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1 Supplementary figures
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Supplementary Figure 1: The time evolution of the mean of the energy V for polymer dynamics.
(A) fast trajectory; (B) medium trajectory; (C) slow trajectory.
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Supplementary Figure 2: Detailed S-OnsagerNet workflow. The input data X(t) =
(X1(t), · · · , XD(t))

T ∈ RD are the microscopic coordinates. The red box contains the components that
discovers reduced coordinates Z(t) = (Z∗(t), Ẑ(t))T = (Z1(t), · · · , Zd(t))

T ∈ Rd, where ϕ∗ is known, and
ϕ̂ is PCA-ResNet with Pd the PCA projection matrix (to the first d − 1 principal components). The
blue box encloses the main S-OnsagerNet architecture to learn the low dimensional stochastic dynamical
system. The function ψ is a decoder neural network with output X̃, where P †

d is the pseudo-inverse of
Pd. The reconstruction error lossRec and the maximum likelihood loss lossMLE are combined to obtain
the total loss
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Supplementary Figure 3: Schematic of experimental setup. (A) Top: Schematic of the experimental
setup, consisting of a microfluidic cross-slot device and electrodes in the North, South, East and West
reservoirs. V1 and V2 are computer-controlled voltages based on a feedback control system. Center:
Negatively charged DNA molecules flow through the cross-slot channel according to the electric field lines.
The blue circle represents an object at the saddle point. Bottom left, right: A proportional gain controller
is used to trap and stretch a DNA molecule at the saddle point for long observation times in a planar
elongational field. (B) Photo of microfluidic device sitting atop the microscope stage and arrangement of
electrodes in the reservoirs. (C) Snapshots of a DNA molecule stretching under an elongational field.

Supplementary Figure 4: Data filtering process for experimental images. Image processing pipeline,
showing the steps for obtaining a clean molecule image from a raw camera frame in real time. The clean
image (bottom-left) is used to calculate molecule centroid coordinates and projection lengths in both axes.
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Supplementary Figure 5: Obtaining extension length (A), end-to-end distance (B) and folded-
ness (C) from experimental image with center of mass rcm, and two end points.

Supplementary Figure 6: Predicted stretching trajectories and statistics for 610 training trajec-
tories (up) and 110 test trajectories (down): true data (black) and model prediction (red).
(A,E) Individual stretching trajectories of polymer chains from the different initial condition. (B,F) Mean
and (C,G) standard deviations of polymer chain extensions. (D,H) Probability density function (PDF)
of the chain unfolding times.
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Supplementary Figure 7: Learned reduced coordinates. Evolution of (A) chain extension (Z1),
(B) first learned coordinate (Z2, indicator of end-to-end distance) and (C) second learned coordinate
(Z3, indicator of foldedness) with time. The trajectories are colored by the chain unfolding times, red:
tunfold < 2000; blue: 2000 ≤ tunfold < 4000; cyan: 4000 ≤ tunfold < 6000 ; magenta: 6000 ≤ tunfold < 8000
; yellow: tunfold ≥ 8000.
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Supplementary Figure 8: Stretching trajectories for polymer chains in the (A) folded and (B)
dumbbell states. The chain configurations were identified as described by Perkins et al. There is a large
range of unfolding times within a given configuration type, hence the classification of chain configuration
is insufficient for prediction purposes.
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Supplementary Figure 9: Consistency with configuration categorization scheme in current lit-
erature. Plot of |Z3| as a function of |Z2| for folded and dumbbell configurations at (A) Z1 = 60, (B)
Z1 = 80 and (C) Z1 = 100. The markers are colored by the predicted chain unfolding times. The boxed
region with high |Z2| and low |Z3| values encompasses a mix of folded and dumbbell chains with similar
unfolding times, indicating that the broad categorization scheme is unable to provide accurate predictions.
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Supplementary Figure 10: Illustration of the limitation of a 2-dimensional potential landscape.
Due to the stability of the unfolded state, the vector fields around the curve Γ point inwards towards the
interior, so the index of Γ is +1. However, this contradicts the presence of two stable critical points inside
Γ, which implies that its index is +2.
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Supplementary Figure 11: Trajectories and potential landscapes for different percentages of
training data. The full dataset, as used in the rest of this work, contains 610 trajectories. In order
to evaluate the impact of dataset size on prediction results, the S-OnsagerNet was trained using (A)
25%, (B) 50% and (C) 75% of the 610 trajectories. The datasets in (A) and (C) (top) do not have
shared trajectories, whilst the dataset (B) (top) contains data from both the 25% and 75% datasets.
The potential landscapes (bottom) resulting from training with the different number of trajectories are
plotted for Z1 vs Z2. It can be observed that each contains the characteristic features of the potential
landscape discussed for the full dataset, with two areas of near-zero potential when the DNA reaches the
steady-state, and the emergence of a saddle point around Z1 ≈ 110.
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2 Supplementary tables

Supplementary Table 1: Variation in prediction error with number of reduced dimensions. Note that the
dimension here includes the chosen macroscopic coordinate corresponding to polymer extension length.

relative L2 error of training/test data (%)

Dimension mean standard derivation PDF of unfolding time

2D 0.7927/2.086 13.40/32.96 12.63/17.43

3D 0.2828/1.861 3.147/6.057 5.717/12.42

4D 0.4363/1.363 9.329/30.62 3.041/10.52

Supplementary Table 2: Variation in test prediction error of 3D model with the number of trajectories in
the training data. We group the test trajectories into three categories (fast, medium, slow) according to
their rate of stretching.

relative test L2 error of mean/ standard derivation /pdf of unfolding time (%)

Number of trajectories fast medium slow

153 (25%) 0.246/11.38/26.37 6.749/27.51/44.80 9.666/55.33/33.81

305 (50%) 2.504/23.52/72.49 2.967/12.03/19.63 3.404/8.438/14.06

457 (75%) 1.206/16.91/26.34 6.581/35.28/34.80 2.120/8.866/15.56

610 (100 %) 0.388 /13.06/15.95 2.101/9.227/20.18 2.027/7.121/13.42
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