
nature computational science

https://doi.org/10.1038/s43588-023-00572-6Article

Quantifying spatial under-reporting 
disparities in resident crowdsourcing

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s43588-023-00572-6


1 Detailed Related Work

This section discusses the literature on equity and e�ciency in crowdsourcing systems, and briefly
outlines our contribution to this literature. Given the importance of 311-like systems in allocating
government services, there has been much interest in quantifying how e�cient and equitable these
systems are. Previous works mainly aim to answer two questions: (1) is reporting behavior similar
across socioeconomic groups, and (2) do governments respond to the reporting equitably, or do
they prioritize some neighborhoods for the same types of requests? If there are disparities in either
stage of the process, then government services may be allocated inequitably.

Towards the second question, there has been a long line of work since the late 1970s, docu-
menting how the allocation of government services has changed since the adoption of co-production
systems. Early works warned of the potential of biases in how governments responded [12, 36].
Researchers have found response time di↵erences between neighborhoods, e.g., during Hurricane
Katrina [8]; other recent studies suggest that the practical di↵erences induced by these di↵erential
response times are negligible [7] or explained by other factors [37].

This work considers the first question, of how reporting behavior varies across demographic and
incident characteristics. The literature here focuses on two types of reporting behavior: under-
reporting, and misreporting. The latter refers to when residents report problems that, upon inspec-
tion by the agency, are not found or are less severe than reported; there is some evidence that such
misreporting occurs and is heterogeneous across areas [24].

On the other hand, di↵erential under-reporting is when people, faced with similar problems,
di↵erentially report those problems to the government. Such di↵erences might emerge, for example,
due to access to communications technologies, familiarity with the system, or trust in government
[3]. O’Brien et al. [28] and O’Brien [27] measure di↵erences in the delay of reporting, as an indicator
of the citizens’ custodianship of their environment. They do so by measuring the delay from when
researchers observe the incident during a street audit, to when the incidents are reported by the
public.

As discussed above, the biggest challenge to studying under-reporting is that researchers rarely
directly observe an incident unless it is reported. It is thus di�cult to disentangle whether certain
areas have fewer reports because problems truly occur less frequently there, or whether people in
those areas are reporting less frequently given a similar distribution of problems.

One line of work in answering this question does not attempt to distinguish between these
two possibilities. Such work entails regressing the number of reports (or the number of unique
incidents, if some incidents are reported multiple times) as a function of socioeconomic and report
characteristics, as well as potentially space and time [5, 6, 25]. Such works have found that the
number of reports may (but does not always) di↵er by wealth, race, and education level. However,
as we formalize in Supplementary Information 2.2, such a method cannot identify whether these
fewer reports are due to fewer true incidents, or less reporting for the same incidents. Rather,
these works must assume that the latter is the cause. Akpinar et al. [1] point out that such an
assumption may not always hold, a↵ecting downstream models, in the context of crime reporting
and predictive police systems.

Another approach to quantifying under-reporting is to construct a proxy for the true incident
rate and then compare the estimates with the observed rates. Kontokosta and Hong [16] analyze
pothole complaints in Kansas City, Missouri, at a fine-grained spatial level; they leverage additional
street assessment data (resulting from scheduled visual inspections) that grade the quality of road-
ways to construct relative predictions for the true number of potholes. They find that low-income
and minority neighborhoods are less likely to report street conditions or “nuisance” issues while
prioritizing more serious problems. Hacker et al. [10] use a similar metric, with the addition of
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temporal trends geared more towards an epidemiological study, and Pak et al. [30] use roadway
length as part of their proxy. Kontokosta et al. [15] analyze residential building problem complaints
in New York City’s 311 system—using building conditions as a proxy—and also find that many
socioeconomic factors contribute to di↵erential reporting behavior. O’Brien et al. [28] use admin-
istrative records from active broken streetlight inspections. While the approach can disentangle
reporting behavior from true incident rates, it heavily relies on the accuracy of the ‘ground-truth’
proxy estimate. It may be di�cult to find such proxies or to validate their accuracy, especially
for di↵erent types of incidents within the same class (e.g., more vs less serious potholes), or more
generally for high dimensional types: for example, estimating ground truth rates in every census
tract for every kind of incident. In particular, note that each of the above examples estimates
ground truth rates for a specific type of incident, in a specific time period.

The challenge between identifying occurrence rates as opposed to reporting rates is also present
in the ecology literature when counting the number of animals of a given species in an area. Some
works similarly use proxy methods – such as by normalizing by occurrence rates in neighboring
geographies or using reference species whose occurrence rates are approximately known [11, 13, 32].

To this literature, our work contributes a statistical technique to identifying under-reporting—
that does not require such external data or the construction of proxies for the ground truth incident
rate. Rather, it relies only on report data already logged by many agencies and connects this task
to a large literature on Poisson rate estimation. In applying our method to 311 data, we find
reporting rate di↵erences across neighborhoods associated with socioeconomic status and show
that these di↵erences are beyond what one would expect from just incident-level characteristics.

2 Technical results and proofs

2.1 Non-identifiability of reporting rate with observed incidents count

Proposition 1. Consider the simplest setting: both incident occurrence and reporting follow time-
homogeneous Poisson processes, with ⇤✓(⌧) = ⇤✓ and �✓(⌧) = �✓. Further, let incident report-
ing duration Ti be distributed according to F . Then using just the number of observed incidents
Nobserved

✓ (T ) of type ✓ in a known time duration [0, T ], the reporting rate �✓ is not identifiable. In
other words, Nobserved

✓ (T ) is a function of both ⇤✓ and �✓:

lim
T!1

Nobserved
✓ (T )

T
= ⇤0

✓

where ⇤0
✓ = ⇤✓


1�

Z 1

0
exp (��✓t) dF (t)

�
.

The proof of Proposition 1 follows directly from the following Lemma.

Lemma 1. Suppose each incident gets reported independently, and the distribution of the interval
of reporting duration Ti has density function f(·) : [0,1) 7! R. Then under steady state, Nobserved

✓
follows a Poisson process with rate ⇤0

✓, where

⇤0
✓ = ⇤✓


1�

Z 1

0
exp

✓
�

Z t

0
�✓(u)du

◆
f(t)dt

�
.

In the simplest time-homogeneous case, this rate simplifies to:

⇤0
✓ = ⇤✓


1�

Z 1

0
exp (��✓t) f(t)dt

�
.
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Proof of Lemma 1. Let m(t) be the number of times an incident is reported in an interval of t,
starting from its birth. We know from the model assumption that m(t) follows a Poisson distribu-
tion:

m(t) ⇠ Poisson

✓Z t

0
�✓(u)du

◆
.

In steady state, each unique incident gets reported with probability

p =

Z 1

0
Pr[m(t) � 1|Ti = t]f(t)dt

=

Z 1

0


1� exp

✓
�

Z t

0
�✓(u)du

◆�
f(t)dt

= 1�

Z 1

0
exp

✓
�

Z t

0
�✓(u)du

◆
f(t)dt,

which simplifies under time-homogeneity to

p = 1�

Z 1

0
exp (��✓t) f(t)dt.

Over a time interval of t, the total number of incidents of type ✓ that happen, N✓(t) follows
a Poisson process with rate ⇤✓. Conditional on N✓(t) = n, n = 0, 1, . . . , under steady state,
Nobserved

✓ (t) follows a binomial distribution with parameters (n, p). Thus Nobserved
✓ (t) follows a

Poisson distribution with rate ⇤✓p, which completes the proof.

Proof of Proposition 1. Lemma 1 establishes that the rate at which we observe unique incidents
depends on a lot of various aspects. Under steady state, Nobserved

✓ follows a Poisson process with
parameter ⇤0

✓, where ⇤0
✓ is a function of the incident occurrence rate ⇤✓, the (potentially non-

homogeneous) reporting rate �✓(·) and the distribution of reporting duration f(·).
In practice, when the observation period length T is large, we can safely assume that for each

period [⌧, ⌧ + 1), ⌧ = 0, . . . , T , the observed reports Nobserved
✓ ([⌧, ⌧ + 1]) are close to steady state,

and thus follow independent and identical Poisson(⇤0
✓) distribution. Following the law of large

numbers we get

lim
T!1

Nobserved
✓ (T )

T
= lim

T!1

PT�1
⌧=0 Nobserved

✓ ([⌧, ⌧ + 1])

T
= E

h
Nobserved

✓ (1)
i
= ⇤0

✓.

Thus, if we are only using information about the unique incidents, it is impossible to determine
�✓ without having full knowledge about both ⇤✓ and f(·).

2.2 Identifiability of reporting rate with duplicate reports

In this subsection, we restate Theorem 1 formally in the notation of stochastic processes. Then, we
show that when an observation interval is properly defined, evaluating the likelihood of the data
within this observation interval identifies the reporting rate.

The core challenge is that, because we do not observe true incident birth (and potentially true
incident death), our “observation interval” – when we observe the Poisson reporting process – is
itself random and dependent on the Poisson reporting process. For example, we can only start the
counting interval at the time of the first report, and the agency responds to the incident partially as
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a function of the number of reports. Thus, the distribution of the entire data, not just the number
of reports within the interval (i.e., including start and stop times) could be a complex, unknown
function of �. The theorem formalizes that, as long as the start and end times depend only on
the rate � through the number of reports up to those times, we can nevertheless decompose the
likelihood and reduce the task to Poisson rate estimation.

Formally, we separate terms involving � from terms independent of �, which requires the two
conditions; then, we arrange the likelihood function to exhibit the structure of a Poisson distribution
likelihood.

The following Theorem 2 is a restated version of Theorem 1, where we use standard Poisson
process notation, and state mathematically the two conditions we introduce in Theorem 1.

Theorem 2. Consider a Poisson process {X(t), T � t � 0} with rate � (where X(t) denotes the
number of jumps up to time t), and denote the jumping times {T1, T2, . . . }. Denote the random
variables of the start and end of an observation period S and E, and suppose S and E satisfy the
following conditions, respectively:
Condition 1: Given T1 = t1, S is defined on [t1, T ], and

P(S = t|T1 = t1) = g(t), 8T � t � t1,

where g(t) is not dependent on � or the sample path of the Poisson process after t1.
Condition 2: Given the jumping times of the Poisson process up to any time t, that is, for some
m 2 Z+, given {T1 = t1, . . . , Tm = tm, Tm+1 > t}, the distribution of E is

P[E = t|{T1 = t1, . . . , Tm = tm, Tm+1 > t}] = hm(t), for some m 2 Z+, 8T � t � tm,

where hm(t) is a function independent of �. Furthermore, given T1 = t1, the distribution of E is
independent of the realization of S:

P[E = t|T1 = t1, S = s] = P[E = t|T1 = t1], 8T � t � t1, 8s � t1.

Now, suppose we observe data which contains for each incident, S = s, E = e,X(e) �X(s) =
M , where X(s) = m � 1, and all the jumping times within interval (s, e]: JM = {Tm+1 =
tm+1, . . . , Tm+M = tm+M}, where tm+1 > s and Tm+M  e. Then, conditional on the observed
jumping times before s: H := {T1 = t1, . . . , Tm = tm  s}, the likelihood of the data can be
decomposed as follows:

P[X(e)�X(s) = M,E = e, S = s,JM |H] = f(e, s,H,JM )p(M |�(e� s)), (8)

where p(M |�(e � s)) denotes the likelihood of a Poisson distribution with M occurrences and rate
parameter �(e� s), and f(e, s,H,JM ) is a function that does not depend on �.

Perhaps surprisingly, we could not find rate estimation literature in which Ei�Si also depends
on the sample path. Note that we could leverage classical Poisson process results (see e.g., [33]) if
we had considered a non-data-dependent end time Ei, e.g., Ei � Si is a constant. However, this
choice would be data ine�cient. Some incidents are inspected and addressed within a day of being
first reported, while others may take a year to be inspected. As incident inspection (and death
time ti+Ti) may be a function of the number of reports, we would be forced to pick a fixed interval
end time of less than a single day, for all incidents.

The proof of the theorem relies on the following lemma, which establishes the distribution of
the (random) time between S and the first jump time after S.
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Lemma 2. If the distribution of S satisfies condition 1, then the distribution of the time between
any realization of S and the next jump time TX(S)+1 is an exponential random variable with rate
�.

Proof. Following the definition of jump times, we have for any ✏ > 0,

P[TX(S)+1 � S > ✏|T1 = t1] (9)

=
1X

m=1

P[X(S + ✏) = m,X(S) = m|T1 = t1] (10)

=
1X

m=1

Z

s�t1

P[X(s+ ✏) = m,X(s) = m|S = s, T1 = t1]P[S = s|T1 = t1]ds (11)

=
1X

m=1

Z

s�t1

P[X(s+ ✏) = m|X(s) = m,S = s, T1 = t1]P[X(s) = m|S = s, T1 = t1]g(s)ds (12)

=
1X

m=1

Z

s�t1

P[X(✏) = 0]P[X(s� t1) = m� 1]g(s)ds (13)

=P[X(✏) = 0]

Z

s�t1

g(s)

" 1X

m=1

P[X(s� t1) = m� 1]

#
ds (14)

= exp(��✏)

Z

s�t1

g(s)ds (15)

= exp(��✏) (16)

where from Equation (12) to Equation (13) we use the memoryless property of Poisson processes
jump times, and denote {X(t), t � 0} as a new Poisson process with rate �, starting from t =
0. From Equation (13) to Equation (14) we use P[X(✏) = 0] = exp(��✏) is independent of s,
g(s) is independent of m (as a result of it being independent of the sample path after t1), and
P[X(s� t1) = m� 1] � 0, 8m � 1, s � t1, thus we can exchange the summation and integral, and
put g(s) outside of the summation. From Equation (14) to Equation (15) we use the fact that the
summation is of the probability mass function of a Poisson random variable with rate �(s� t1) over
its range, thus evaluates to 1, and finally the last equation follows from the definition of g(s) as a
probability density function. We note that the final equation corresponds to the tail probability of
an exponential random variable with rate parameter �, and thus conclude our claim.

Proof of Theorem 2. We now prove Theorem 2. The main idea of the proof is to decompose the
likelihood into full conditional probabilities, and then express each part using the conditions we
laid out and Lemma 2. The di�culty comes from separating terms involving � from terms inde-
pendent of �, which requires the two conditions, and arranging the likelihood function to exhibit
the structure of a Poisson distribution likelihood, where we rely on Lemma 2 above.

We prove the result in three cases, based on how many reports are observed within (s, e]: 0, 1,
and 2 or more, as these scenarios have varying level of complexity.

As reference, the likelihood of a Poisson distribution with M � 0 occurrences and rate �(e�s) >
0 is as follows:

p(M |�(e� s)) =
[�(e� s)]M

M !
exp(��(e� s)).

First, for M = 0, since we do not observe any jump times within (s, e] in this case, J0 is an
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empty set and we omit it from the equation.

P[S = s, E = e,X(e) = X(s) = m|H] (17)

=P[S = s|H]P[E = e|S = s,H]P[Tm+1 � s > e� s|E = e, S = s,H] (18)

=g(s)hm(e) exp(��(e� s)) (19)

=f(e, s,H,JM )p(0|�(e� s)) (20)

From Equation (17) to Equation (18) we decompose the likelihood by the full conditional
probabilities. The likelihood of the data contains three parts: (i) conditional on the history of
reports H, the likelihood of observing a realization of S = s; (ii) conditional on the history of
reports H and S = s, the likelihood of observing a realization of E = e; (iii) conditional on the
history of reports H, S = s and E = e, the likelihood of not observing the next jump time, that is
Tm+1 > e.

From Equation (18) to Equation (19) we use condition 1 to express (i) as g(s), condition 2
to express (ii) as hm(e), and Lemma 2 to express (iii) as exp(��(e� s)). The final equation follows
by defining

f(e, s,H,JM ) = g(s)hm(e),

which is independent of �.
For the case with M = 1, we cannot omit J1, but similarly have:

P[S = s, E = e,X(e) = m+ 1, X(s) = m,J1|H] (21)

=P[S = s, E = e > tm+1, Tm+1 = tm+1, Tm+2 > e|H] (22)

=P[S = s|H]⇥ P[E > tm+1|S = s,H]⇥ P[Tm+1 � s = tm+1 � s|S = s, E > tm+1,H]

⇥ P[E = e|S = s,H, {Tm+1 = tm+1}]⇥ P[Tm+2 > e|E = e, S = s,H, {Tm+1 = tm+1}] (23)

=g(s)⇥

"Z T

tm+1

hm(t)dt

#
⇥ � exp(��(tm+1 � s))⇥ hm+1(e)⇥ exp(��(e� tm+1)) (24)

=� exp(��(e� s))g(s)hm+1(e)

"Z T

tm+1

hm(t)dt

#
(25)

=f(e, s,H,JM )p(1|�(e� s)) (26)

From Equation (21) to Equation (22) we express the data in a di↵erent but equivalent manner.
Note that the fact J1 contains the first jump time tm+1. It (along with X(e) = m+ 1 equivalently
can be stated as two events: first, trivially, we know Tm+1 = tm+1; second, we also know that Tm+2

arrives later than e, which is why that jump is not observed. From Equation (22) to Equation (23)
we similarly decompose the likelihood into full conditional probabilities. The likelihood now con-
tains five parts: (i) conditional on the history of reports H, the likelihood of observing S = s; (ii)
conditional on the history of reports H and S = s, the likelihood of observing E to be greater than
tm+1; (iii) conditional on the history of reports H, S = s and E still not realized, the likelihood
of observing Tm+1 = tm+1; (iv) conditional on the history of reports H, S = s, Tm+1 = tm+1, the
likelihood of observing a realization E = e; (v) conditional on the the history of reports H, S = s,
E = e, and Tm+1 = tm+1, the likelihood of not observing the next jump time, that is Tm+2 > e.

From Equation (23) to Equation (24) we use condition 1 to express (i), condition 2 to express
(ii), Lemma 2 to express (iii), condition 2 again to express (iv), and then the memoryless property
of Poisson process jump times to express (v). Equation (25) follows by collecting terms. The final
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equation follows by defining

f(e, s,H,JM ) =
1

(e� s)
g(s)hm+1(e)

Z T

tm+1

hm(t)dt,

which is independent of �.
Next, for any M > 1, we similarly have:

P[S = s, E = e,X(e) = m+M,X(s) = m,JM |H] (27)

=P[S = s, E = e > tm+M > · · · > tm+1, Tm+1 = tm+1, . . . , Tm+M = tm+M , Tm+M+1 > e|H] (28)

=P[S = s|H]

⇥

MY

i=1

P[E > tm+i|S = s,H, {Tm+1 = tm+1, . . . , Tm+i�1 = tm+i�1}]

⇥

MY

i=1

P[Tm+i = tm+i|S = s,H, {Tm+1 = tm+1, . . . , Tm+i�1 = tm+i�1}]

⇥ P[E = e|S = s,H, {Tm+1 = tm+1, . . . , Tm+M = tm+M}]

⇥ P[Tm+M+1 > e|E = e, S = s,H, {Tm+1 = tm+1, . . . , Tm+M = tm+M}] (29)

=g(s)

⇥

MY

i=1

� exp(��(tm+i � tm+i�1))

⇥

MY

i=1

Z T

tm+i

hm+i�1(t)dt

⇥ hm+M (e)⇥ exp(��(e� tm+M )) (30)

=�M exp(��(e� s))⇥ g(s)hm+M (e)
MY

i=1

Z T

tm+i

hm+i�1(t)dt (31)

=f(e, s,H,JM )p(M |�(e� s)). (32)

From Equation (27) to Equation (28) we similarly express the data in an equivalent manner, also
noting that the data provides information that Tm+M+1 > e. From Equation (28) to Equation (29)
we decompose the likelihood by the full conditional probabilities, which similar to the previous case
contains five parts: (i) conditional on the history of reports H, the likelihood of observing S = s;
(ii) for i = 1, . . . ,M , conditional on the history of reports H, S = s and all jump times Tm+1 to
Tm+i�1,1 the likelihood of observing E to be greater than tm+i; (iii) for i = 1, . . . ,M , conditional
on the history of reports H, S = s, all jump times Tm+1 to Tm+i�1 and E still not realized, the
likelihood of observing Tm+i = tm+i; (iv) conditional on the history of reports H, S = s, all jump
times Tm+1, . . . , Tm+M , the likelihood of observing a realization E = e; (v) conditional on the the
history of reports H, S = s, E = e, and Tm+1 . . . Tm+M , the likelihood of not observing the next
jump time, that is Tm+M+1 > e.

From Equation (29) to Equation (30) we use condition 1 to express (i), condition 2 to express
(ii), Lemma 2 to express (iii), condition 2 again to express (iv), and then the memoryless property
of Poisson process jump times to express (v). Equation (31) follows by collecting terms, and the

1Where i = 1, this degenerates to be an empty set, the same for part (iii) below.
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last step follows by defining

f(e, s,H,JM ) =
(e� s)M

M !
g(s)hm+M (e)

MY

i=1

Z T

tm+i

hm+i�1(t)dt,

which is independent of �.
Combining Equations 20, 26 and 32 concludes our claim.

3 Comparing estimation methods via simulation

Before applying our methods to real-world 311 data, we demonstrate the e↵ectiveness of our meth-
ods via simulated data—in such simulations, we have full control over the data-generating process
and thus can compare the estimation results with the true parameters. In particular, we use
the simulator to illustrate (a) Proposition 1, that attempting to recover reporting rates �✓ from
Nobserved

✓ (T ) is prone to bias; (b), that in Theorem 1, the conditions on S and E are essential,
(c), that in a correctly-specified model setting, i.e., following the assumptions in Theorem 1, both
the MLE in Equation (3) and the homogeneous Poisson regression recover the ground truth; and
(d), that the regression approach is more data-e�cient than the MLE, leading to tighter parameter
estimates.

Simulator setup We simulate a basic time-homogeneous system, as follows. We set the incident
type to be a two-dimensional vector ✓ 2 R2. Our simulator needs parameters for three processes:
the incident birth process governed by homogeneous Poisson rate ⇤✓, the reporting process governed
by homogeneous Poisson rate �✓, and a lifetime Ti of each incident, generated in the following way:
after each report, we sample two competing exponential clocks, one representing incident death
and another the next report; the incident death rate can depend on the number of reports so far,
reflecting, for example, that the agency prioritizes inspections for incidents with more reports. If
the report happens before death, we increment the number of reports for the incident and repeat;
otherwise, the incident has “died” and no more reports are logged.

Formally, for each type of incident, we specify a parameter µ✓ that is independent of �✓ as the
“death rate” of incidents; conditional on there has been m reports of an incident of type ✓, we
generate two exponentially distributed random variables, dm✓ ⇠ Exponential(µ✓ ⇥ (�✓)m), where

Supplementary Table 1: Simulation results comparing five estimates of reporting rate �✓ under
di↵erent incident rates ⇤✓. The true reporting rates are all �✓ = 2. We find that with correctly
specified stopping times, the Poisson regression estimators are more precise than the MLE, espe-
cially as the incident rate decreases. The naive estimator, or the incorrectly specified observation
ending time both introduce bias into the estimation. Estimate standard deviations are in paren-
theses.

Incident rate ⇤
Estimates for reporting rate � 1.0 2.0 3.0 4.0 5.0
Naive 1.201(0.016) 2.394(0.032) 3.589(0.051) 4.788(0.066) 5.999(0.084)
MLE, correct 2.041(0.188) 2.018(0.091) 2.005(0.057) 2.005(0.045) 2.013(0.035)
MLE, incorrect 8.992(4.276) 8.686(1.696) 8.649(1.221) 8.615(0.859) 8.596(0.635)
Poisson regression, correct 2.033(0.118) 2.014(0.058) 2.003(0.036) 2.004(0.029) 2.011(0.022)
Poisson regression, incorrect 8.826(2.356) 8.613(1.008) 8.599(0.755) 8.581(0.539) 8.572(0.402)
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�✓ is a scaling parameter by our choice, and rm✓ ⇠ Exponential(�✓); if dm✓  rm✓ , we consider the

incident dead, and let Ti =
Pm�1

j=0 rj✓ + dm✓ , otherwise increment m and repeat the process. Both
the incident and reporting rates are set as a function of the type covariates, as in Equation (5):

⇤✓ = exp
�
↵incident + �T

incident✓
�

�✓ = exp
�
↵report + �T

report✓
�

where ↵incident 2 R, �incident 2 R2, ↵report 2 R and �report 2 R2 are varied across simulations.
For simplicity in comparing the various methods, here we report simulation results for the case in
which there are only 5 distinct types, and the reporting rate for each type is 2, i.e., ↵report = log(2)
and �report = 0, but where incident rates ⇤✓ vary by type.

Next, we need to set µ✓ and �✓, which governs the duration that the incident is alive. Given
the above parameters, we do so in a manner that matches the distribution of the number of reports
received per incident to the real data studied in the next section: that 18.7% of the received reports
in the reporting period are duplicates of incidents already reported. For simplicity, we set these
uniformly across all types. This calibration results in µ✓ = 0.065 and �✓ = 100 for all ✓.

Finally, we fix the time span of our observation to be T = 300 days, which by our parameter
settings, is long enough for the system to converge to its long-run stationary distribution (in terms
of the number of active incidents). Incidents and reports are generated according to the simulator
setup. It is possible that some death times and consequently reports generated may be beyond the
300-day observation period. We discard any such reports.

The output of the simulator consists of all the incidents that occur and are reported at least
once during this 300-day period. For all these incidents, the available data for our estimators is
the time that each incident was reported the first time, the times and number of the subsequent
reports, and the times of the incident death if they occur before the end of the time span. To
specify the observation period of each incident, in the setting of Theorem 1, we let Si be the time
of the first report of such incident, and Ei be the incident death time, or the end of the time span
if the death time is greater than it. This specification satisfies the assumption in Theorem 1. As a
comparison, we add an incorrectly specified version of this observation period by letting Ei be the
time of the last report of this incident, in which case it no longer satisfies the conditions.

Simulator results We compare five estimators: a “naive” estimator, that calculates
Nobserved

✓ (T )
T ,

the ratio between the observed number of reports and the observation period; the MLE as de-
rived in Equation (3) with correctly specified stopping times; the MLE with incorrectly specified
observation ending times; a Poisson regression with correctly specified stopping times, and finally,
a Poisson regression with incorrectly specified observation ending times. The regression methods
were implemented using Scikit-learn [31]. We run each of the methods on the same simulated
datasets and iterated 300 times. Supplementary Table 1 summarizes our results: showing, for each
distinct type with a di↵ering incident rate, the estimates for �✓ for each of the methods.

These results indeed illustrate Proposition 1, that attempting to recover reporting rates �✓

from Nobserved
✓ (T ) is prone to bias: the naive method of counting the number of observed incidents

conflates the incident rate with the reporting rate. Second, the stopping times assumption in
Theorem 1 is indeed crucial to a valid result, and in a correctly specified model setting, both the
MLE in Equation (3) and the homogeneous Poisson regression recover the ground truth reporting
rate �✓, regardless of the incident rate. However, third, the regression approach is more data-
e�cient than the MLE, leading to tighter parameter estimates – especially as the incident rate
decreases, i.e., as the sample size in terms of the number of incidents decreases. This data e�ciency
is important in high dimensions, as in our real-world data application in the next section.
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4 Supplementary Empirical analysis

4.1 Two potential sources of bias

There are two potential sources of bias in the NYC data, due to ways in which the data di↵ers
from the model assumed in Section 5.2.1. Here, we evaluate these concerns and conclude that they
likely do not substantially a↵ect our measurements.

Repeat callers about the same incident. One potential worry is that duplicate reports are
a mirage: they are primarily generated by the same resident repeatedly calling about an incident
until it is addressed. If that is the case, our method does not work: we rely on a Poisson rate
assumption for the reporting behavior (that reporting behavior is memory-less and so that one
report does not a↵ect the likelihood of another for that incident), which is likely violated if the
same person makes multiple reports about the same incident. In theory, such repeats should be
minimal: NYC makes available a portal to check the status of past reports, so a reporter does not
need to call again to remain up-to-date. In practice, however, our contacts at NYC DPR indicated
that repeat calls occur.

To mitigate the e↵ect of such repeat callers on our analysis, we obtain anonymized (hashed)
caller information from NYC DPR for each report: if the caller provided it, their name, phone
number, and/or email address. We then filter out the duplicate reports for each incident where
either the phone number or emails match, or both the first and last names match. Our analyses
are run on the resulting filtered dataset. The above approach may not filter out all repeat callers:
if callers choose not to leave their information, but call multiple times. Thus, we also run our main
analyses on a filtered dataset where we additionally assume that any caller who did not leave their
information is a repeat of a previous caller with no information. Our estimates are largely the
same on this more conservative dataset, suggesting that repeat callers do not substantially bias our
estimates. Results are given in Supplementary Information 4.4.

Censored data: incidents that were not inspected The NYC DPR only marks duplicate
reports corresponding to incidents that were inspected: for the service requests not connected to
an inspected incident, we do not know which (if any) other reports also refer to the same incident.
As our method relies on the rate of duplicate reports, we must discard service requests that were
not inspected.

This censoring may limit the generalizability of our findings, from measuring the reporting rates
of all incidents to measuring the reporting of incidents that tend to be inspected. This limitation
to external validity may be acceptable: if the inspection decisions are correlated with incident
importance (likely), then studying the heterogeneous reporting behavior for these incidents is a
more important task than is studying that of minor incidents not deemed worth inspecting.

There is a second reason we believe that the censoring is relatively acceptable. In particular,
we measure reporting rates as a function of incident type ✓, where the type includes characteristics
such as report category and incident risk. If our models are correctly specified, and ✓ is rich enough
to capture inspection decisions (there is no confounding), then this censoring does not a↵ect our
estimates.2 While a seemingly strong assumption, we note that the ✓ we have available is the

2We aim to model P̃ r(Y |✓), where Y is reporting behavior. However, with just data on inspected incidents, we can
only estimate P̃ r(Y |✓, inspected). If Y is independent of the inspection decision given ✓, then P̃ r(Y |✓, inspected) =
P̃ r(Y |✓). One potential source of bias is if, even conditional on ✓ (which includes the content of the reports), NYC
DPR is making decisions that strongly correlate with the number of reports. Then, all of our rate estimates would be
biased upwards, as we selectively observe data for incidents with many reports. However, as we primarily care about
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same data that the NYC DPR sees about a report through their portal when making an inspection
decision; any confounding would have to come from another source.

Nevertheless, to the extent that the above (likely small) bias a↵ects practice, it may be valuable
for 311 systems to systematically tag duplicates for all reports and then apply our methods. (Rela-
tive to the missing data challenges that we centrally tackle in this work, i.e., incidents not reported
and birth and death times, this duplicate censoring is cheaply addressable by city agencies). We
note that the Chicago data does mark duplicates even for open/uninspected incidents, and so this
bias does not appear there.

4.2 NYC data preprocessing

Before training models, we need to construct a dataset in which each row corresponds to an incident,
and where we have the number of reports M̃i in an observation interval, the duration T̃i of that
interval, and covariates ✓. We separated out an exploratory dataset of 8,000 unique incidents, on
which we conducted covariate selection as detailed below.3

We filter out the reports corresponding to the uninspected service requests (as we do not have
duplicate information for these) and then use the provided incident label to group all service requests
for the same incident. Then, we remove repeat caller reports, comparing each caller to previous
(ordered by time) callers for the same incident. Next, we must construct a valid observation interval
for each incident.

Constructing an observation interval (Si, Ei] As outlined in Theorem 1, we must be careful
in how we choose an observation interval (Si, Ei] in which we count reports – we need that the
interval is inside the incident lifetime, i.e., we must end the interval before the incident is addressed,
Ei  ti+Ti. Both endpoints of the interval must also satisfy the conditions outlined in Theorem 1.
As discussed above, the best choice to start the observation period Si is the time of the first report,
but choosing the observation end is a design choice.

We make the following choice. Let tINSP
i be the inspection time of incident i, and, tWO

i be the
time that a work order is placed for incident i, if applicable. Then, Ei of each incident i is:

Ei = min
�
100 days + Si, tINSP

i , tWO
i

 
. (33)

The maximum duration of 100 is a design choice, for which we perform robustness checks (with 30
and 200 days); a maximum mitigates – for incidents not inspected for a long time – the inclusion
of a time period in which an issue might have been resolved before an inspection, which would bias
our estimates downward. Equation (33) requires that inspection and work order times are stopping
times; that they do not depend on the future trivially holds, and it is likely that they do not depend
on the reporting rate except through the type ✓ and the sample path number of reports received

heterogeneous reporting rates across types, such a bias matters to the extent that it heterogeneously a↵ects di↵erent
types of incidents or geographic locations. Furthermore, according to NYC DPR, the primary drivers of inspection
decisions are the report characteristics, which are included in ✓. Nevertheless, an important direction for future work
is directly addressing this censoring challenge.

3While the exploratory data was used to filter variables for ultimate analysis, and to develop and fine-tune our
models, we note that we did not hold out a separate test set at the outset of the project; it was not clear how to
cluster assign reports to test and train before developing our empirical strategy, and there were initial (ultimately
resolved) data errors on how reports were tagged to unique incidents. Thus, our overall approach was selected and
developed using the NYC DPR data on which we ultimately report results, but not using the Chicago dataset. The
exploratory dataset was ultimately composed of 4463 unique incidents, after filtering.
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up to that time.4 (It is not a problem that incidents with more reports are inspected sooner).

Supplementary Figure 2a shows the histogram of the number of reports per incident during the
observation interval; Supplementary Figure 2b shows the distribution of durations; and Supple-
mentary Table 2 shows how the average duration di↵ers by Borough and report category. The
heterogeneity in duration length (due to the speed of being inspected or worked on) demonstrates
the value of Theorem 1, which allows us to maximally utilize the data without introducing bias. For
example, compared to ‘Prune’ incidents, ‘Hazard’ incidents tend to have more reports on average
and shorter duration: residents have a higher reporting rate for hazardous incidents, and these
incidents tend to be addressed more quickly. Suppose we had to use a fixed duration D, instead
of an inspection/work order dependent time. If D is large (e.g., D ⇡ 15 days), then we bias our
estimates downward, as we’re including time periods after an incident has already been addressed
– and the bias heterogeneously a↵ects incident types, since some incident types are typically ad-
dressed more quickly than are other types. On the other hand, a much shorter duration would
substantially limit the data. Finally, Supplementary Figure 4 shows the average number of days
after the first report that the `th duplicate report was submitted for an incident, for incidents with
at least k � ` reports. The plots are largely linear (i.e., the average delay between the first and
second report is the same as that between the third and fourth report), consistent with reporting
rates being approximately homogeneous Poisson within the interval.

Covariate selection and processing Next, we select the covariates that compose type ✓. The
data given to us by NYC DPR includes a set of report covariates (e.g., report Category),5 inspection
results (e.g., condition of the tree at inspection time), and tree characteristics (e.g., the diameter of
the tree at breast height, tree species). We augment this data with socioeconomic characteristics as
follows. Most of the reports in our data contain latitude-longitude coordinates for each inspection
(and thus incident), using which we identify which of the over 2000 census tracts in New York
City the incident is in, through an FCC API.6 We then join this information with 2020 Census
data obtained from the IPUMS NHGIS [23], which include socioeconomic characteristics such as
race/ethnicity, education, income, and population density for each census tract.

Next, we perform covariate selection using the exploratory dataset. We remove report and
inspection variables that are highly collinear, have low variance, or with a high number of missing
values. Conversations with NYC DPR also played a role in the selection. Finally, we log transform
several variables and standardize all data. Supplementary Table 3 contains the covariates we use.

Starting with the dataset discussed above, we filter out the incidents for which any of the
covariates are missing and those with short-logged reporting periods (Duration less than 0.1 days).
We are left with a dataset of 81,638 incidents on which we conduct our main analyses; for each
incident i, we have the duration of observance ei � si, the number of total reports M̃i, and all the
various geographic and demographic covariates associated with it.

4We observe largely the same dashboard data that the inspector does when making inspection decisions, and so
there is minimal unobserved confounding; the exception is that we do not process report free-form text, though in
our conversations with NYC DPR these hold secondary importance after the structured fields.

5Occaisonally, di↵erent reports about the same incident disagree on the report covariates. We select the first
report characteristics in those cases.

6FCC Area API, https://geo.fcc.gov/api/census/
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4.3 Additional information

In this section, we provide some additional information about our model, dataset and results.
Supplementary Figure 1 illustrate our data-generating model. Supplementary Table 2 contains
summary statistics of the NYC dataset on which we conduct our main analyses in the main text.
Supplementary Figure 2a shows the histogram of the number of reports per incident during the
observation interval; Supplementary Figure 2b shows the distribution of durations. Supplementary
Table 3 provides a description of the covariates selected; Supplementary Figure 3b shows the re-
lationship between the number of unique incidents observed versus the census tract fixed e↵ect;
Supplementary Figure 5 shows the posterior distribution of the number of reports as estimated
by the basic Poisson regression model, and the zero-inflated Poisson regression model, with ref-
erence to the observed distribution. Note that the Zero-inflated model has a better fit to the
observed distribution since most of the density of this distribution is on reports 1, 2, and 3. We
note that our framework also allows for zero inflation coe�cients to be Category-dependent. Using
Category-dependent zero inflation coe�cients further improves the fit, but the gain is not substan-
tial. Supplementary Table 4 and Supplementary Table 5 lists the full information of the coe�cients
for census tract socioeconomic covariates as estimated alone in a regression alongside the incident-
specific covariates and the borough fixed e↵ects. Supplementary Table 7 lists the information of
the coe�cients for a subset of census tract socioeconomic covariates as estimated together in a
regression alongside the incident-specific covariates.

Time

Incident occurs
(unobserved time)

Resident reports
(observed)

1st 2nd 3rd&last

Incident ‘dies’
(unobserved time)

Total reporting period (unobserved)
Total #reports ~ Poisson (!!&")

Reporting delay (unobserved)
Length ~ Exponential(1/!!)

Supplementary Figure 1: Model of resident reports of an incident i of type ✓. Observed and
unobserved events are marked with solid and dotted lines, respectively. In this example, there
are a total of 3 reports made about this incident. When the reports are generated according to a
homogeneous Poisson process with rate �✓, the average reporting delay is 1

�✓
. Incident ‘death’ refers

to the incident being resolved or otherwise marked such that no future reports are submitted and
logged. The goal is to estimate the reporting rate �✓ (and consequently, the unobserved reporting
delay) for each incident of type ✓.
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Supplementary Table 2: Summary statistics: service requests and inspections statistics are directly
from the NYC DPR reports data; unique incidents statistics are derived from the inspected service
requests, where the average duration is calculated using the stopping times definition. The Others
category includes four other categories: Rescue/Preservation, Remove Stump, Pest/Disease, Plant-
ing Space, that together account for less than 0.4% of the service requests; we exclude them in the
analysis. Categories are reported by the person raising the service request: for example, Prune
reflects a request to prune the leaves of an over-grown tree, and Hazard reflects a request for NYC
DPR to attend to a potentially hazardous condition concerning trees.

Service
requests

Inspections
Incidents

(from inspected SRs)
Inspected

SRs
Fraction
inspected

Unique
incidents

Avg. reports
per incident

Median Days
to Inspection

Total number 223,416 140,057 0.63 98,994 1.41 5.79
By Borough

Queens 90,930 55,904 0.61 42,724 1.31 5.50
Brooklyn 67,852 45,666 0.67 27,368 1.67 8.68

Staten Island 27,263 15,601 0.57 11,755 1.33 4.07
Bronx 22,629 14,928 0.66 10,059 1.48 6.76

Manhattan 14,702 7,938 0.54 7,072 1.12 2.25
By Category

Hazard 87,864 59,667 0.68 40,167 1.49 1.93
Prune 48,649 26,706 0.55 20,589 1.30 10.29

Remove Tree 44,177 29,307 0.66 22,275 1.32 7.73
Root/Sewer/Sidewalk 30,856 17,392 0.56 14,694 1.18 17.86
Illegal Tree Damage 11,061 6,533 0.59 5,525 1.18 22.87

Other 809 452 0.56 429 1.05 5.48

(a) Number of reports per incident. (b) Length of observation period.

Supplementary Figure 2: Distribution of number of reports and length of observation for each
unique incident in the aggregated dataset. For most incidents, there are no reports after the first
report (at least not in the observation period). There is a peak at 100 days for the observation
period, due to our configuration in Equation (33), where we truncate longer periods to 100 days.
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Supplementary Table 3: Description of covariates in the aggregated dataset.

Covariate Description
Incident Global ID An identifier unique to each incident.
Duration The observation duration as defined in Equation (33)

Number Reports
Number of reports on this incident in the observation duration, after filtering
out repeat callers

INSPCondition
The inspection outcome regarding the condition of the tree, indicates
whether the tree is dead, in good to excellent conditions, or in fair conditions.

INSP RiskAssessment
The inspection outcome regarding how dangerous the reported incident is,
as determined by inspector. Ranges from 0 to 12, with 11 and 12
being category “A” incident and prioritized for work orders.

Tree Diameter at
Breast Height (TDBH)

Main characteristic of the tree describing how large the tree trunk is. Measured in inches.

Borough Indicating which borough in NYC this incident is located.
Category The incident category as reported.
Median Age Median age in the census tract.
Fraction Hispanic Fraction of residents that identify as Hispanic in the census tract.
Fraction white Fraction of residents that identify as white in the census tract.
Fraction Black Fraction of residents that identify as Black in the census tract.
Fraction no high school degree Fraction of residents that have not graduated from high school in the census tract.
Fraction college degree Fraction of residents that have graduated from college in the census tract.
Fraction poverty Fraction of residents that are identified to be in poverty in the census tract.
Fraction renter Fraction of residents that rent their current residence in the census tract.
Fraction family Fraction of family household in the census tract.
Median household value Median value of household in the census tract.
Income per capita Income per capita of residents in the census tract.
Density Population density in the census tract.

Supplementary Table 4: Census Tract socioeconomic coe�cients in NYC, estimated alone in a
regression alongside the incident-specific covariates. Full table corresponding to Supplementary
Table 3.

Mean StdDev 2.5% 97.5%

Median age -0.033 0.008 -0.051 -0.018
Fraction Hispanic 0.030 0.009 0.011 0.046
Fraction white 0.057 0.008 0.040 0.072
Fraction Black -0.039 0.009 -0.059 -0.024
Fraction no high school degree -0.031 0.008 -0.049 -0.016
Fraction college degree 0.043 0.009 0.024 0.059
Fraction poverty -0.010 0.009 -0.027 0.007
Fraction renter 0.054 0.009 0.035 0.070
Fraction family -0.081 0.009 -0.099 -0.065
Log(Median house value) 0.065 0.009 0.045 0.081
Log(Income per capita) 0.048 0.009 0.031 0.068
Log(Density) 0.077 0.010 0.056 0.099
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(a) Reported incidents vs
number of trees

(b) Incidents/Tree vs
Census Tract Coe�cient

(c) Reported Hazard incidents vs
number of trees

(d) Hazard Incidents/Tree vs
Census Tract Coe�cient

Supplementary Figure 3: (a) For each census tract, the number of trees according to the 2015 New
York Street Tree Census versus the number of reported incidents in that census tract. As expected,
more trees result in more reported incidents. (b) The relationship between reported incidents per
tree and the census tract fixed e↵ect. (c) and (d) reproduce these plots while restricting to only
Hazard incidents. The value, “incidents per tree” is an attempt to normalize the number of
incidents we observe with the number we expect to observe – and thus the ratio is a measure of
reporting rates as is done in prior work. We observe a slightly negative relationship between this
measure and the one we develop, the census tract coe�cient in the Poisson regression. While it is
possible that one can construct better proxies for how many incidents we expect to observe than the
raw counts of trees, the relationship suggests that our method’s results can di↵er substantially from
those of prior work. We prefer our measure, as it automatically controls for ‘legitimate’ incident-
level characteristics (such as risk) that may correlate with geography but are not captured with the
number of trees—without needing to construct an estimate for the number of expected incidents
for each such type. In practice, there can be many types of incidents; see, e.g., Supplementary
Table 23. The Street Tree data is available here: https://data.cityofnewyork.us/Environment/
2015-Street-Tree-Census-Tree-Data/pi5s-9p35.
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Supplementary Figure 4: Conditional on having at least k duplicate reports, on average how many
days after the 0th report was the `th report, where `  k? The linear nature of each plot is
consistent with a homogeneous Poisson process within the given period. That incidents with more
reports also receive reports faster is consistent with those incidents being more severe in nature
and having a higher reporting rate �✓.

Supplementary Table 5: Census Tract socioeconomic coe�cients in NYC, estimated alone in a
regression alongside the incident-specific covariates and the borough fixed e↵ects.

Mean StdDev 2.5% 97.5%

Median age -0.009 0.008 -0.025 0.005
Fraction Hispanic 0.053 0.009 0.035 0.069
Fraction white 0.068 0.008 0.052 0.083
Fraction Black -0.052 0.009 -0.070 -0.037
Fraction no high school degree -0.039 0.008 -0.056 -0.024
Fraction college degree 0.035 0.008 0.019 0.049
Fraction poverty -0.020 0.008 -0.036 -0.006
Fraction renter 0.022 0.008 0.004 0.038
Fraction family -0.075 0.009 -0.092 -0.060
Log(Median house value) 0.023 0.008 0.006 0.038
Log(Income per capita) 0.056 0.008 0.038 0.072
Log(Density) 0.032 0.009 0.015 0.048
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(a) Standard Poisson regression

(b) Zero inflated Poisson regression

(c) Zero inflated Poisson regression, with Category-dependent zero inflation coe�cient

Supplementary Figure 5: Comparison among posterior distributions sampled from the Standard
Poisson regression model and two Zero-inflated variants. Left-hand plots are in log space for the
y axis, and right-hand plots are in regular probability space, to highlight the di↵erent parts of the
distribution.
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Supplementary Table 6: Census Tract socioeconomic coe�cients in NYC, estimated together in a
regression alongside the incident-specific covariates. Covariates with high levels of collinearity are
dropped to maintain interpretability.

Mean StdDev 2.5% 97.5%

Median age -0.014 0.009 -0.034 -0.003
Fraction white 0.058 0.009 0.037 0.076
Fraction college degree -0.047 0.013 -0.073 -0.023
Fraction renter 0.042 0.010 0.021 0.060
Log(Income per capita) 0.086 0.014 0.057 0.110

Supplementary Table 7: Census Tract socioeconomic coe�cients in NYC, estimated together in a
regression alongside the incident-specific covariates. Compared with Supplementary Table 6, we
additionally include for (log) population density. With the exception of the fraction of residents with
college degrees which becomes insignificantly associated with the reporting rate, most socioeconomic
variables are still significantly associated with the reporting rate in the same direction.

Mean StdDev 2.5% 97.5%

Median age -0.021 0.009 -0.038 -0.003
Fraction white 0.048 0.010 0.028 0.066
Fraction college degree -0.011 0.013 -0.037 0.013
Fraction renter 0.038 0.012 0.015 0.061
Log(Income per capita) 0.074 0.015 0.041 0.103
Log(Density) 0.087 0.012 0.063 0.108
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4.4 Robustness checks – Supplementary Table 1 with other specifications

In this section, we present evidence for the robustness of our results in Supplementary Table 1 by
reproducing its results with di↵erent configurations in Supplementary Table 8 through Supplemen-
tary Table 11. Additionally, we show results when the risk assessment scores are binned according
to their priority level in Supplementary Table 12.

4.5 Calculation of mean reporting delay

In this section, we give the example calculation for the mean reporting delay of a Hazard, tree in
Poor condition, risk assessment score 12 incident in Manhattan. The mean delay is calculated as:

1/ exp( �3.229| {z }
Intercept, tree in Poor condition

+ 1.418| {z }
Hazard

+ 0.438| {z }
Manhattan

+
12� 6.4915

2.1788
⇥ 0.240

| {z }
Standardized risk assessment score

) ⇡ 2.2

There are a few points worth mentioning with this calculation. First, we take the exponential
of the sum of these coe�cients, in accordance with the specification of the Poisson regression we
fit in Equation (4); we further take the reciprocal, since the mean of an Exponential random
variable is the reciprocal of its rate. Second, coe�cient estimate for the dimension of ‘tree in Poor
condition’ is integrated into the estimate for the intercept term; for tree in other conditions, an
additional appropriate coe�cient estimate needs to be added to the exponent. Third, tree size and
risk assessment scores are standardized in the train set, thus in the calculation, we need to do the
same standardization process as when we obtained the train set. Since we are concerned with trees
of average size, the tree size variable is standardized to 0 here and omitted.

4.6 Additional information on socioeconomic and spatial reporting inequities

In this section, we provide some additional information on socioeconomic and spatial reporting
inequities omitted from the Results section.

Calculation of cumulative association of socioeconomic variables. We first give an
example of how the cumulative association scores in Figure 1 are calculated. Note that all coe�-
cients given in Supplementary Table 6 are on standardized covariates. (Standardization was done
on all covariates on the data frame used for the Poisson regression, and average refers to the corre-
sponding average on that dataset). Let us suppose one hypothetical census tract has the following
socioeconomic profile:

• Median age: 1 standard deviation above average;

• Fraction of white residents: 1 standard deviation below average;

• Fraction of residents with a college degree: 0.5 standard deviations above average;

• Fraction of renters: 0.5 standard deviations below average;

• Log income per capita: 0.5 standard deviations above average.

Then, according to Supplementary Table 6, the cumulative association can be calculated as:

1⇥ (�0.014) + (�1)⇥ 0.058 + 0.5⇥ (�0.047) + (�0.5)⇥ 0.042 + 0.5⇥ 0.086 = �0.0735,

where each additive part in the equation corresponds to each of the socioeconomic variables above.
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Supplementary Table 8: Regression coe�cients for Standard Poisson regression with incident-level
covariates and Borough fixed e↵ects for Max Duration 100 days, Default repeat caller removal.

Mean StdDev 2.5% 97.5% R hat

Intercept -4.577 0.023 -4.629 -4.539 1.0
INSPCondition[T.Dead] -0.334 0.029 -0.396 -0.285 1.0
INSPCondition[T.Excellent Good] -0.428 0.023 -0.472 -0.382 1.0
INSPCondition[T.Fair] -0.296 0.022 -0.344 -0.254 1.0
INSP RiskAssessment 0.286 0.010 0.265 0.305 1.0
Log(Tree Diameter at Breast Height) -0.020 0.009 -0.039 -0.003 1.0
Borough[Bronx] 0.103 0.022 0.061 0.144 1.0
Borough[Brooklyn] -0.148 0.016 -0.185 -0.117 1.0
Borough[Manhattan] -0.081 0.038 -0.163 -0.016 1.0
Borough[Queens] -0.112 0.015 -0.142 -0.080 1.0
Borough[Staten Island] 0.237 0.026 0.183 0.284 1.0
Category[Hazard] 1.448 0.015 1.416 1.473 1.0
Category[Illegal Tree Damage] 0.009 0.028 -0.045 0.059 1.0
Category[Prune] -0.083 0.024 -0.136 -0.043 1.0
Category[Remove Tree] 0.001 0.021 -0.042 0.043 1.0
Category[Root/Sewer/Sidewalk] -1.375 0.029 -1.432 -1.325 1.0

Supplementary Table 9: Regression coe�cients for Zero-inflated Poisson regression with incident-
level covariates and Borough fixed e↵ects for Max Duration 30 days, Default repeat caller removal.

Mean StdDev 2.5% 97.5% R hat

Intercept -2.679 0.031 -2.738 -2.617 1.0
Zero Inflation fraction 0.728 0.003 0.722 0.735 1.0
INSPCondition[T.Dead] -0.226 0.042 -0.312 -0.144 1.0
INSPCondition[T.Excellent Good] -0.368 0.029 -0.422 -0.311 1.0
INSPCondition[T.Fair] -0.178 0.027 -0.230 -0.125 1.0
INSP RiskAssessment 0.204 0.012 0.178 0.227 1.0
Log(Tree Diameter at Breast Height) -0.009 0.009 -0.026 0.008 1.0
Borough[Bronx] -0.041 0.027 -0.099 0.012 1.0
Borough[Brooklyn] -0.188 0.019 -0.226 -0.155 1.0
Borough[Manhattan] 0.297 0.051 0.191 0.388 1.0
Borough[Queens] -0.240 0.020 -0.279 -0.203 1.0
Borough[Staten Island] 0.172 0.035 0.097 0.238 1.0
Category[Hazard] 1.336 0.019 1.295 1.371 1.0
Category[Illegal Tree Damage] 0.257 0.039 0.173 0.323 1.0
Category[Prune] -0.113 0.034 -0.186 -0.050 1.0
Category[Remove Tree] -0.030 0.025 -0.084 0.016 1.0
Category[Root/Sewer/Sidewalk] -1.449 0.040 -1.532 -1.378 1.0
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Supplementary Table 10: Regression coe�cients for Zero-inflated Poisson regression with incident-
level covariates and Borough fixed e↵ects for Max Duration 200 days, Default repeat caller removal.

Mean StdDev 2.5% 97.5% R hat

Intercept -3.495 0.029 -3.548 -3.440 1.0
Zero Inflation fraction 0.626 0.004 0.619 0.634 1.0
INSPCondition[T.Dead] -0.462 0.034 -0.536 -0.401 1.0
INSPCondition[T.Excellent Good] -0.205 0.027 -0.254 -0.153 1.0
INSPCondition[T.Fair] -0.123 0.026 -0.179 -0.077 1.0
INSP RiskAssessment 0.238 0.011 0.216 0.258 1.0
Log(Tree Diameter at Breast Height) -0.042 0.008 -0.059 -0.025 1.0
Borough[Bronx] -0.139 0.027 -0.191 -0.093 1.0
Borough[Brooklyn] -0.393 0.019 -0.433 -0.357 1.0
Borough[Manhattan] 0.512 0.050 0.405 0.596 1.0
Borough[Queens] -0.244 0.019 -0.278 -0.208 1.0
Borough[Staten Island] 0.264 0.032 0.196 0.326 1.0
Category[Hazard] 1.482 0.018 1.445 1.515 1.0
Category[Illegal Tree Damage] 0.178 0.034 0.105 0.243 1.0
Category[Prune] -0.087 0.027 -0.141 -0.034 1.0
Category[Remove Tree] 0.086 0.021 0.040 0.123 1.0
Category[Root/Sewer/Sidewalk] -1.659 0.035 -1.730 -1.598 1.0

Supplementary Table 11: Regression coe�cients for Zero-inflated Poisson regression with incident-
level covariates and Borough fixed e↵ects for Max Duration 100 days, Remove all repeat callers
and missing caller information.

Mean StdDev 2.5% 97.5% R hat

Intercept -3.267 0.029 -3.326 -3.214 1.0
Zero Inflation fraction 0.652 0.004 0.642 0.659 1.0
INSPCondtion[T.Dead] -0.334 0.034 -0.401 -0.270 1.0
INSPCondtion[T.Excellent Good] -0.308 0.027 -0.359 -0.256 1.0
INSPCondtion[T.Fair] -0.186 0.027 -0.241 -0.133 1.0
INSP RiskAssessment 0.232 0.012 0.209 0.256 1.0
Log(Tree Diameter at Breast Height) -0.028 0.008 -0.045 -0.013 1.0
Borough[Bronx] -0.059 0.029 -0.116 -0.006 1.0
Borough[Brooklyn] -0.378 0.021 -0.425 -0.339 1.0
Borough[Manhattan] 0.431 0.057 0.311 0.539 1.0
Borough[Queens] -0.242 0.021 -0.286 -0.202 1.0
Borough[Staten Island] 0.248 0.031 0.185 0.307 1.0
Category[Hazard] 1.413 0.017 1.378 1.447 1.0
Category[Illegal Tree Damage] 0.237 0.035 0.157 0.302 1.0
Category[Prune] -0.106 0.028 -0.164 -0.056 1.0
Category[Remove Tree] 0.025 0.022 -0.021 0.062 1.0
Category[Root/Sewer/Sidewalk] -1.569 0.036 -1.643 -1.499 1.0
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Supplementary Table 12: Regression coe�cients for Zero-inflated Poisson regression with incident-
level covariates and Borough fixed e↵ects for Max Duration 100 days, Default repeat caller removal.
Risk assessment scores binned according to levels of prioritization.

Mean StdDev 2.5% 97.5% R hat

Intercept -3.177 0.205 -3.528 -2.872 1.0
Zero Inflation fraction 0.656 0.004 0.650 0.662 1.0
INSPCondition[T.Dead] -0.339 0.033 -0.390 -0.285 1.0
INSPCondition[T.Excellent Good] -0.410 0.024 -0.451 -0.373 1.0
INSPCondition[T.Fair] -0.188 0.025 -0.227 -0.147 1.0
Risk assessment category A 0.871 0.206 0.555 1.224 1.0
Risk assessment category B 0.594 0.183 0.290 0.916 1.0
Risk assessment category C -0.297 0.189 -0.586 0.008 1.0
Risk assessment category D -0.146 0.172 -0.400 0.158 1.0
Risk assessment category E -1.206 0.834 -2.689 -0.018 1.0
Risk assessment category Unknown 0.184 0.175 -0.071 0.490 1.0
Log(Tree Diameter at Breast Height) -0.005 0.010 -0.021 0.010 1.0
Borough[Bronx] 0.086 0.114 -0.122 0.268 1.0
Borough[Brooklyn] -0.350 0.127 -0.553 -0.155 1.0
Borough[Manhattan] 0.765 0.181 0.445 1.048 1.0
Borough[Queens] -0.600 0.085 -0.737 -0.461 1.0
Borough[Staten Island] 0.099 0.192 -0.219 0.416 1.0
Category[Hazard] 1.473 0.018 1.442 1.503 1.0
Category[Illegal Tree Damage] 0.220 0.035 0.159 0.276 1.0
Category[Prune] -0.057 0.029 -0.105 -0.012 1.0
Category[Remove Tree] 0.052 0.022 0.016 0.088 1.0
Category[Root/Sewer/Sidewalk] -1.687 0.040 -1.749 -1.624 1.0
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Supplementary Figure 6: Coe�cients for each census block group in Chicago, representing the
combined association of socioeconomic variables (log income per capita, fraction of white residents,
fraction of renter, median age, and fraction of residents with college degrees) on reporting rates.

Supplementary Figure 6 is a reproduction of Figure 1 using data from Chicago. Substantial
spatial di↵erences in reporting across di↵erent areas of the city are visible. Supplementary Figure 7
present the results when our model includes indicator variables for the over 2000 census tracts in
New York City and the over 2000 census block groups in Chicago. These estimates capture more
fine-grained spatial di↵erences, beyond which may occur due to socioeconomic di↵erences.

4.7 Replicating NYC results with public data

In the main text, we present results from NYC that were obtained from partially private data. In
this subsection, we show that with all public data, we can nontheless reproduce all the results. In
this subsection, we will refer to the data used there as the “full dataset” and the data used here as
the “public dataset”

In the Methods section, we outlined that internal data were used to identify inspections and
work orders associated with the service requests, and identify (anonymized) information about the
caller. With the public dataset, we can still perform the first task, by joining the public service
request data7 with public inspection data8, public work order data9, and public risk assessment
data10. During this process, we note that all of the covariates which we used in the previous
analyses are retained. The second task, however, cannot be performed since public datasets do not
contain any information about the caller. This means that we are unable to identify repeat callers
and remove them in our analyses. This, however, does not change the final results qualitatively.

Summary of preprocessing The aforementioned public datasets are joined using unique ID’s
on service requests and inspections. These datasets are all actively maintained and updated, and
the version used here contains 569,340 unique service requests made by the public within the
period between 2/28/2015 and 9/01/2022. We then created an aggregated dataset as described

7https://data.cityofnewyork.us/Environment/Forestry-Service-Requests/mu46-p9is
8https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4
9https://data.cityofnewyork.us/Environment/Forestry-Inspections/4pt5-3vv4

10https://data.cityofnewyork.us/Environment/Forestry-Risk-Assessments/259a-b6s7
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(a) Census tract coe�cients in New York City (b) Census block group coe�cients in Chicago

Supplementary Figure 7: Coe�cients on spatial variables in NYC and Chicago. These spatial
coe�cients are estimated using the ICAR spatial zero-inflated Poisson regression. More positive
coe�cients indicate higher reporting rates.

(a) Number of reports per incident. (b) Length of observation period.

Supplementary Figure 8: Distribution of number of reports and length of observation for each
unique incident in the aggregated dataset using public data.

in the Methods section on preprocessing. See Supplementary Table 13 for summary statistics,
Supplementary Figure 8a and Supplementary Figure 8b for distribution of number of reports per
incident and length of observation inverval.

Summary of results We replicate all the analyses presented in the main text on the public
data set. Supplementary Table 14 summarizes results with the Base variables, while Supplemen-
tary Table 15 and Supplementary Table 16 serve as robustness checks. Supplementary Figure 9
shows the coe�cients on Spatial variables. Supplementary Table 17, Supplementary Table 18, and
Supplementary Table 20 show the coe�cients on census tract Socioeconomic covariates.
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Supplementary Table 13: Summary statistics from the NYC public dataset.

Service
requests

Inspections
Incidents

(from inspected reports)
Inspected

SRs
Fraction
inspected

Unique
incidents

Avg. reports
per incident

Median Days
to Inspection

Total number 569,340 363,676 0.64 246,744 1.47 6.53
By Borough

Queens 235,363 152,985 0.65 107,524 1.42 5.99
Brooklyn 176,030 118,782 0.67 73,067 1.63 8.19

Staten Island 69,436 35,415 0.51 25,710 1.38 5.24
Bronx 54,839 38,336 0.70 26,110 1.47 7.89

Manhattan 33,659 18,156 0.54 14,346 1.27 2.82
By Category

Hazard 236,593 179,477 0.76 118,135 1.52 2.80
Prune 124,725 42,929 0.34 34,305 1.25 17.97

Remove Tree 105,960 83,179 0.79 63,422 1.31 7.55
Root/Sewer/Sidewalk 72,900 41,837 0.57 33,450 1.25 38.07
Illegal Tree Damage 27,479 15,554 0.57 12,447 1.25 17.38

Other 1,683 700 0.42 645 1.09 5.70

Supplementary Figure 9: Coe�cients on spatial variables in NYC, estimated with public data
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Supplementary Table 14: Regression coe�cients for Base variables in NYC, for Max Duration 100
days, estimated with public data

Mean StdDev 2.5% 97.5% R hat

Intercept -3.449 0.028 -3.507 -3.401 1.0
Zero Inflation fraction 0.539 0.005 0.529 0.547 1.0
INSPCondition[T.Dead] -0.163 0.035 -0.237 -0.103 1.0
INSPCondition[T.Excellent Good] -0.698 0.028 -0.755 -0.646 1.0
INSPCondition[T.Fair] -0.436 0.025 -0.492 -0.387 1.0
INSP RiskAssessment 0.262 0.013 0.235 0.287 1.0
Log(Tree Diameter at Breast Height) 0.079 0.011 0.053 0.097 1.0
Borough[Bronx] 0.029 0.026 -0.022 0.076 1.0
Borough[Brooklyn] -0.178 0.017 -0.214 -0.147 1.0
Borough[Manhattan] 0.635 0.039 0.558 0.701 1.0
Borough[Queens] -0.516 0.017 -0.549 -0.485 1.0
Borough[Staten Island] 0.030 0.029 -0.030 0.084 1.0
Category[Hazard] 1.583 0.019 1.547 1.621 1.0
Category[Illegal Tree Damage] 0.039 0.038 -0.033 0.111 1.0
Category[Prune] -0.108 0.028 -0.166 -0.056 1.0
Category[Remove Tree] -0.173 0.023 -0.216 -0.131 1.0
Category[Root/Sewer/Sidewalk] -1.341 0.035 -1.413 -1.278 1.0

Supplementary Table 15: Regression coe�cients for Base variables in NYC, for Max Duration 30
days, estimated with public data

Mean StdDev 2.5% 97.5% R hat

Intercept -2.923 0.029 -2.987 -2.873 1.0
Zero Inflation fraction 0.618 0.004 0.610 0.626 1.0
INSPCondition[T.Dead] -0.210 0.037 -0.282 -0.140 1.0
INSPCondition[T.Excellent Good] -0.691 0.032 -0.751 -0.627 1.0
INSPCondition[T.Fair] -0.429 0.029 -0.482 -0.369 1.0
INSP RiskAssessment 0.241 0.013 0.213 0.264 1.0
Log(Tree Diameter at Breast Height) 0.083 0.011 0.060 0.103 1.0
Borough[Bronx] -0.099 0.026 -0.153 -0.051 1.0
Borough[Brooklyn] -0.053 0.018 -0.088 -0.018 1.0
Borough[Manhattan] 0.536 0.038 0.455 0.604 1.0
Borough[Queens] -0.374 0.018 -0.413 -0.339 1.0
Borough[Staten Island] -0.010 0.029 -0.069 0.041 1.0
Category[Hazard] 1.458 0.019 1.415 1.492 1.0
Category[Illegal Tree Damage] 0.252 0.035 0.175 0.311 1.0
Category[Prune] -0.191 0.033 -0.256 -0.126 1.0
Category[Remove Tree] -0.241 0.026 -0.298 -0.193 1.0
Category[Root/Sewer/Sidewalk] -1.277 0.040 -1.364 -1.211 1.0
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Supplementary Table 16: Regression coe�cients for Base variables in NYC, for Max Duration 200
days, estimated with public data

Mean StdDev 2.5% 97.5% R hat

Intercept -3.670 0.027 -3.720 -3.614 1.0
Zero Inflation fraction 0.508 0.005 0.499 0.517 1.0
INSPCondition[T.Dead] -0.116 0.037 -0.192 -0.049 1.0
INSPCondition[T.Excellent Good] -0.631 0.028 -0.690 -0.579 1.0
INSPCondition[T.Fair] -0.389 0.027 -0.447 -0.340 1.0
INSP RiskAssessment 0.256 0.012 0.233 0.279 1.0
Log(Tree Diameter at Breast Height) 0.059 0.011 0.039 0.079 1.0
Borough[Bronx] 0.130 0.024 0.079 0.173 1.0
Borough[Brooklyn] -0.177 0.018 -0.216 -0.147 1.0
Borough[Manhattan] 0.585 0.039 0.495 0.657 1.0
Borough[Queens] -0.525 0.018 -0.562 -0.492 1.0
Borough[Staten Island] -0.013 0.028 -0.067 0.039 1.0
Category[Hazard] 1.595 0.017 1.562 1.624 1.0
Category[Illegal Tree Damage] 0.183 0.033 0.111 0.242 1.0
Category[Prune] -0.209 0.023 -0.260 -0.167 1.0
Category[Remove Tree] -0.148 0.025 -0.209 -0.107 1.0
Category[Root/Sewer/Sidewalk] -1.422 0.032 -1.482 -1.360 1.0

Supplementary Table 17: Census Tract Socioeconomic coe�cients, estimated alone in a regression
alongside the incident-specific covariates, with all public data

Mean StdDev 2.5% 97.5%

Median age -0.061 0.008 -0.078 -0.045
Fraction Hispanic 0.042 0.009 0.022 0.059
Fraction white 0.109 0.008 0.092 0.124
Fraction Black -0.065 0.008 -0.083 -0.050
Fraction no high school degree -0.007 0.009 -0.026 0.011
Fraction college degree 0.056 0.009 0.037 0.072
Fraction poverty 0.030 0.008 0.014 0.046
Fraction renter 0.126 0.010 0.104 0.143
Fraction family -0.111 0.008 -0.129 -0.097
Log(Median house value) 0.085 0.009 0.066 0.101
Log(Income per capita) 0.050 0.010 0.030 0.067
Log(Density) 0.145 0.010 0.122 0.164
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Supplementary Table 18: Census Tract Socioeconomic coe�cients, estimated alone in a regression
alongside the incident-specific covariates and the borough fixed e↵ects, with all public data

Mean StdDev 2.5% 97.5%

Median age -0.032 0.008 -0.050 -0.018
Fraction Hispanic 0.043 0.009 0.023 0.059
Fraction white 0.069 0.009 0.050 0.087
Fraction Black -0.075 0.008 -0.092 -0.060
Fraction no high school degree 0.005 0.009 -0.014 0.023
Fraction college degree 0.027 0.009 0.009 0.043
Fraction poverty -0.014 0.009 -0.033 0.002
Fraction renter 0.078 0.010 0.057 0.098
Fraction family -0.045 0.010 -0.064 -0.026
Log(Median house value) 0.061 0.010 0.039 0.082
Log(Income per capita) 0.015 0.009 -0.005 0.032
Log(Density) 0.104 0.011 0.082 0.123

Supplementary Table 19: Census Tract Socioeconomic coe�cients, estimated together in a regres-
sion alongside the incident-specific covariates, with all public data

Mean StdDev 2.5% 97.5%

Median age -0.024 0.010 -0.046 -0.005
Fraction white 0.100 0.010 0.081 0.118
Fraction college degree -0.018 0.014 -0.048 0.007
Fraction renter 0.142 0.010 0.123 0.160
Log(Income per capita) 0.073 0.014 0.047 0.103

Supplementary Table 20: Census Tract Socioeconomic coe�cients, estimated together in a regres-
sion alongside the incident-specific covariates, with all public data. Compared with Supplementary
Table 20, we additionally include (log) population density, which does not substantially a↵ect the
results.

Mean StdDev 2.5% 97.5%

Median age -0.010 0.010 -0.030 0.009
Fraction white 0.110 0.010 0.091 0.129
Fraction college degree -0.022 0.013 -0.050 0.004
Fraction renter 0.081 0.012 0.057 0.104
Log(Income per capita) 0.069 0.015 0.039 0.095
Log(Density) 0.116 0.011 0.092 0.137
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4.8 Supplementary information on method validation

In this section, we first provide more information on the validation of model results using storm-
inferred ground truth (in Section 5.2.3), in Supplementary Information 4.8.1. We further present
two additional validation techniques in Supplementary Information 4.8.2 and Supplementary Infor-
mation 4.8.3. Finally, we validate our estimated cumulative association of socioeconomic variables
with reporting rate against a measure of civic engagement – participation in voting – in Supple-
mentary Information 4.8.4.

4.8.1 Supplementary information on validation using reports after hurricanes

In Section 5.2.3, we validate our results using data immediately after Tropical Storm Isaias a↵ected
New York City, until 12 PM on 8/14/2020. Here we present results from similar analyses using data
on Isaias with di↵erent end-time filters and from Tropical Storm Ida (Supplementary Figure 10).
Note that we must filter for incidents only immediately after the storm, because new incidents, e.g.,
2 months after the event may not have been caused by the storm, as opposed to events immediately
after the storm.

For Tropical Storm Ida, we filter for service requests between 12 PM on 9/01/2021 and 12 PM on
various days, as specified in Supplementary Figure 11, and define the true reporting delay as the time
between the first report of an incident and 12 PM on 9/01/2021. We then estimate the reporting
delays, similarly using coe�cients on census tract and incident level variables. The individual
incident level Pearson correlation between true reporting delays and model-estimated reporting
delays is significant, while the means of them within each of the 30 bins defined on the model-
estimated reporting delays exhibit even stronger levels of correlation, as shown in Supplementary
Figure 11.

For other storm events that a↵ected New York City in recent years, no significant increase in
the amount of tree-related service requests was observed as in Supplementary Figure 12, and so we
limit our analyses to these two hurricanes.

4.8.2 Supplementary information on validation using delays between first and second
reports

Next, we use another form of validation: can our model predict (out-of-sample) true delays between
the first and second report between incidents? If reporting rates are homogeneous (not changing
over time for a given incident), then our model should be able to accurately recover these rates, and
the model would similarly be accurate for estimating the (unknown) delay before the first report. We
analyze service requests submitted to DPR from 9/1/2020 to 8/31/2022 (after the model training
data period). For each incident that received 2 or more service requests, we calculate the time
between the first and second reports and estimate their reporting delay using the spatial model.

Supplementary Information 4.8.2 shows the relationship between model-estimated delays and
observed delays between the first and second reports when model-estimated delays are binned.
There is a strong correlation, and predictions are approximately on the y = x line.

4.8.3 Supplementary information on using a training set starting from the second
report

In Section 5.2.3 and in Supplementary Information 4.8.1, the predictions were generated using the
results of the spatial model we presented in the main text. The training set used to obtain such
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results was constructed by defining the time of the first report as the start of our observation period,
as detailed in Supplementary Information 4.2.

However, our theoretical analysis also holds if we instead use as the Poisson interval the time
starting after the second report – if we split a Poisson process on the time of the first jump, and start
counting subsequent jumps at that time, the resulting counting process would still be a Poisson
process with the same rate. Thus, we can estimate the Poisson process rate using our methods,
starting with the second report time.11 However, crucially, we as researchers know for the incident
the time between the first and second report, which was not used to train the model (but which the
model is trying to predict). Intuitively, this procedure evaluates our methods in a setting in which
the ground truth is known.

Formalizing this idea, we further validate our empirical approach as follows. We first construct
a training set from the same raw public data introduced in Supplementary Information 4.7, with
the time of the second report as the start of our observation period, and the end of our observation
period defined analogous to Equation (33), but with 20, 30, and 50 days as the maximum duration.12

We then use this alternative training set to estimate the coe�cients for the set of Base covariates,
and then use these coe�cients to estimate a reporting delay for each incident. The reason we only
included the Base covariates is that the training set constructed in this way only retains 16,460
incidents, which makes it hard to estimate the e↵ect of high-dimensional covariates, such as the
census tract spatial variables. Finally, we compare these estimates to the observed time between
the first and second reports for each incident.

On the individual incident level, our estimates and the true delays between the first and second
reports are significantly correlated. Supplementary Figure 14 showcase a comparison of the means
when all incidents are binned according to their model-estimated delays. We note that though the
choice of the maximum duration of observation interval a↵ects the specific model predictions, all
three choices produced reasonable estimates that are close to the true delays on the group level.
(We use a smaller maximum duration as these incidents are on average higher risk, and we only
start counting after the second report).

4.8.4 Supplementary validation of census tract socioeconomic coe�cients estimates

The disparities in reporting behavior along socioeconomic variables highlight individual-level be-
havioral heterogeneity in resident crowdsourcing, and civic engagement at large. For example,
O’Brien et al. [28] use the reporting delay as part of their measure for the ‘civic response rate’, that
relates to other forms of activities as well. The level of civic engagement can be measured by many
other means, chief among which is participation in political voting. In this section, we validate our
coe�cient estimates on socioeconomic variables using this idea.

Voter-level public data on participation in voting is generally scarce in New York; however,
the NYC Campaign Finance Board published a dataset containing participation scores of more

11Formally, consider a Poisson process with rate �, denoted as {X(t), t � 0}, with the first jump time denoted as
T1. Based on the memoryless property of Poisson process jump times, the process {X(t)�1, t � T1} is still a Poisson
process with the same rate parameter (see e.g., [33]). Thus in our context, for an incident with type ✓, if we treat
the first report as the start of a Poisson process, treat the second report as equivalent to the first report, and count
duplicates starting at the third report, this reporting process is still a Poisson process with rate �✓, but now the start
of this process is observed.

12We note that in Theorem 1, we require the end of the observation period to be before incident death time. The
maximum duration is thus a design choice to alleviate the e↵ect of the incident being resolved before an inspection
or a work order. Using the time of the second report as the start of the observation interval requires us to set the
maximum duration at a smaller value compared to using the time of the first report, in order to have the equivalent
e↵ect. Furthermore, incidents with two or more reports are likely incidents with higher than average urgency, and
thus more likely to be resolved than outside sources, which further justifies the choice of shorter maximum duration.

31



than 4 million voters calculated based on their voting history from 2008 up to 2018, along with the
census tract in which they resided in 2010.13 We calculate cumulative association scores 14) for each
2010 census tract, using the corresponding census data. We compare these scores with the average
voter participation score in each tract.Our model-estimated mean engagement score is significantly
correlated with the mean voter participation score as shown in Supplementary Figure 15. This
shows that our estimated disparities in 311 system usage relate to other forms of civic participation
and representation.

13https://data.cityofnewyork.us/City-Government/Voter-Analysis-2008-2018/psx2-aqx3
14Since we are focusing on individual-level behavior, for that figure and this analysis we do not use the density

variable, as that does not reflect individual-level characteristics, and only use the remaining five: Median age, Fraction
white, Fraction college degree, Fraction renter, log of per capita income

32

https://data.cityofnewyork.us/City-Government/Voter-Analysis-2008-2018/psx2-aqx3


(a) Filter for reports before 12 PM on 8/13/2020.(b) Filter for reports before 12 PM on 8/12/2020.

(c) Filter for reports before 12 PM on 8/11/2020.(d) Filter for reports before 12 PM on 8/10/2020.

Supplementary Figure 10: Replication of Figure 2 using data with di↵erent filtering for the end
date. (a) Individual incident level Pearson r = 0.196 (Beta(3956.5, 3956.5) = 0.598, P < 0.001), bin
level Pearson r = 0.925 (Beta(14, 14) = 0.962, P < 0.001). (b) Individual incident level Pearson r =
0.192 (Beta(3779, 3779) = 0.596, P < 0.001), bin level Pearson r = 0.945 (Beta(14, 14) = 0.973, P <
0.001). (c) Individual incident level Pearson r = 0.176 (Beta(3526.5, 3526.5) = 0.590, P < 0.001),
bin level Pearson r = 0.930 (Beta(14, 14) = 0.965, P < 0.001).(d) Individual incident level Pearson
r = 0.159 (Beta(3321.5, 3321.5) = 0.579, P < 0.001), bin level Pearson r = 0.874 (Beta(14, 14) =
0.937, P < 0.001).
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(a) Filter for reports before 12 PM on 9/10/2021. (b) Filter for reports before 12 PM on 9/9/2021.

(c) Filter for reports before 12 PM on 9/8/2021. (d) Filter for reports before 12 PM on 9/7/2021.

Supplementary Figure 11: Replication of Figure 2 using data after Tropical Storm Ida, with di↵erent
end date specifications. (a) Individual incident level Pearson r = 0.222 (Beta(679.5, 679.5) =
0.598, P < 0.001), bin level Pearson r = 0.576 (Beta(14, 14) = 0.788, P < 0.001). (b) Individual
incident level Pearson r = 0.226 (Beta(626, 626) = 0.613, P < 0.001), bin level Pearson r = 0.689
(Beta(14, 14) = 0.845, P < 0.001). (c) Individual incident level Pearson r = 0.228 (Beta(552, 552) =
0.614, P < 0.001), bin level Pearson r = 0.518 (Beta(14, 14) = 0.759, P = 0.003). (d) Individual
incident level Pearson r = 0.159 (Beta(477.5, 477.5) = 0.580, P < 0.001), bin level Pearson r =
0.446 (Beta(14, 14) = 0.723, P = 0.013).
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(a) Histogram of reporting delay after Isaias. (b) Histogram of reporting delay after Ida.

Supplementary Figure 12: Histogram of reporting delays of unique incidents after Isaias and Ida.
After each hurricane, we immediately observe a surge in reported incidents.

Supplementary Figure 13: Comparison of observed delay between first and second reports and
model estimated reporting delays, based on data between 9/1/2020 and 8/31/2022. Model-
estimated delays are obtained using the spatial model. All incidents are categorized into 30 bins
based on their estimated reporting delays, and we calculate the means of true and estimated delays
within each bin. Individual level Pearson r = 0.21 (Beta(3802, 3802) = 0.604, P < 0.001), bin level
Pearson r = 0.931 (Beta(14, 14) = 0.965, P < 0.001)
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(a) Maximum duration 20 days. (b) Maximum duration 30 days. (c) Maximum duration 50 days.

Supplementary Figure 14: Comparison of observed delays between first and second reports and
model-estimated reporting delays, which are estimated using a model trained with data constructed
by defining the start of the observation interval as the time of the second report, and the end as
in Equation (33), but with maximum duration set as 20 days, 30 days, and 50 days, respec-
tively. All incidents are then categorized into 30 bins based on their model-estimated reporting
delays, and we calculate the means of true and estimated delays within each bin. (a) Individ-
ual incident level Pearson r = 0.295 (Beta(6781.5, 6781.5) = 0.648, P < 0.001), bin level Pearson
r = 0.905 (Beta(14, 14) = 0.952, P < 0.001). (b) Individual incident level Pearson r = 0.292
(Beta(6781.5, 6781.5) = 0.646, P < 0.001), bin level Pearson r = 0.967 (Beta(14, 14) = 0.983, P <
0.001). (c) Individual incident level Pearson r = 0.261 (Beta(6781.5, 6781.5) = 0.631, P < 0.001),
bin level Pearson r = 0.962 (Beta(14, 14) = 0.981, P < 0.001).

Supplementary Figure 15: Relationship between voter participation rates in a census tract, and
our model estimated cumulative association of socioeconomic variables with reporting rate. At the
bin level, Pearson r = 0.861 (Beta(19, 19) = 0.930, P < 0.001)
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4.9 Additional information for comparative delay analysis

In this section, we present results with alternative analysis choices for applications of reporting
delay quantification: imputing missing values (with infinite delays), other risk levels, analyzing by
request category instead of risk prioritization level, and analyzing all incidents instead of the subset
that was inspected or worked on; results are qualitatively similar.

For each unique incident, inspection delays are measured as the time between the first inspection
(if it was inspected) and the first service request for that incident; work order delays are measured
as the time between actually finishing the work order (if it was completed) and first inspection;
reporting delays are estimated – for each incident, we estimate the mean of an Exponential random
variable with reporting rate our model estimates for an incident of the given characteristics. In
this plot, we only consider incidents that are inspected, and ignore missing values; in each Borough
over 89% of such high-risk inspected incidents eventually have a completed work order.

Similar to analyses in the main text, we present results with other risk prioritization groups.

Supplementary Figure 16: Same as Figure 3a (highest risk prioritization A) except with incomplete
work orders imputed as having infinite delays

(a) Risk prioritization B (b) Risk prioritization C

Supplementary Figure 17: Same as Figure 3a (highest risk prioritization, not imputed missing
values) except for other risk prioritization levels. Risk prioritization group D is omitted due to a
low percentage of incidents that eventually got worked on.

37



(a) Hazard delays (b) Hazard fraction addressed

Supplementary Figure 18: We repeat the analysis except, instead of separating out by Risk priori-
tization level, we separately analyze each report-time Service Request Category (here, we show the
Hazard category. Since we have this feature for all service requests (not just those inspected, as in
the case where we use the risk prioritization covariate), we can (1) estimate reporting delays for all
incidents after training a model using just report-time incidents (but on the inspected set, due to
labeling of duplicates; and (2) we can also report the fraction of incidents of this category that were
inspected and worked on, respectively, as we do in (b). We get qualitatively similar results as in the
main text: the ordering of Borough end-to-end delays (as well as their individual parts) is about
the same. The same Boroughs with higher work order delays just counting the incidents that were
actually worked on (Staten Island, Bronx, Brooklyn) also have lower fractions of incidents that
were addressed. Figure (a) does not impute missing values, since (b) reports the fraction inspected
and worked on, respectively.
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(a) Illegal tree damage delays (b) Illegal tree damage fraction
addressed

(c) Prune delays (d) Prune fraction addressed

(e) Remove Tree delays (f) Remove Tree fraction
addressed

(g) Root/Sewer/Sidewalk delays (h) Root/Sewer/Sidewalk fraction
addressed

Supplementary Figure 19: Same as Supplementary Figure 18 with other Service Reqest Categories.
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(a) Risk prioritization B (b) Risk prioritization C

Supplementary Figure 20: Same as Figure 3b except for other risk prioritization levels. Risk
prioritization group D is omitted due to a low percentage of incidents that eventually got worked
on.
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4.10 Preprocessing for Chicago dataset

In this section, we detail the preprocessing done on the Chicago dataset before model training.
For each request, we also have location and incident-level covariates. We further observe whether

and when this service request is marked as ‘completed’, ‘open’ or ‘canceled’, and whether this is a
duplicate request; if the request is indeed a duplicate, CDOT and CDWMmark which other requests
refer to the same incident. At most three timestamps are associated with each service request:
for ‘open’ service requests, we observe the created time and last modified time; for ‘completed’
and ‘canceled’ service requests, we further observe the closed time. One crucial di↵erence in the
Chicago dataset, compared with New York City, is that duplicate reports on “open” incidents are
also marked. This requires di↵erent treatments in constructing observation intervals, as we detail
below.

Constructing an observation interval (Si, Ei] For Chicago reports, we make the following
choice. Let t̃i be the first time an incident is reported, tCLOSED

i be the time an incident is marked
closed, and t̄ be the time that we retrieved the dataset (and that it was last updated), 7/4/2022 at
21:40 EDT. Then, Ei of each incident i is:

Ei = min
�
100 days + t̃i, tCLOSED

i , t̄
 
. (34)

The choice of adding t̄ ensures that for “open” incidents, the observation interval is not overly
long, which could bias our estimates for the reporting rate downward.

Though the Chicago dataset contains reports that were generated as early as 7/1/2018, it
was not until 2/27/2019 that reports started to have a closed time associated with them15. As
a consequence, we filter out any reports made prior to 3/1/2019 and filter out “E-scooter” and
“Vehicle Parked in Bike Lane Complaint” incidents, for which no duplicates are marked. After
this, we are left with 949,352 reports, which represent 698,365 unique incidents. Supplementary
Table 21 lists some summary statistics of this dataset at this stage. We further filter out any
incidents that have a negative or extremely short (< 0.01 days) observation interval. These most
likely represent human errors in logging the time. This leaves us with a total of 575,882 unique
incidents.

Covariate selection and processing Next, we select the covariates that compose type ✓. Simi-
lar to the NYC dataset, most service requests in Chicago come with latitude-longitude coordinates,
using which we identified which of the over 2,000 census block groups in Chicago this incident is
in, through the FCC API. The reason we used census block groups in Chicago instead of census
tracts, which were used in NYC, is that the Chicago dataset contains far more incidents to allow
finer-grained analyses; further, there are approximately as many census block groups in Chicago
as there are census tracts in NYC. We then join this information with the 2020 Census Data from
IPUMS NHGIS. Finally, we log transform several variables, filter out the incidents for which any
of the covariates are missing, and standardize all data. During this process, we filter out 10,452
incidents (1.80% of the total number of incidents), due to either missing covariates or unable to
match them to census tracts, and are left with 565,430 unique incidents for our further analysis,
which represent 794,132 unique service requests. Supplementary Figure 21a shows the histogram

15In private correspondence with the team responsible for the maintenance of this dataset, they pointed out that
the current version of the 311 system went live on 12/18/2018, and that the loss of data is likely due to both migration
of data from an older version of the system and not correctly logging data at the very beginning of the current version.
However, they also confirmed that beyond 2/28/2019, the integrity of data should not be a concern.
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Supplementary Table 21: Summary statistics from the Chicago dataset, after filtering out service
requests prior to 2019/03/01 and categories with no duplicates. There are a total of 28 categories
and we selected the top 15 in terms of number of reports. We note that the variation in median days
to completion is large in this dataset, and some categories have extremely short completion time.
The subsequent filtering of incidents with short duration addresses the concern for mislabeling
incidents as completed.

Service
requests

Completions
Incidents

(from all reports)
Completed

SRs
Percentage
completed

Unique
incidents

Avg. reports
per incident

Median Days
to Completion

Total number 949,352 853,989 0.9 698,365 1.36 6.676
By Owner Department

CDOT 789,063 720,925 0.91 559,777 1.41 6.783
CDWM 160,289 133,064 0.83 138,969 1.15 5.704

By Top 15 Categories
Street Light Out Complaint 225,408 209,441 0.93 122,302 1.84 9.786
Pothole in Street Complaint 200,132 189,879 0.95 138,832 1.44 10.450

Sign Repair Request - All Other Signs 96,019 88,775 0.92 91,295 1.05 0.002
Tra�c Signal Out Complaint 75,828 69,443 0.92 58,705 1.29 0.283

Alley Light Out Complaint 53,010 49,329 0.93 31,831 1.67 65.671
Sewer Cleaning Inspection Request 39,120 34,390 0.88 36,056 1.08 24.965

Alley Pothole Complaint 36,333 33,981 0.94 25,528 1.42 28.973
Water On Street Complaint 29,494 25,605 0.87 26,048 1.13 5.517
Sidewalk Inspection Request 25,515 9,821 0.38 21,724 1.17 323.228

Open Fire Hydrant Complaint 25,105 21,103 0.84 15,548 1.61 0.313
Sewer Cave-In Inspection Request 22,308 18,301 0.82 21,300 1.05 58.093

Snow – Uncleared Sidewalk Complaint 19,532 18,519 0.95 17,338 1.13 6.810
Water in Basement Complaint 16,952 15,563 0.92 16,292 1.04 0.821

Sign Repair Request - Stop Sign 16,850 16,746 0.99 16,023 1.05 0.128
Street Light Pole Damage Complaint 16,171 14,393 0.89 15,194 1.06 1.204

of the number of reports per incident during the observation interval; Supplementary Figure 21b
shows the distribution of durations. Supplementary Table 22 lists the covariates we use.

Sampling the dataset for tractability Due to computational constraints, when training the
Stan models on Chicago data, we randomly sample 100,000 incidents for each model run.

4.11 Results from Chicago dataset

In this section, we provide results from applying our methods to the Chicago dataset. Supplemen-
tary Figure 22 confirms the posterior samples from the zero-inflated model with Base variables
reasonably match the observed distribution; Supplementary Table 23 lists the coe�cients for the
set of Base variables; Supplementary Figure 7b illustrates the coe�cients on census tract Spatial
covariates; Supplementary Table 26 and Supplementary Table 28 show the coe�cients on census
tract Socioeconomic covariates.
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(a) Number of reports per incident. (b) Length of observation period.

Supplementary Figure 21: Distribution of number of reports and length of observation for each
unique incident in the Chicago aggregated dataset. For most incidents, there are no reports after
the first report (at least not in the observation period). There is one incident not included in the
histogram of number of reports that attracted 162 reports, which happened to be a malfunctioning
tra�c light at a busy junction. There is a peak at 100 days for the observation period, due to our
configuration in Equation (34).

Supplementary Table 22: Description of covariates in the Chicago aggregated dataset

Covariate Description
Incident Global ID An identifier unique to each incident.
Duration The observation duration as defined in Equation (34)
Owner Department Which department (CDOT or DWM) the service request is directed to.
Service Request Type The incident type as reported.
Created Month The month that the first report of each incident came in.
Census Block Group Which census block group the incident occurred in as reported.
Median Age Median age in the census block group.
Fraction Hispanic Fraction of residents that identify as Hispanic in the census block group.
Fraction white Fraction of residents that identify as white in the census block group.
Fraction Black Fraction of residents that identify as Black in the census block group.
Fraction no high school degree Fraction of residents that have not graduated from high school in the census block group.
Fraction college degree Fraction of residents that have graduated from college in the census block group.
Fraction poverty Fraction of residents that are identified to be in poverty in the census block group.
Fraction renter Fraction of residents that rent their current residence in the census block group.
Fraction family Fraction of family household in the census block group.
Median household value Median value of household in the census block group.
Income per capita Income per capita of residents in the census block group.
Density Population density in the census block group.
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Supplementary Figure 22: Comparison between posterior distributions sampled from the Zero-
inflated Poisson regression model and the observed distribution in the data. The left-hand side
plot is in log scale for the y axis, while the right-hand side plot is in the natural scale. The
posterior samples reasonably match the observed distribution. Note that due to sampling of the
full dataset, the observed distribution is not entirely the same as in Supplementary Figure 21a.
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Supplementary Table 23: Regression coe�cients for Base variables in Chicago, for Max Duration
100 days

Mean StdDev R hat

Intercept -4.053 0.061 1.0
Zero Inflation fraction 0.539 0.003 1.0
Category[Sewer Cave-In Inspection Request] -1.645 0.094 1.0
Category[Water On Street Complaint] 0.523 0.078 1.0
Category[Water in Basement Complaint] 0.627 0.115 1.0
Category[Alley Sewer Inspection Request] -0.908 0.127 1.0
Category[Sewer Cleaning Inspection Request] -1.018 0.074 1.0
Category[Pavement Cave-In Inspection Request] -2.996 1.122 1.0
Category[Protected Bike Lane - Debris Removal] -0.308 0.285 1.0
Category[Sidewalk Inspection Request] -2.246 0.106 1.0
Category[Sign Repair Request - Stop Sign] 2.764 0.111 1.0
Category[Sign Repair Request - One Way Sign] 2.147 0.212 1.0
Category[Sign Repair Request - Do Not Enter Sign] 1.080 0.474 1.0
Category[Sign Repair Request - All Other Signs] -1.413 0.077 1.0
Category[Bicycle Request/Complaint] -0.878 0.184 1.0
Category[Alley Pothole Complaint] 0.265 0.067 1.0
Category[Pothole in Street Complaint] 0.831 0.062 1.0
Category[Alley Light Out Complaint] 0.383 0.064 1.0
Category[Tra�c Signal Out Complaint] 2.569 0.064 1.0
Category[Viaduct Light Out Complaint] -0.491 0.163 1.0
Category[Street Light Out Complaint] 1.767 0.061 1.0
Category[Street Light Pole Damage Complaint] 0.680 0.117 1.0
Category[Street Light On During Day Complaint] -0.267 0.106 1.0
Category[Street Light Pole Door Missing Complaint] -2.499 0.280 1.0
Category[Snow Removal - Protected Bike Lane or ... -2.457 0.813 1.0
Category[Snow – Uncleared Sidewalk Complaint] 0.286 0.086 1.0
Category[No Water Complaint] 2.433 0.124 1.0
Category[Low Water Pressure Complaint] -0.961 0.168 1.0
Category[Open Fire Hydrant Complaint] 4.221 0.065 1.0
Category[Water Quality Concern] -2.491 0.397 1.0
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Supplementary Table 24: Regression coe�cients for Base variables in Chicago, for Max Duration
30 days

Mean StdDev R hat

Intercept -3.308 0.048 1.0
Zero Inflation fraction 0.620 0.003 1.0
Category[Sewer Cave-In Inspection Request] -1.356 0.089 1.0
Category[Water On Street Complaint] 0.592 0.069 1.0
Category[Water in Basement Complaint] 0.782 0.109 1.0
Category[Alley Sewer Inspection Request] -0.373 0.116 1.0
Category[Sewer Cleaning Inspection Request] -0.733 0.065 1.0
Category[Pavement Cave-In Inspection Request] -1.494 0.664 1.0
Category[Protected Bike Lane - Debris Removal] -0.219 0.344 1.0
Category[Sidewalk Inspection Request] -2.156 0.120 1.0
Category[Sign Repair Request - Stop Sign] 2.514 0.094 1.0
Category[Sign Repair Request - One Way Sign] 1.666 0.222 1.0
Category[Sign Repair Request - Do Not Enter Sign] 0.194 0.500 1.0
Category[Sign Repair Request - All Other Signs] -1.189 0.068 1.0
Category[Bicycle Request/Complaint] -0.317 0.166 1.0
Category[Alley Pothole Complaint] 0.086 0.060 1.0
Category[Pothole in Street Complaint] 0.542 0.050 1.0
Category[Alley Light Out Complaint] 0.070 0.054 1.0
Category[Tra�c Signal Out Complaint] 2.733 0.051 1.0
Category[Viaduct Light Out Complaint] -0.639 0.183 1.0
Category[Street Light Out Complaint] 1.490 0.049 1.0
Category[Street Light Pole Damage Complaint] 0.190 0.118 1.0
Category[Street Light On During Day Complaint] -0.968 0.124 1.0
Category[Street Light Pole Door Missing Complaint] -1.309 0.222 1.0
Category[Snow Removal - Protected Bike Lane or ... -1.584 0.562 1.0
Category[Snow – Uncleared Sidewalk Complaint] 0.037 0.076 1.0
Category[No Water Complaint] 1.849 0.110 1.0
Category[Low Water Pressure Complaint] -1.258 0.184 1.0
Category[Open Fire Hydrant Complaint] 3.686 0.055 1.0
Category[Water Quality Concern] -2.835 0.597 1.0
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Supplementary Table 25: Regression coe�cients for Base variables in Chicago, for Max Duration
200 days

Mean StdDev R hat

Intercept -4.448 0.082 1.0
Zero Inflation fraction 0.496 0.003 1.0
Category[Sewer Cave-In Inspection Request] -1.537 0.107 1.0
Category[Water On Street Complaint] 0.448 0.094 1.0
Category[Water in Basement Complaint] 1.050 0.113 1.0
Category[Alley Sewer Inspection Request] -0.823 0.140 1.0
Category[Sewer Cleaning Inspection Request] -1.081 0.092 1.0
Category[Pavement Cave-In Inspection Request] -2.813 1.231 1.0
Category[Protected Bike Lane - Debris Removal] 0.070 0.340 1.0
Category[Sidewalk Inspection Request] -2.287 0.111 1.0
Category[Sign Repair Request - Stop Sign] 2.458 0.113 1.0
Category[Sign Repair Request - One Way Sign] 2.830 0.202 1.0
Category[Sign Repair Request - Do Not Enter Sign] -1.655 0.933 1.0
Category[Sign Repair Request - All Other Signs] -1.418 0.094 1.0
Category[Bicycle Request/Complaint] -1.372 0.189 1.0
Category[Alley Pothole Complaint] 0.378 0.085 1.0
Category[Pothole in Street Complaint] 0.976 0.082 1.0
Category[Alley Light Out Complaint] 0.515 0.084 1.0
Category[Tra�c Signal Out Complaint] 2.661 0.083 1.0
Category[Viaduct Light Out Complaint] -0.298 0.152 1.0
Category[Street Light Out Complaint] 2.026 0.082 1.0
Category[Street Light Pole Damage Complaint] 0.987 0.124 1.0
Category[Street Light On During Day Complaint] -0.668 0.118 1.0
Category[Street Light Pole Door Missing Complaint] -1.728 0.188 1.0
Category[Snow Removal - Protected Bike Lane or ... -2.747 1.161 1.0
Category[Snow – Uncleared Sidewalk Complaint] 0.877 0.099 1.0
Category[No Water Complaint] 2.342 0.131 1.0
Category[Low Water Pressure Complaint] -0.877 0.186 1.0
Category[Open Fire Hydrant Complaint] 4.165 0.085 1.0
Category[Water Quality Concern] -2.479 0.426 1.0
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Supplementary Table 26: Census Block Group Socio-economic coe�cients in Chicago, estimated
alone in a regression alongside the incident-specific covariates.

Mean StdDev 2.5% 97.5%

Median age -0.017 0.005 -0.028 -0.007
Fraction Hispanic 0.063 0.005 0.053 0.073
Fraction white 0.000 0.006 -0.011 0.011
Fraction Black -0.022 0.005 -0.033 -0.012
Fraction no high school degree 0.051 0.005 0.040 0.060
Fraction college degree -0.051 0.006 -0.063 -0.041
Fraction poverty 0.011 0.005 -0.001 0.020
Fraction renter -0.008 0.006 -0.020 0.003
Fraction family 0.029 0.006 0.017 0.039
Log(Median house value) -0.056 0.007 -0.069 -0.044
Log(Income per capita) -0.051 0.005 -0.063 -0.041
Log(Density) 0.070 0.005 0.059 0.081

Supplementary Table 27: Census Block Group Socio-economic coe�cients in Chicago, estimated
together in a regression alongside the incident-level covariates.

Mean StdDev 2.5% 97.5%

Median age -0.009 0.003 -0.015 -0.004
Fraction white 0.017 0.003 0.010 0.023
Fraction college degree -0.054 0.006 -0.066 -0.042
Fraction renter -0.006 0.003 -0.011 -0.001
Log(Income per capita) -0.003 0.006 -0.015 0.009

Supplementary Table 28: Census Block Group Socio-economic coe�cients in Chicago, estimated
together in a regression alongside the incident-level covariates. Compared to Supplementary Ta-
ble 27, we further control for log population density, which only a↵ects the direction of association
of median age.

Mean StdDev 2.5% 97.5%

Median age 0.008 0.006 -0.004 0.019
Fraction white 0.021 0.007 0.007 0.035
Fraction college degree -0.037 0.011 -0.059 -0.015
Fraction renter -0.037 0.006 -0.051 -0.025
Log(Income per capita) -0.056 0.012 -0.081 -0.035
Log(Density) 0.091 0.006 0.078 0.101
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4.12 Supplementary Algorithm 1

functions {// Using reduce sum fo r wi th in−chain p a r a l l e l p roce s s ing .
// func t i on f o r c a l c u l a t i n g the log− l i k e l i h o o d
real par t i a l sum lpmf ( int [ ] y s l i c e ,

int s ta r t , int end ,
matrix X tota l ,
vector l ogdurat ion ,
vector be t a t o t a l , real t h e t a z e r o i n f l a t i o n ) {

int Nloc = end − s t a r t ;
real l o c a l t a r g e t = 0 ;
// two cases f o r c a l c u l a t i o n r e f l e c t i n g zero− i n f l a t i o n
for (n in 1 : Nloc+1) {

int ind = s t a r t + n − 1 ;
i f ( y s l i c e [ n ] == 0) {

l o c a l t a r g e t +=
log sum exp (bernoulli lpmf (1 | t h e t a z e r o i n f l a t i o n ) ,

bernoulli lpmf (0 | t h e t a z e r o i n f l a t i o n )
+ po i s s on l og g lm lpmf ( y s l i c e [ n ] | X tota l [ ind : ind , : ] ,

l ogdura t i on [ ind : ind ] , b e t a t o t a l )
) ;

} else {

l o c a l t a r g e t +=
bernoulli lpmf (0 | t h e t a z e r o i n f l a t i o n )

+ po i s s on l og g lm lpmf ( y s l i c e [ n ] | X tota l [ ind : ind , : ] ,
ogdurat ion [ ind : ind ] , b e t a t o t a l

) ;
}

}

return l o c a l t a r g e t ;
}

}

data {// Define v a r i a b l e s in data
int<lower=0> N inc ident s ; // number o f o b s e r va t i on s
int<lower=0> cova r i a t e mat r i x w id th ; // cova r i a t e matrix width
// des i gn matrix f o r o ther c o va r i a t e s
matrix [ N inc idents , c ova r i a t e mat r i x w id th ] X;
vector<lower=1,upper=1>[N inc iden t s ] ones ; // vec t o r o f ones
int<lower=0> N category ; // number o f c a t e g o r i e s
int<lower=0> N tract ; // number o f t r a c t s
int<lower=0> N edges ; // t r a c t adjacency matrix number o f edges
// node1 [ i ] ad jacen t to node2 [ i ]
int<lower=1, upper=N tract> node1 [ N edges ] ;
// and node1 [ i ] < node2 [ i ]
int<lower=1, upper=N tract> node2 [ N edges ] ;
// des i gn matrix f o r ca tegory
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matrix [ N inc idents , N category ] X category ;
matrix [ N inc idents , N tract ] X tract ; // des i gn matrix f o r t r a c t
vector<lower=0>[N inc iden t s ] durat ion ; // a l i v e time f o r i n c i d en t
// count outcome − du p l i c a t e s f o r the i n c i d en t
int<lower=0> y [ N inc ident s ] ;

}

transformed data {// Transform fo r su c c in c tne s s and b e t t e r performance
vector [ N inc iden t s ] l ogdura t i on ; // l o g o f dura t ion
l ogdura t i on = log ( durat ion ) ;
// t o t a l des i gn matrix
matrix [ N inc idents , 1 + N tract +

cova r i a t e mat r i x w id th + N category ] X tota l ;
X tota l = append col (append col (append col ( ones ,

X tract ) , X category ) , X) ;
}

parameters {// Define parameters to e s t imate
vector [ N tract − 1 ] b e t a t r a c t r aw ; // c o e f f i c e n t s f o r t r a c t
vector [ N category −1] be ta category raw ; // c o e f f i c i e n t s f o r ca tegory
// c o e f f i c e n t s f o r o ther c o va r i a t e s in the model
vector [ c ova r i a t e mat r i x w id th ] beta ;
real i n t e r c e p t ; // i n t e r c e p t term in the model
// zero i n f l a t i o n parameter
real<lower=0, upper=1> t h e t a z e r o i n f l a t i o n ;

}

transformed parameters {// Transform parameters f o r b e t t e r performance
vector [ N tract ] b e t a t r a c t ; // c o e f f i c e n t s f o r t r a c t
vector [ N category ] be ta ca t ego ry ; // c o e f f i c i e n t s f o r ca tegory
// f u l l c o e f f i c i e n t v e c t o r
vector [ 1 + N tract + covar i a t e mat r i x w id th + N category ] b e t a t o t a l ;
// zero cen t e r ing c o e f f i c i e n t s
be ta ca t ego ry = append row( beta category raw ,

−sum( be ta category raw ) ) ;
// zero cen t e r ing c o e f f i c i e n t s
be t a t r a c t = append row( be ta t rac t raw ,

−sum( b e t a t r a c t r aw ) ) ;
// combine c o e f f i c i e n t v e c t o r s to g e t f u l l c o e f f i c i e n t v e c t o r
b e t a t o t a l = append row(append row(append row( i n t e r c ep t ,

b e t a t r a c t ) , be ta ca t ego ry ) , beta ) ;
}

model {// Prior par t o f Bayesian in f e r ence
be t a t r a c t ˜ normal (0 , 1 ) ;
be ta ca t ego ry ˜ normal (0 , 2∗ inv ( sqrt (1 − inv ( N category ) ) ) ) ;
beta ˜ normal (0 , 1 ) ;
i n t e r c e p t ˜ normal (0 , 5 ) ;
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// Use reduce sum to c a l c u l a t e the t a r g e t l i k e l i h o o d
int g r a i n s i z e = 1 ;
target += reduce sum (

part ia l sum lpmf , y , g r a i n s i z e , X tota l ,
l ogdurat ion , b e t a t o t a l , t h e t a z e r o i n f l a t i o n
) ;

// add adjacency p r i o r s to b e t a t r a c t
target += −5 ∗ dot sel f ( b e t a t r a c t [ node1 ] − be t a t r a c t [ node2 ] ) ;

}
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