriate
publishing options for your paper and complete the appropriate grant of rights
necessary to publish your work. As it is vital that this process not be delayed, we
strongly encourage you to <a href="https://www.simpleminds.com/how-to-check-your-
spam-filter-and-whitelist-emails/”>whitelist</a> the email address do-not-
reply@springernature.com to ensure that this message is received.

You will receive a link to your electronic proof via email with a request to make any
necessary corrections as soon as possible. You will find that we have made minor
changes to enhance the clarity of the text and to ensure that your paper conforms to
the journal's style so we ask that you review these proofs carefully to ensure that we
have not inadvertently introduced errors or altered the sense of your text in any way.

Please return your proof within 24 hours of receiving it. If you have any
guestions about your proofs or anticipate any delays please contact
rjsproduction@springernature.com immediately.

Once a publication date is set for your paper, the Springer Nature press office will be in
touch with the full embargo details. We request that you do not send out your own
publicity or contact any journalists until you hear from us that the paper has a
confirmed publication date.

If you would like to inform your Public Relations or Press Office about your paper, we
suggest that you do so immediately to allow them as much time as possible to prepare
an appropriate press release and organize publicity if they choose to do so. Please
include your manuscript tracking number NATCOMPUTSCI-23-0568B and the name of
the journal, which they will need if they contact our press office.

Please note that Nature Computational Science is a Transformative Journal (TJ). Authors
may publish their research with us through the traditional subscription access route or
make their paper immediately open access through payment of an article-processing
charge (APC). Authors will not be required to make a final decision about access to their
article until it has been accepted. <a href="https://www.springernature.com/gp/open-
research/transformative-journals"> Find out more about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-
compliance-faqs"> compliance</a> with funder and institutional open access
mandates. If your research is supported by a funder that requires immediate open
access (e.g. according to <a href="https://www.springernature.com/gp/open-
research/plan-s-compliance">Plan S principles</a>) then you should select the gold OA
route, and we will direct you to the compliant route where possible. For authors
selecting the subscription publication route, the journal’s standard licensing terms will
need to be accepted, including <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies" >self-archiving policies</a>. Those licensing terms
will supersede any other terms that the author or any third party may assert apply to
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any version of the manuscript.

If you have any questions about our publishing options, costs, Open Access
requirements, or our legal forms, please contact ASJournals@springernature.com.

If you have not already done so, we strongly recommend that you upload the step-by-
step protocols used in this manuscript to the Protocol Exchange. Protocol Exchange is an
open online resource that allows researchers to share their detailed experimental know-
how. All uploaded protocols are made freely available, assigned DOIs for ease of citation
and fully searchable through nature.com. Protocols can be linked to any publications in
which they are used and will be linked to from your article. You can also establish a
dedicated page to collect all your lab Protocols. By uploading your Protocols to Protocol
Exchange, you are enabling researchers to more readily reproduce or adapt the
methodology you use, as well as increasing the visibility of your protocols and papers.
Upload your Protocols at www.nature.com/protocolexchange/. Further information can
be found at www.nature.com/protocolexchange/about .

You can now use a single sign-on for all your accounts, view the status of all your
manuscript submissions and reviews, access usage statistics for your published articles
and download a record of your refereeing activity for the Nature journals.

An online order form for reprints of your paper is available at <a
href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. All co-
authors, authors' institutions and authors' funding agencies can order reprints using the
form appropriate to their geographical region.

Sincerely,
Kaitie

Kaitlin McCardle, PhD
Senior Editor
Nature Computational Science

P.S. Click here if you would like to recommend Nature Computational Science to your
librarian - this will link directly to the Recommend page.

http://www.nature.com/subscriptions/recommend.html#forms

** Visit the Springer Nature Editorial and Publishing website at <a
href="https://group.springernature.com/gp/group/careers/editorial">www.springernatu
re.com/editorial-and-publishing-jobs</a> for more information about our career
opportunities. If you have any questions please click <a
href="mailto:editorial.publishing.jobs@springernature.com">here</a>.**
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