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Supplementary Section 1: Deep distilling algorithm description and pseudocode 
 

The following two pages contain an overview of the deep distilling algorithm and its various 
parts. The pseudocode gives an outline of how an ENN is trained, condensed, and then written as 
code. Brief descriptions of these seven functions are below. 

1. DeepDistilling: The overall workflow for the deep distilling algorithm 
2. TrainENN: The method by which a basic ENN is trained, as previously described (16) 
3. LearnSubconcepts: The two new semi-supervised methods for clustering training data 

into subconcepts 
4. CondenseENN: The overall workflow to condense an ENN 
5. OrganizeNeurons: The method by which the neurons in an ENN layer are organized into 

groups based upon similar connectivity in order to enable the creation of for-loops 
6. InterpretFunction: The method by which a group’s connectivity pattern is analyzed for 

various types of logical functions with or without condensed variables in order to provide 
interpretability to the weighted-sum representation of neuron data-processing 

7. WriteCode: The method by which the condensed ENN (consisting of functions and neuron 
groups) is turned into computer code. 
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1. function DEEPD I ST ILLING (samples, labels) 
 
 enn ¬ TRAINENN(samples, labels) 
 code ¬ CONDENSEENN(enn, shape(samples[0])) 
 print code to an output file 
 
 
2. function TRAINENN(samples, labels): 
 
 //Set up concepts 
 conceptLabels ¬ unique values in labels 
 concepts ¬ [] 
 for each label in conceptLabels 
  concept = set with indices of labels that match label 
  concepts.push(concept) 
 
 //Unsupervised learning of subconcepts 
 subconcepts ¬ LEARNSUBCONCEPTS (samples, concepts) 

 
 //Supervised learning of differentia neurons 
 diffLayer ¬ {weights:[], biases:[]} 
 for each sub1 in subconcepts 
  for each sub2 in subconcepts such that sub1’s concept != 

sub2’s concept 
   svm ¬ trained linear SVM between samples[sub1] 

and samples[sub2] 
   diffLayer.weights.concatenate(svm.weights) 
   diffLayer.biases.concatenate(svm.biases) 
 
 //Supervised learning of subconcept neurons 
 diff ¬ sign(samples*diffLayer.weights + diffLayer.biases) 
 subLayer ¬ {weights:[], biases:[]} 
 for each sub in subconcepts 
  subComplement ¬ all samples not in sub’s concept 
  svm ¬ trained linear SVM between diff[sub] and 

diff[subComplement] 
  subLayer.weights.concatenate(svm.weights) 
  subLayer.biases.concatenate(svm.biases) 
 
 //Supervised learning of concept neurons 
 subc ¬ sign(diff*subLayer.weights + subLayer.biases) 
 concLayer ¬ {weights:[], biases:[]} 
 for each conc in concepts 
  concComplement ¬ all samples not in conc 
  svm ¬ trained linear SVM between subc[conc] and 

subc[concComplement] 
  concLayer.weights.concatenate(svm.weights) 
  concLayer.biases.concatenate(svm.biases) 
 
 return [diffLayer, subLayer, concLayer] 
 
 
 
 

3. function LEARNSUBCONCEPTS (samples, concepts): 
 minNumSubconcepts ¬ length(concepts)+1 
 
 //Ensure familial resemblance of subconcepts 
 subconcepts ¬ concepts 
 if samples are binary then 
  subconcepts ¬ [] 
  for conc in concepts 
   graph ¬ graph where nodes are samples in conc and 

edge (i,j) exists if samples[i] • samples[j] > 0 
   subconcepts.extend(components in graph) 
 
 //OPTION 1: Hierarchical clustering 
 trees ¬ [] 
 for each subc in subconcepts 
  tree ¬ hierarchical cluster ing of samples in subconc 
  trees.push(tree) 
 cutHeight ¬ height such that cutting all trees results in at 

least minNumSubconcepts total clusters 
 while length(subconcepts) < length(samples) 
  subconcepts ¬ result of cutting trees at cutHeight 
  linearlySeparable ¬ TRUE 
  for each sub1 in subconcepts 
   for each sub2 in subconcepts 
    svm ¬ trained linear SVM between                      

samples[sub1] and samples[sub2] 
    if svm.error > 0 then 
     linearlySeparable ¬ FALSE 
     break out of for-loops 
  if linearlySeparable then 
   break out of while-loop 
  cutHeight ¬ increase to increment total number of 

subconcepts by 1 
    
 return clusters formed by cutting trees at cutHeight 
 
 //OPTION 2: Iteratively divide subconcepts 
 while length(subconcepts) < length(samples) 
  maxError ¬ -1 
  split ¬ ∅ 
  for each sub1 in subconcepts 
   for each sub2 in subconcepts 
    svm ¬ trained linear SVM between                     

samples[sub1] and samples[sub2] 
    if svm.error > maxError then 
     maxError ¬ svm.error 
     split ¬ sub1 if svm.err1>svm.err2 else sub2 
  if length(subconcepts) >= minNumSubconcepts then 
   if maxError == 0 then break out of for-loop 
  newSub ¬ misclassified samples from split 
  split ¬ split\newSub 
  subconcepts.push(newSub) 
  
 return subconcepts  



 
 

4 
 

4. function CONDENSEENN(enn,shape) 
 
 code ¬ function header as a string 
 for each layer in enn 
  groups ¬ ORGANIZENEURONS (layer, shape) 
  for each group in groups 
   function ¬ INTERPRETFUNCTION (group) 
   code += WRITECODE (function) 
 code += appropriate return statement as a string 
 return code 
 
 
5. function ORGANIZENEURONS (layer,shape) 
  
 //Step 1: Create formatted neurons 
 neurons ¬ [] 
 for each column in layer 
  weights ¬ column 
  maxWeight ¬ max(abs(weights)) 
  weights /= maxWeight 
  weights ¬ scale weights such that all values are integers 
  neurons.push(new Neuron(weights)) 
 
 //Step 2: Find intra-neuron patterns 
 for each neuron in neurons 
  uniqueWeights ¬ unique weights in neuron.weights 
  neuron.patterns ¬ [] 
  for each u in uniqueWeights 
   inGroup,  inIndices ¬ the group(s) and indices from 

input shape weighted by u 
   patternType ¬ check through defined pattern types 

for one that matches inIndices 
   neuron.patterns.push(new Pattern(u, inGroup, pattern-

Type, inIndices) 
 
 //Step 3: Put matching neurons in groups 
 groups ¬ [] 
 for each neuron in neurons 
  matches ¬ [] 
  for each n in neurons 
   isMatch ¬ TRUE 
   for each pattern in neuron.patterns 
    isMatch ¬ boolean: n.patterns has a pattern with 

the same u, inGroup, and patternType as pat-
tern 

    if NOT isMatch then break out of for-loop 
   if isMatch then matches.push(n) 
  groups.push(new Group(neuron.patterns, neuron.weights, 

matches)) 
  neurons.remove(matches) 
 
 return groups 
 

6. function INTERPRETFUNCTION (group) 
 
 //Check for conjunction 
 xMax ¬ (1+sign(group.weights))/2 
 if xMax*group.weights + group.bias > 0 then 
  if (xMax-1)*group.weights + group.bias <= 0 then 
   return new Function(“conjunction", group) 
 
 //Check for disjunction 
 xMin ¬ (1-sign(group.weights))/2 
 if xMin*group.weights + group.bias < 0 then 
  if (xMin+1)*group.weights + group.bias >= 0 then 
   return new Function(“disjunction", group) 
 
 //Check for Boolean formula 
 if length(group.weights)<5 then 
  //Function(“Boolean”) performs the Quine-

McCluskey algorithm 
  return new Function(“Boolean”, group) 
 
 //Check for nested logic 
 if length(group.condensedVars) == 2 then 
  grid ¬ grid of all values that group.condensedVars can be 
  gridOutput ¬ sign(grid*group.u + group.biases) 
  if number of rows of gridOutput containing different 

values <= 3 then 
   return new Function(“nested by row”, group) 
  if number of columns of gridOutput containing differ-

ent values <= 3 then 
   return new Function(“nested by col”, group) 
 
 //If nothing else, just have function print 

u1c1 + u2c2 + ... 
 return new Function(“weighted sum”, group) 
 
 
7. function WRITECODE (function) 
 
 code ¬ initialization of function’s output, as a string 
 if function.forLoop != ∅ then 
  code += for-loop line over relevant values 
 if function.condensedVars != ∅ then 
  code += declaring & initializing condensed variables 
 code += function.toString() 
 
 return code 
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Supplementary Section 2: Code produced by deep distilling 
 

On the following pages is the code as produced by deep distilling. For each problem, we have 
included the code twice. On the left side is the raw code as output by the ENN condenser. This 
code has certain values hard-coded into it. On the right is the generalized code found as described 
in the Methods that allows for inputs of arbitrary size. The code is written in Python. Above each 
we have endeavored to provide descriptions of what each variable is doing to provide an interpre-
tation of what each variable is doing, particularly in relation to the initial model inputs. 

In each case the variables that are automatically assigned are fairly nondescript. Variables 
that start with “D” correspond to differentia neurons in the ENN and are meant to distinguish 
specific subconcepts from one another. Variables that start with “S” correspond to subconcept 
neurons in the ENN and are meant to distinguish a specific subconcept from everything else. Var-
iables that start with “C” correspond to the output concept neurons. 

The only manual changes to the code are the addition of comment strings and the addition of 
some blank lines to help align the single-case and generalized code. 
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Supplementary Section 2a: Distilled code to update a Rule 30 cellular automaton 
This algorithm implements the rule 30 cellular automaton exactly as one would expect, albeit 
with a bit of redundancy due to fitting its logic into the basic ENN framework. The code is be-
low, and above it is a description of the 7 variables created as part of the distilled algorithm. In 
the description, the logic from the code is re-presented in terms of the original three central cells 
(denoted by LEFT, CENTER, and RIGHT) in order to see how the rule 30 logic comes about. 
 
• D1	=	(not	LEFT)		or		(not	(CENTER		or		RIGHT))	
• D2	=	LEFT		or		CENTER		or		RIGHT	
	
• S1	=	LEFT		xor		(CENTER		or		RIGHT)	 #	RULE30	
• S2	=	LEFT		and		(CENTER		or		RIGHT)	
• S3	=	not	(LEFT		or		CENTER		or		RIGHT)	
	
• C1	=	LEFT		xnor		(CENTER		or		RIGHT)	 #	not	(RULE30)	
• C2	=	LEFT		xor		(CENTER		or		RIGHT)					 #	RULE30	
	
• return	→	LEFT		xor		(CENTER		or		RIGHT)	 #	RULE30	

 
 

def rule30_3(I): 
#I is a 3-cell grid, with cell 1 being the cell to update 
 
 
D1 = (not I[0]) or ((not I[1]) and (not I[2])) 
 
 
D2 = I[2] or I[1] or I[0] 
 
S1 = (D1 and D2) 
  
S2 = (not D1) 
  
S3 = (not D2) 
  
C1 = (not S1) or (S2 and S3) 
  
C2 = (S1 and (not S3)) or (S1 and (not S2) and S3) 
  
return C2 and not C1 

 

def rule30(I, n): 
#I is an n-cell grid, with cell (n-1)/2 being the cell 
to update 
 
D1 = (not I[(n-1)/2 - 1]) or ((not I[(n-1)/2]) and (not 
I[(n-1)/2 + 1])) 
 
D2 = I[(n-1)/2 + 1] or I[(n-1)/2] or I[(n-1)/2 - 1] 
  
S1 = (D1 and D2) 
  
S2 = (not D1) 
  
S3 = (not D2) 
  
C1 = (not S1) or (S2 and S3) 
  
C2 = (S1 and (not S3)) or (S1 and (not S2) and S3) 
  
return C2 and not C1 
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Supplementary Section 2b: Distilled code to update a Rule 110 cellular automaton 
 
The results here are similar to the Rule 30 cellular automaton above. Notice how the distilled 
code for rule 110 is the exact same as for rule 30 after the first two differentia variables D1 and 
D2. Below is a similar description of each of the 7 variables found in the distilled code. 
 
• D1	=	CENTER		or		RIGHT	
• D2	=	not	(LEFT		and		CENTER		and		RIGHT)	
	
• S1	=	(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	
• S2	=	not	(CENTER		or		RIGHT)	
• S3	=	LEFT		and		CENTER		and		RIGHT	

	
• C1	=	not	(CENTER		or		RIGHT)		or		(LEFT		and		CENTER		and		RIGHT)	 #	not	(RULE110)	
• C2	=		(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	
	
• return	→	(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	

	
 

def rule110_3(I): 
#I is a 3-cell grid, with cell 1 being the cell to update 
 
 
D1 = I[1] or I[2] 
  
D2 = (not I[0]) or (not I[1]) or (not I[2]) 
  
  
S1 = (D1 and D2) 
  
S2 = (not D1) 
  
S3 = (not D2) 
  
C1 = (not S1) or (S2 and S3) 
  
C2 = (S1 and (not S3)) or (S1 and (not S2) and S3) 
  
return C2 and not C1 

def rule110(I, n): 
#I is an n-cell grid, with cell (n-1)/2 being the cell 
to update 
 
D1 = I[(n-1)/2] or I[(n-1)/2 + 1] 
  
D2 = (not I[(n-1)/2 - 1]) or (not I[(n-1)/2]) or (not 
I[(n-1)/2 + 1]) 
  
S1 = (D1 and D2) 
  
S2 = (not D1) 
  
S3 = (not D2) 
  
C1 = (not S1) or (S2 and S3) 
  
C2 = (S1 and (not S3)) or (S1 and (not S2) and S3) 
  
return C2 and not C1 
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Supplementary Section 2c: Distilled code to update any elementary cellular automaton 
 
Deep distilling figured out how to basically create a lookup table for the automaton grid and then 
select the precise update based upon particular bits from the rule vector. As above, LEFT, CEN-
TER, and RIGHT signify the three central cells of the grid, and variables are mostly described in 
relation to these initial inputs. 
 
• D1-8:	holds	the	bitwise	negated	form	of	the	8-bit	rule	vector	R	
• D9-10:	hold	CENTER	and	(not	CENTER),	respectively	
• D11	=	not	(LEFT)		and		not	(RIGHT)	
• D12	=	LEFT			 and		not	(RIGHT)	
• D13	=	not	(LEFT)			and		RIGHT	
• D14	=	LEFT			 and		RIGHT	

	
• S1	=		 not	(R0)		and	 CENTER		 and		(	LEFT			 and	 RIGHT	 )	
• S2	=		 R0		 and	 CENTER		 and		(	LEFT	 or	 RIGHT	 )	
• S3	=	 not	(R1)		and		CENTER		 and		(	LEFT	 and		 not	(RIGHT)		)	
• S4	=		 R1		 and		CENTER		 and		(	LEFT	 or	 not	(RIGHT)		)	
• S5	=		 not	(R2)		and		not	(CENTER)	 and		(	LEFT	 and		 RIGHT	 )	
• S6	=		 R2		 and		not	(CENTER)		and		(	LEFT	 or	 RIGHT	 )	
• S7	=		 not	(R3)		and	 not	(CENTER)	 and		(	LEFT	 and		 not	(RIGHT)		)	
• S8	=		 R3		 and		not	(CENTER)		and		(	LEFT	 or	 not	(RIGHT)		)	
• S9	=		 not	(R4)		and		CENTER		 and		(	not	(LEFT)	 and		 RIGHT	 )	
• S10	=		R4		 and		CENTER		 and		(	not	(LEFT)	 or	 RIGHT	 )	
• S11	=		not	(R5)		and		CENTER		 and		(	not	(LEFT)	 and		 not	(RIGHT)		)	
• S12	=		R5		 and		CENTER		 and		(	not	(LEFT)	 or	 not	(RIGHT)		)	
• S13	=		not	(R6)		and		not	(CENTER)		and		(	not	(LEFT)	 and		 RIGHT	 )	
• S14	=		R6		 and		not	(CENTER)		and		(	not	(LEFT)	 or	 RIGHT	 )	
• S15	=		not	(R7)		and		not	(CENTER)		and		(	not	(LEFT)	 and		 not	(RIGHT)		)	
• S16	=		R7		 and		not	(CENTER)		and		(	not	(LEFT)	 or	 not	(RIGHT)		)	
	
• C1	=	any(odd	S	variables)	
• C2	=	any(even	S	variables)	

	
• return	→	for	each	unique	possible	state	of	the	automaton	grid,	return	a	specific	bit	value	from	

the	rule	vector 	
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def elementary_automata_3(I1, I2): 

#I1 is the 8-bit encoding of the rule number. I2 is a 
3-cell grid, with cell 1 being the cell to update 

 
 D1 = (not I1[0]) 
 D2 = (not I1[1]) 
 D3 = (not I1[2]) 
 D4 = (not I1[3]) 
 D5 = (not I1[4]) 
 D6 = (not I1[5]) 
 D7 = (not I1[6]) 
 D8 = (not I1[7]) 
  
 D9 = (not I2[1]) 
 D10 = I2[1] 
  
 D11 = 0.5 
 if ((not I2[0]) and (not I2[2])): 
  D11 = 1 
 elif (not I2[2]) or (not I2[0]): 
  D11 = 0 
  
 D12 = 0.5 
 if (I2[0] and (not I2[2])): 
  D12 = 1 
 elif (not I2[2]) or I2[0]: 
  D12 = 0 
  
 D13 = 0.5 
 if (I2[2] and (not I2[0])): 
  D13 = 1 
 elif (not I2[0]) or I2[2]: 
  D13 = 0 
  
 D14 = 0.5 
 if (I2[0] and I2[2]): 
  D14 = 1 
 elif I2[2] or I2[0]: 
  D14 = 0 
  
 S1 = (D14 and D1 and D10) 
 S2 = ((not D1) and (not D9) and (not D11)) 
 S3 = (D12 and D2 and D10) 
 S4 = ((not D2) and (not D9) and (not D13)) 
 S5 = (D14 and D3 and D9) 
 S6 = ((not D3) and (not D10) and (not D11)) 
 S7 = (D12 and D4 and D9) 
 S8 = ((not D4) and (not D10) and (not D13)) 
 S9 = (D13 and D5 and D10) 
 S10 = ((not D5) and (not D9) and (not D12)) 
 S11 = (D11 and D6 and D10) 
 S12 = ((not D6) and (not D9) and (not D14)) 
 S13 = (D13 and D7 and D9) 
 S14 = ((not D7) and (not D10) and (not D12)) 
 S15 = (D11 and D8 and D9) 
 S16 = ((not D8) and (not D10) and (not D14)) 
  
 C1 = S15 or S13 or S11 or S9 or S7 or S5 or S3 or S1 
 C2 = S16 or S14 or S12 or S10 or S8 or S6 or S4 or S2 
  
 return C2 and not C1 

def elementary_automata(I1, I2, n): 
#I1 is the 8-bit encoding of the rule number. I2 is an 
n-cell grid, with cell (n-1)/2 being the cell to update 

 
 D1 = (not I1[0]) 
 D2 = (not I1[1]) 
 D3 = (not I1[2]) 
 D4 = (not I1[3]) 
 D5 = (not I1[4]) 
 D6 = (not I1[5]) 
 D7 = (not I1[6]) 
 D8 = (not I1[7]) 
  
 D9 = (not I2[(n-1)/2]) 
 D10 = I2[(n-1)/2] 
  
 D11 = 0.5 
 if ((not I2[(n-1)/2 - 1]) and (not I2[(n-1)/2 + 1])): 
  D11 = 1 
 elif (not I2[(n-1)/2 + 1]) nor (not I2[(n-1)/2 - 1]): 
  D11 = 0 
  
 D12 = 0.5 
 if (I2[(n-1)/2 - 1] and (not I2[(n-1)/2 + 1])): 
  D12 = 1 
 elif (not I2[(n-1)/2 + 1]) nor I2[(n-1)/2 - 1]: 
  D12 = 0 
  
 D13 = 0.5 
 if (I2[(n-1)/2 + 1] and (not I2[(n-1)/2 - 1])): 
  D13 = 1 
 elif (not I2[(n-1)/2 - 1]) nor I2[(n-1)/2 + 1]: 
  D13 = 0 
  
 D14 = 0.5 
 if (I2[(n-1)/2 - 1] and I2[(n-1)/2 + 1]): 
  D14 = 1 
 elif I2[(n-1)/2 + 1] nor I2[(n-1)/2 - 1]: 
  D14 = 0 
  
 S1 = (D14 and D1 and D10) 
 S2 = ((not D1) and (not D9) and (not D11)) 
 S3 = (D12 and D2 and D10) 
 S4 = ((not D2) and (not D9) and (not D13)) 
 S5 = (D14 and D3 and D9) 
 S6 = ((not D3) and (not D10) and (not D11)) 
 S7 = (D12 and D4 and D9) 
 S8 = ((not D4) and (not D10) and (not D13)) 
 S9 = (D13 and D5 and D10) 
 S10 = ((not D5) and (not D9) and (not D12)) 
 S11 = (D11 and D6 and D10) 
 S12 = ((not D6) and (not D9) and (not D14)) 
 S13 = (D13 and D7 and D9) 
 S14 = ((not D7) and (not D10) and (not D12)) 
 S15 = (D11 and D8 and D9) 
 S16 = ((not D8) and (not D10) and (not D14)) 
  
 C1 = S15 or S13 or S11 or S9 or S7 or S5 or S3 or S1 
 C2 = S16 or S14 or S12 or S10 or S8 or S6 or S4 or S2 
  
 return C2 and not C1 
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Supplementary Section 2d: Distilled code to update a Game of Life cellular automaton 
 
For the Game of Life, the distilled code essentially builds up the different cases leading to death 
and life as expected per the rules. The nested non-linearities in the rules require the ENN to build 
up these cases sequentially, even if there are a couple redundancies along the way. Below is a 
description of each of the variables condensed from the ENN, where CENTER indicates the central 
cell of the grid. 
 
• D1	=	CENTER 
• part_sum	(aka	NEIGHBORHOOD)	=	sum	of	the	8	cells	surrounding	the	center 
• D2	=	NEIGHBORHOOD	≤	3 
• D3	=	NEIGHBORHOOD	>	1 
• D4	=	NEIGHBORHOOD	>	2 

 
• S1	=	CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2) 
• S2	=	NEIGHBORHOOD	=	3 
• S3	=	NEIGHBORHOOD	>	3 
• S4	=	(not	CENTER)	and	(NEIGHBORHOOD	≤	2) 
• S5	=	NEIGHBORHOOD	≤	1 

 
• C1	=	(NEIGHBORHOOD	≤	1)	or	(NEIGHBORHOOD	>	3)	or																																																																																							

	 	 ((not	CENTER)	and	NEIGHBORHOOD=2) 
• C2	=	(NEIGHBORHOOD=3)	or	(CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2))	
	
• return	(NEIGHBORHOOD=3)	or	(CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2))	
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def game_of_life_3(I): 
#I is a 3x3 grid, with the center cell being the 
cell to update 

 
 D1 = I[1, 1] 
  
 D2 = 0 
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] + 

I[1,2] + I[2,0] + I[2,1] + I[2,2]) 
  
 
 
 if part_sum <= 3: 
  D2 = 1 
 elif part_sum > 3: 
  D2 = -1 
  
 D3 = 0 
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] + 

I[1,2] + I[2,0] + I[2,1] + I[2,2]) 
   
  
 
 if part_sum > 1: 
  D3 = 1 
 elif part_sum <= 1: 
  D3 = -1 
 
 D4 = 0 
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] + 

I[1,2] + I[2,0] + I[2,1] + I[2,2]) 
   
 
 
 if part_sum > 2: 
  D3 = 1 
 elif part_sum <= 2: 
  D3 = -1 
 
  
 S1 = (D1>0 and D2>0 and D3>0) 
  
 S2 = (D2>0 and D4>0) 
  
 S3 = (not D2>0) 
  
 S4 = ((not D1>0) and (not D4>0)) 
  
 S5 = (not D3>0) 
  
 C1 = (S3 or S4 or S5) 
  
 C2 = (S1 or S2) 
  
 return C2 and not C1 
 

def game_of_life(I, n): 
#I is an nxn grid, with the center cell being 
the cell to update 

 
 D1 = I[(n-1)/2, (n-1)/2] 
  
 D2 = 0 
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] + 
I[(n-1)/2+1, (n-1)/2-1] + I[(n-1)/2+1, (n-1)/2] 
+ I[(n-1)/2+1, (n-1)/2+1]) 

 if part_sum > 3: 
  D2 = 1 
 elif part_sum <= 3: 
  D2 = -1 
  
 D3 = 0 
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] + I[2, 
(n-1)/2-1] + I[(n-1)/2+1, (n-1)/2] + I[(n-
1)/2+1, (n-1)/2+1]) 

 if part_sum > 1: 
  D3 = 1 
 elif part_sum <= 1: 
  D3 = -1 
 
 D4 = 0 
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] + I[2, 
(n-1)/2-1] + I[(n-1)/2+1, (n-1)/2] + I[(n-
1)/2+1, (n-1)/2+1]) 

 if part_sum > 2: 
  D3 = 1 
 elif part_sum <= 2: 
  D3 = -1 
 
  
 S1 = (D1>0 and D2>0 and D3>0) 
  
 S2 = (D2>0 and D4>0) 
  
 S3 = (not D2>0) 
  
 S4 = ((not D1>0) and (not D4>0)) 
  
 S5 = (not D3>0) 
  
 C1 = (S3 and S5) or (S3 and S4 and (not S5)) 
  
 C2 = (S1 and S2) 
  
 return C2 and not C1
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Supplementary Section 2e: Distilled code to find the maximum absolute value 
 
Because basic ENNs do not have any recurrent connections, it is not possible for them to iterate 
over the array of numbers and store the running maximum magnitude. Instead, it compares each 
number with all other numbers and with the negative of those numbers as well. In order for a 
number to have the maximum magnitude, it has to either win all of these comparisons or lose all 
of them. The distilled code returns whichever index won all of these comparisons. A description 
of the variables created in the distilled code is below. 
 
• D1	=	2D	array	containing	all	comparisons	of	𝑥! > 𝑥" 	
• D2	=	2D	array	containing	all	comparisons	of	𝑥! > −𝑥" 		

	
• S1	=	1D	array	containing	whether	an	𝑥! 	won	all	comparisons	in	D1	and	D2	

i.e.		S1[i]	=	all(D1[i,:])	and	all(D2[i,:])	
• S2	=	1D	array	containing	whether	an	𝑥! 	won	no	comparisons	in	D1	and	D2	

i.e.		S2[i]	=	not	(any(D1[i,:])	or	any(D2[i,:]))	
o row_sum_1	and	row_sum_2	=	the	sum	of	all	values	in	either	D1	or	D2,	respectively	

	
• C	=	1D	array	containing	whether	an	𝑥! 	was	the	winner	in	either	S1	or	S2	

i.e.		C[i]	=	S1[i]	or	S2[i]	
• return	→	the	index	of	C	that	won	all	comparisons	

	
	 	



 
 

 
 

13 

 
import numpy as np 
import random 
 
def absmax_20(I): 
 #I is an array of 20 numbers 
 
 D1 = np.zeros((20, 20)) 
 for i in range(20): 
  for j in range(20): 
   if i == j: 
    continue 
   value_1 = I[i] 
   value_2 = I[j] 
   if value_1 > value_2: 
    D1[i,j] = 1 
   elif value_1 < value_2: 
    D1[i,j] = -1 
    
 D2 = np.zeros((20, 20)) 
 for i in range(20): 
  for j in range(20): 
   if i == j: 
    continue 
   value_1 = I[i] 
   value_2 = I[j] 
   if value_1 > -value_2: 
    D2[i,j] = 1 
   elif value_1 < -value_2: 
    D2[i,j] = -1 
 
 S1 = np.zeros(20) 
 for i in range(20): 
  row_sum_1 = np.sum(D1[i, :]) 
  row_sum_2 = np.sum(D2[i, :]) 
  if row_sum_1 < 18: 
   S1[i] = -1 
  elif row_sum_2 < 18: 
   S1[i] = -1 
  elif row_sum_1 + row_sum_2 > -37: 
   S1[i] = 1 
  else: 
   S1[i] = -1 
   
 S2 = np.zeros(20) 
 for i in range(20): 
  row_sum_1 = np.sum(D1[i, :]) 
  row_sum_2 = np.sum(D2[i, :]) 
  if row_sum_1 > -18: 
   S2[i] = -1 
  elif row_sum_2 > -18: 
   S2[i] = -1 
  elif -row_sum_1 - row_sum_2 > -37: 
   S2[i] = 1 
  else: 
   S2[i] = -1 
 
 C = np.zeros(20) 
 for i in range(20): 
  C[i] = 20*S2[i] + 20*S1[i] - np.sum(S2) - np.sum(S1) 
 
 results = np.where(C==max(C))[0] 
 return random.choice(results) 

import numpy as np 
import random 
 
def absmax(I, n): 
 #I is an array of n numbers 
 
 D1 = np.zeros((n, n)) 
 for i in range(n): 
  for j in range(n): 
   if i == j: 
    continue 
   value_1 = I[i] 
   value_2 = I[j] 
   if value_1 > value_2: 
    D1[i,j] = 1 
   elif value_1 < value_2: 
    D1[i,j] = -1 
    
 D2 = np.zeros((n, n)) 
 for i in range(n): 
  for j in range(n): 
   if i == j: 
    continue 
   value_1 = I[i] 
   value_2 = I[j] 
   if value_1 > -value_2: 
    D2[i,j] = 1 
   elif value_1 < -value_2: 
    D2[i,j] = -1 
 
 S1 = np.zeros(n) 
 for i in range(n): 
  row_sum_1 = np.sum(D1[i, :]) 
  row_sum_2 = np.sum(D2[i, :]) 
  if row_sum_1 < n-2: 
   S1[i] = -1 
  elif row_sum_2 < n-2: 
   S1[i] = -1 
  elif row_sum_1 + row_sum_2 > 3-2*n: 
   S1[i] = 1 
  else: 
   S1[i] = -1 
   
 S2 = np.zeros(n) 
 for i in range(n): 
  row_sum_1 = np.sum(D1[i, :]) 
  row_sum_2 = np.sum(D2[i, :]) 
  if row_sum_1 > 2-n: 
   S2[i] = -1 
  elif row_sum_2 > 2-n: 
   S2[i] = -1 
  elif -row_sum_1 - row_sum_2 > 3-2*n: 
   S2[i] = 1 
  else: 
   S2[i] = -1 
 
 C = np.zeros(n) 
 for i in range(n): 
  C[i] = n*S2[i] + n*S1[i] - np.sum(S2) - np.sum(S1) 
 
 results = np.where(C==max(C))[0] 
 return random.choice(results) 
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Supplementary Section 2f: Distilled code to find the best assignment for MAX-SAT 
 

The distilled code for this problem goes through each clause of the Boolean formula individually 
to determine whether there are any other variables present in the formula besides the first. Then it 
determines for either case what the difference is in the number of clauses that have the first variable 
present as a positive—rather than a negative—literal. It weights the two cases differently (by 10 
and 2.298, respectively) and returns the sigmoid output of this. 

 
• D1	=	1D	array	indicating	for	each	clause	if	any	of	the	other	variables	are	present 
• D2	=	1D	array	indicating	for	each	clause	if	all	of	the	other	variables	are	absent 
• D3	=	1D	array	indicating	for	each	clause	the	negation	of	the	first	variable,	and	if	it	is	absent	

then	indicating	if	any	other	variables	are	present 
o col_mean	=	half	the	percentage	of	other	literals	present	in	the	clause 

• D4	=	1D	array	indicating	for	each	clause	the	value	of	the	first	variable,	and	if	it	is	absent	then	
indicating	if	any	other	variables	are	present 
o col_mean	=	half	the	percentage	of	other	literals	present	in	the	clause 

• D5	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	present	and	POSITIVE 
• D6	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	present	and	NEGATIVE 
 
• S1	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	NEGATIVE	and	there	are	other	

variables	present	(aka	NEG-OTHERS) 
• S2	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	NEGATIVE	and	there	are	no	

other	variables	present	(aka	NEG-ALONE) 
• S3	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	POSITIVE	and	there	are	other	

variables	present	(aka	POS-OTHERS) 
• S4	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	POSITIVE	and	there	are	no	

other	variables	present	(aka	POS-ALONE) 
 
• C1	=	10	*	S	(POS-OTHERS	–	NEG-OTHERS)	+	2.298	*	S	(POS-ALONE	–	NEG-ALONE) 
• C2	=	–C1 
 
• return	→	sigmoid(2*C1) 
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import numpy as np 
 
def maxsat_10_50(I): 

#I is an input of size 10x50 (5 one-hot-encoded Boolean 
variables, 50 clauses) 

 
 D1 = np.zeros(50) 
 for i in range(50): 
  if np.any(I[2:, i]!=0): 
   D1[i] = -1 
  else: 
   D1[i] = 1 
 
 D2 = np.zeros(50) 
 for i in range(50): 
  if np.any(I[2:, i]!=0): 
   D2[i] = 1 
  else: 
   D2[i] = -1 
 
 D3 = np.zeros(50) 
 for i in range(50): 
  col_mean = np.mean(I[2:, i]) 
  if I[1, i] + col_mean - I[0, i] > 0: 
   D3[i] = 1 
  else: 
   D3[i] = -1 
   
 D4 = np.zeros(50) 
 for i in range(50): 
  col_mean = np.mean(I[2:, i]) 
  if I[0, i] + col_mean - I[1, i] > 0: 
   D4[i] = 1 
  else: 
   D4[i] = -1 
   
 D5 = np.zeros(50) 
 for i in range(50): 
  if (I[0, i] and (not I[1, 0])): 
   D5[i] = 1 
  elif (not I[1, 0]) or I[0, i]: 
   D5[i] = -1 
   
 D6 = np.zeros(50) 
 for i in range(50): 
  if (I[1, i] and (not I[0, 0])): 
   D6[i] = 1 
  elif (not I[0, 0]) or I[1, i]: 
   D6[i] = -1 
 
 S1 = np.zeros(50) 
 for i in range(50): 
  S1[i] = (D6[i]>0 and D1[i]>0) 
   
 S2 = np.zeros(50) 
 for i in range(50): 
  S2[i] = (D2[i]>0 and D3[i]>0) 
   
 S3 = np.zeros(50) 
 for i in range(50): 
  S3[i] = (D5[i]>0 and D1[i]>0) 
   
 S4 = np.zeros(50) 
 for i in range(50): 
  S4[i] = (D2[i]>0 and D4[i]>0) 
   
 C1 = 10.0*np.sum(S3) + 2.298*np.sum(S4) - 

2.298*np.sum(S2) - 10.0*np.sum(S1) 
 C2 = 10.0*np.sum(S1) + 2.298*np.sum(S2) - 

2.298*np.sum(S4) - 10.0*np.sum(S3) 
 C = [C1, C2] 
 
 return np.exp(C)/np.sum(np.exp(C)) 
 

import numpy as np 
 
def maxsat(I, n, m): 

#I is an input of size mxn (m one-hot-encoded Boolean 
variables, n clauses) 

 
 D1 = np.zeros(n) 
 for i in range(n): 
  if np.any(I[2:, i]!=0): 
   D1[i] = -1 
  else: 
   D1[i] = 1 
 
 D2 = np.zeros(n) 
 for i in range(n): 
  if np.any(I[2:, i]!=0): 
   D2[i] = 1 
  else: 
   D2[i] = -1 
 
 D3 = np.zeros(n) 
 for i in range(n): 
  col_mean = np.mean(I[2:, i]) 
  if I[1, i] + col_mean - I[0, i] > 0: 
   D3[i] = 1 
  else: 
   D3[i] = -1 
   
 D4 = np.zeros(n) 
 for i in range(n): 
  col_mean = np.mean(I[2:, i]) 
  if I[0, i] + col_mean - I[1, i] > 0: 
   D4[i] = 1 
  else: 
   D4[i] = -1 
   
 D5 = np.zeros(n) 
 for i in range(n): 
  if (I[0, i] and (not I[1, 0])): 
   D5[i] = 1 
  elif (not I[1, 0]) or I[0, i]: 
   D5[i] = -1 
   
 D6 = np.zeros(n) 
 for i in range(n): 
  if (I[1, i] and (not I[0, 0])): 
   D6[i] = 1 
  elif (not I[0, 0]) or I[1, i]: 
   D6[i] = -1 
 
 S1 = np.zeros(n) 
 for i in range(n): 
  S1[i] = (D6[i]>0 and D1[i]>0) 
   
 S2 = np.zeros(n) 
 for i in range(n): 
  S2[i] = (D2[i]>0 and D3[i]>0) 
   
 S3 = np.zeros(n) 
 for i in range(n): 
  S3[i] = (D5[i]>0 and D1[i]>0) 
   
 S4 = np.zeros(n) 
 for i in range(n): 
  S4[i] = (D2[i]>0 and D4[i]>0) 
   
 C1 = 10.0*np.sum(S3) + 2.298*np.sum(S4) - 

2.298*np.sum(S2) - 10.0*np.sum(S1) 
 C2 = 10.0*np.sum(S1) + 2.298*np.sum(S2) - 

2.298*np.sum(S4) - 10.0*np.sum(S3) 
 C = [C1, C2] 
 
 return np.exp(C)/np.sum(np.exp(C)) 
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Supplementary Section 2g: Distilled code to find a shape’s orientation 
 

The distilled code learns a nonintuitive algorithm. In most cases it essentially determines whether 
overall there are more columns that have greater total brightness than rows (i.e. a vertical orienta-
tion). However, there are interesting edge cases handled where the margin of difference in the 
column-row comparisons outside of the column (or row) in question is very close, in which case 
it has a series of tiebreakers that account for the given column (or row). A description of the vari-
ables appearing in the distilled code is below. 
 
• D	=	a	2D	matrix	the	same	size	as	the	image	containing,	pixel-by-pixel,	whether	the	sum	total	

brightness	of	each	column	is	greater	than	that	of	each	row 
• col_sum	=	the	sum	total	brightness	of	a	column	
• row_sum	=	the	sum	total	brightness	of	a	row	
	
• S1	=	1D	array;	if	the	total	margin	of	victory	for	columns	over	rows	is	great	enough,	all	values	

will	be	TRUE;	if	the	total	margin	of	victory	is	very	close,	there	are	a	couple	of	tiebreakers	(for	
example,	whether	a	column	won	any	comparisons	at	all)	
o row_sum	=	the	margin	of	victory	for	the	pixel-by-pixel	comparisons	won	by	a	given	col-

umn	in	the	image	
o offrow_sum	=	the	margin	of	victory	for	the	pixel-by-pixel	comparisons	won	by	all	other	

columns	in	the	image	
• S2	=	same	S1	above	but	flipped	for	rows	and	columns	

o col_sum	=	the	same	as	row_sum	above,	but	for	rows	in	the	image	
o offcol_sum	=	the	same	as	offrow_sum	above,	but	for	rows	in	the	image	

	
• C1	=	whether	columns	won	more	than	rows	did	
• C2	=	whether	rows	won	more	than	columns	did	

	
• return	→	VERTICAL	if	columns	won	more	than	rows,	otherwise	HORIZONTAL	
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import numpy as np 
import random 
 
def orientation_28(I, n): 
#I is an input image that is 28x28 
#I calculate pixel score for each pixel depending on if its 
row or column is brighter 
 D = np.zeros((28, 28)) 
 for i in range(28): 
  for j in range(28): 
   col_sum = np.sum(I[:, i]) 
   row_sum = np.sum(I[j, :]) 
   if col_sum > row_sum: 
    D[i,j] = 1 
   elif col_sum < row_sum: 
    D[i,j] = -1 
 
#for each row, calculate sum of pixel scores outside of the 
row and compare with the image width to determine if that 
row is significant. Use the sum of pixel scores in the row 
to break ties 
 S1 = np.zeros(28) 
 for i in range(28): 
  row_sum = np.sum(D[i, :]) 
  offrow_sum = (np.sum(D) - np.sum(D[i, :])) 
  if offrow_sum < -29: 
   S1[i] = 1 
  elif offrow_sum > -27: 
   S1[i] = -1 
  elif offrow_sum == -27: 
   if np.all(D[i, :]==1): 
    S1[i] = 1 
   elif not np.all(D[i, :]==1): 
    S1[i] = -1 
  elif offrow_sum == -28: 
   if row_sum > 0: 
    S1[i] = 1 
   elif row_sum < 0: 
    S1[i] = -1 
  elif offrow_sum == -29: 
   if not np.all(D[i, :]==-1): 
    S1[i] = 1 
   elif np.all(D[i, :]==-1): 
    S1[i] = -1 
  
#do the same for each column   
 S2 = np.zeros(28) 
 for i in range(28): 
  offcol_sum = (np.sum(D) - np.sum(D[:, i])) 
  col_sum = np.sum(D[:, i]) 
  if offcol_sum < 27: 
   S2[i] = -1 
  elif offcol_sum > 29: 
   S2[i] = 1 
  elif offcol_sum == 29: 
   if np.all(D[:, i]==1): 
    S2[i] = -1 
   elif not np.all(D[:, i]==1): 
    S2[i] = 1 
  elif offcol_sum == 28: 
   if col_sum > 0: 
    S2[i] = -1 
   elif col_sum < 0: 
    S2[i] = 1 
  elif offcol_sum == 27: 
   if not np.all(D[:, i]==-1): 
    S2[i] = -1 
   elif np.all(D[:, i]==-1): 
    S2[i] = 1 
   
 C1 = np.sum(S1) - np.sum(S2) 
 C2 = np.sum(S2) - np.sum(S1) 
 C = [C1, C2] 
#compare the number of significant rows versus columns 
 results = np.where(C==max(C))[0] 
 return random.choice(results) 

import numpy as np 
import random 
 
def orientation(I, n): 
#I is an input image that is nxn 
#I calculate score for each pixel depending on if its row 
or column is brighter 
 D = np.zeros((n, n)) 
 for i in range(n): 
  for j in range(n): 
   col_sum = np.sum(I[:, i]) 
   row_sum = np.sum(I[j, :]) 
   if col_sum > row_sum: 
    D[i,j] = 1 
   elif col_sum < row_sum: 
    D[i,j] = -1 
 
#for each row, calculate sum of pixel scores outside of the 
row and compare with the image width to determine if that 
row is significant. Use the sum of pixel scores in the row 
to break ties 
 S1 = np.zeros(n) 
 for i in range(n): 
  row_sum = np.sum(D[i, :]) 
  offrow_sum = (np.sum(D) - np.sum(D[i, :])) 
  if offrow_sum < -1-n: 
   S1[i] = 1 
  elif offrow_sum > 1-n: 
   S1[i] = -1 
  elif offrow_sum == 1-n: 
   if np.all(D[i, :]==1): 
    S1[i] = 1 
   elif not np.all(D[i, :]==1): 
    S1[i] = -1 
  elif offrow_sum == -n: 
   if row_sum > 0: 
    S1[i] = 1 
   elif row_sum < 0: 
    S1[i] = -1 
  elif offrow_sum == -1-n: 
   if not np.all(D[i, :]==-1): 
    S1[i] = 1 
   elif np.all(D[i, :]==-1): 
    S1[i] = -1 
 
 #do the same for each column  
 S2 = np.zeros(n) 
 for i in range(n): 
  offcol_sum = (np.sum(D) - np.sum(D[:, i])) 
  col_sum = np.sum(D[:, i]) 
  if offcol_sum < n-1: 
   S2[i] = -1 
  elif offcol_sum > n+1: 
   S2[i] = 1 
  elif offcol_sum == n+1: 
   if np.all(D[:, i]==1): 
    S2[i] = -1 
   elif not np.all(D[:, i]==1): 
    S2[i] = 1 
  elif offcol_sum == n: 
   if col_sum > 0: 
    S2[i] = -1 
   elif col_sum < 0: 
    S2[i] = 1 
  elif offcol_sum == n-1: 
   if not np.all(D[:, i]==-1): 
    S2[i] = -1 
   elif np.all(D[:, i]==-1): 
    S2[i] = 1 
   
 C1 = np.sum(S1) - np.sum(S2) 
 C2 = np.sum(S2) - np.sum(S1) 
 C = [C1, C2] 
#compare the number of significant rows versus columns 
 results = np.where(C==max(C))[0] 
 return random.choice(results)
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Supplementary Fig. 1. Deep learning lacks performance guarantees. Even though this deep 
learning model had almost perfect performance (i.e. 0.002% error on test images), the occurrence 
of a rare error is able to propagate and grow over time. The image on the right is a simple example 
of what this can look like, when a single error can grow and produce different behavior than it 
should (highlighted in yellow). This demonstrates the importance of having performance guaran-
tees.  
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Supplementary Fig. 2. Deep distilled code generalizes across input sizes and complexities. 
The distilled algorithms were able to generalize to arbitrary input sizes for the (a) maximum abso-
lute value, (b) MAX-SAT, and (c) shape orientation problems. a, Training occurred on input sizes 
of 18, 19, and 20 numbers, all in the set {−1,0,1}, but perfect accuracy was measured with the 
distilled code for sizes 10-1000 and with values in the range [−10!", 10!"] through [−10", 10"]. 
b, Training data for MAX-SAT used only 8, 9, and 10 variables and 98, 99, and 100 clauses. The 
distilled code was able to perform well on Boolean formulae of much larger sizes, even to 1000 
variables and 10,000 clauses, for both MAX-3SAT and MAX-SAT. For each, the upper plots show 
the percentage of clauses that were satisfied as a function of the number of clauses by the distilled 
code, by the pure greedy algorithm, and by the 3/4-approximation algorithm. The lower plots show 
the absolute difference in clauses satisfied by the two human-designed algorithm compared to the 
distilled code (a positive difference indicates the distilled code satisfied more clauses). c, Training 
data for shape orientations included 26x26, 27x27, and 28x28 pixel images of black images with 
a single white row or white column. Perfect accuracy was found on test sets of images sizes from 
10x10 through 200x200, and with shapes that included variable-length lines, diagonal lines, boxes, 
zigzags, and dotted lines.  
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Supplementary Fig. 3. Examples of orientation image processing. Eight different example im-
ages are shown here along with how the distilled orientation algorithm processes them. The square 
matrix under each image shows the pixelwise row-versus-column orientation scores, with positive 
results (i.e., column brighter than row) in red, negative results (i.e., row brighter than column) in 
blue, and tied results in white. The results of the line scores compared to the overall image are 
shown to the right and below this matrix, with red bands indicating where there is a significant 
row or column. The final output label is denoted above each image. 
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Supplementary Fig. 4. Deep distilling assigns meaning in ambiguous cases. Each of these im-
ages are ambiguous in terms of how they could be classified (i.e., horizontal or vertical orienta-
tion). The labels provided are what the distilled code returned for each. This illustrates how a 
distilled algorithm is able to provide a consistent and unambiguous standard to provide meaning 
in ambiguous cases. 




