
nature computational science

https://doi.org/10.1038/s43588-024-00593-9Article

Automated discovery of algorithms from
data

In the format provided by the
authors and unedited

https://doi.org/10.1038/s43588-024-00593-9

1

Table of Contents

Supplementary Section 1: Deep distilling algorithm description and pseudocode2

Supplementary Section 2: Code produced by deep distilling algorithm ..5

 Supplementary Section 2a: Distilled code to update a Rule 30 cellular automaton6

 Supplementary Section 2b: Distilled code to update a Rule 110 cellular automaton7

 Supplementary Section 2c: Distilled code to update any elementary cellular automaton8

 Supplementary Section 2d: Distilled code to update a Game of Life cellular automaton10

 Supplementary Section 2e: Distilled code to find the maximum absolute value12

 Supplementary Section 2f: Distilled code to find the best assignment for MAX-SAT14

 Supplementary Section 2g: Distilled code to find a shape’s orientation16

Supplementary Fig. 1: Deep learning lacks performance guarantees ..18

Supplementary Fig. 2: Deep distilled code generalizes across input sizes and complexities19

Supplementary Fig. 3: Examples of orientation image processing ..20

Supplementary Fig. 4: Deep distilling assigns meaning in ambiguous cases21

2

Supplementary Section 1: Deep distilling algorithm description and pseudocode

The following two pages contain an overview of the deep distilling algorithm and its various
parts. The pseudocode gives an outline of how an ENN is trained, condensed, and then written as
code. Brief descriptions of these seven functions are below.

1. DeepDistilling: The overall workflow for the deep distilling algorithm
2. TrainENN: The method by which a basic ENN is trained, as previously described (16)
3. LearnSubconcepts: The two new semi-supervised methods for clustering training data

into subconcepts
4. CondenseENN: The overall workflow to condense an ENN
5. OrganizeNeurons: The method by which the neurons in an ENN layer are organized into

groups based upon similar connectivity in order to enable the creation of for-loops
6. InterpretFunction: The method by which a group’s connectivity pattern is analyzed for

various types of logical functions with or without condensed variables in order to provide
interpretability to the weighted-sum representation of neuron data-processing

7. WriteCode: The method by which the condensed ENN (consisting of functions and neuron
groups) is turned into computer code.

3

1. function DEEPD I ST ILLING (samples, labels)

 enn ¬ TRAINENN(samples, labels)
 code ¬ CONDENSEENN(enn, shape(samples[0]))
 print code to an output file

2. function TRAINENN(samples, labels):

 //Set up concepts
 conceptLabels ¬ unique values in labels
 concepts ¬ []
 for each label in conceptLabels
 concept = set with indices of labels that match label
 concepts.push(concept)

 //Unsupervised learning of subconcepts
 subconcepts ¬ LEARNSUBCONCEPTS (samples, concepts)

 //Supervised learning of differentia neurons
 diffLayer ¬ {weights:[], biases:[]}
 for each sub1 in subconcepts
 for each sub2 in subconcepts such that sub1’s concept !=

sub2’s concept
 svm ¬ trained linear SVM between samples[sub1]

and samples[sub2]
 diffLayer.weights.concatenate(svm.weights)
 diffLayer.biases.concatenate(svm.biases)

 //Supervised learning of subconcept neurons
 diff ¬ sign(samples*diffLayer.weights + diffLayer.biases)
 subLayer ¬ {weights:[], biases:[]}
 for each sub in subconcepts
 subComplement ¬ all samples not in sub’s concept
 svm ¬ trained linear SVM between diff[sub] and

diff[subComplement]
 subLayer.weights.concatenate(svm.weights)
 subLayer.biases.concatenate(svm.biases)

 //Supervised learning of concept neurons
 subc ¬ sign(diff*subLayer.weights + subLayer.biases)
 concLayer ¬ {weights:[], biases:[]}
 for each conc in concepts
 concComplement ¬ all samples not in conc
 svm ¬ trained linear SVM between subc[conc] and

subc[concComplement]
 concLayer.weights.concatenate(svm.weights)
 concLayer.biases.concatenate(svm.biases)

 return [diffLayer, subLayer, concLayer]

3. function LEARNSUBCONCEPTS (samples, concepts):
 minNumSubconcepts ¬ length(concepts)+1

 //Ensure familial resemblance of subconcepts
 subconcepts ¬ concepts
 if samples are binary then
 subconcepts ¬ []
 for conc in concepts
 graph ¬ graph where nodes are samples in conc and

edge (i,j) exists if samples[i] • samples[j] > 0
 subconcepts.extend(components in graph)

 //OPTION 1: Hierarchical clustering
 trees ¬ []
 for each subc in subconcepts
 tree ¬ hierarchical cluster ing of samples in subconc
 trees.push(tree)
 cutHeight ¬ height such that cutting all trees results in at

least minNumSubconcepts total clusters
 while length(subconcepts) < length(samples)
 subconcepts ¬ result of cutting trees at cutHeight
 linearlySeparable ¬ TRUE
 for each sub1 in subconcepts
 for each sub2 in subconcepts
 svm ¬ trained linear SVM between

samples[sub1] and samples[sub2]
 if svm.error > 0 then
 linearlySeparable ¬ FALSE
 break out of for-loops
 if linearlySeparable then
 break out of while-loop
 cutHeight ¬ increase to increment total number of

subconcepts by 1

 return clusters formed by cutting trees at cutHeight

 //OPTION 2: Iteratively divide subconcepts
 while length(subconcepts) < length(samples)
 maxError ¬ -1
 split ¬ ∅
 for each sub1 in subconcepts
 for each sub2 in subconcepts
 svm ¬ trained linear SVM between

samples[sub1] and samples[sub2]
 if svm.error > maxError then
 maxError ¬ svm.error
 split ¬ sub1 if svm.err1>svm.err2 else sub2
 if length(subconcepts) >= minNumSubconcepts then
 if maxError == 0 then break out of for-loop
 newSub ¬ misclassified samples from split
 split ¬ split\newSub
 subconcepts.push(newSub)

 return subconcepts

4

4. function CONDENSEENN(enn,shape)

 code ¬ function header as a string
 for each layer in enn
 groups ¬ ORGANIZENEURONS (layer, shape)
 for each group in groups
 function ¬ INTERPRETFUNCTION (group)
 code += WRITECODE (function)
 code += appropriate return statement as a string
 return code

5. function ORGANIZENEURONS (layer,shape)

 //Step 1: Create formatted neurons
 neurons ¬ []
 for each column in layer
 weights ¬ column
 maxWeight ¬ max(abs(weights))
 weights /= maxWeight
 weights ¬ scale weights such that all values are integers
 neurons.push(new Neuron(weights))

 //Step 2: Find intra-neuron patterns
 for each neuron in neurons
 uniqueWeights ¬ unique weights in neuron.weights
 neuron.patterns ¬ []
 for each u in uniqueWeights
 inGroup, inIndices ¬ the group(s) and indices from

input shape weighted by u
 patternType ¬ check through defined pattern types

for one that matches inIndices
 neuron.patterns.push(new Pattern(u, inGroup, pattern-

Type, inIndices)

 //Step 3: Put matching neurons in groups
 groups ¬ []
 for each neuron in neurons
 matches ¬ []
 for each n in neurons
 isMatch ¬ TRUE
 for each pattern in neuron.patterns
 isMatch ¬ boolean: n.patterns has a pattern with

the same u, inGroup, and patternType as pat-
tern

 if NOT isMatch then break out of for-loop
 if isMatch then matches.push(n)
 groups.push(new Group(neuron.patterns, neuron.weights,

matches))
 neurons.remove(matches)

 return groups

6. function INTERPRETFUNCTION (group)

 //Check for conjunction
 xMax ¬ (1+sign(group.weights))/2
 if xMax*group.weights + group.bias > 0 then
 if (xMax-1)*group.weights + group.bias <= 0 then
 return new Function(“conjunction", group)

 //Check for disjunction
 xMin ¬ (1-sign(group.weights))/2
 if xMin*group.weights + group.bias < 0 then
 if (xMin+1)*group.weights + group.bias >= 0 then
 return new Function(“disjunction", group)

 //Check for Boolean formula
 if length(group.weights)<5 then
 //Function(“Boolean”) performs the Quine-

McCluskey algorithm
 return new Function(“Boolean”, group)

 //Check for nested logic
 if length(group.condensedVars) == 2 then
 grid ¬ grid of all values that group.condensedVars can be
 gridOutput ¬ sign(grid*group.u + group.biases)
 if number of rows of gridOutput containing different

values <= 3 then
 return new Function(“nested by row”, group)
 if number of columns of gridOutput containing differ-

ent values <= 3 then
 return new Function(“nested by col”, group)

 //If nothing else, just have function print

u1c1 + u2c2 + ...
 return new Function(“weighted sum”, group)

7. function WRITECODE (function)

 code ¬ initialization of function’s output, as a string
 if function.forLoop != ∅ then
 code += for-loop line over relevant values
 if function.condensedVars != ∅ then
 code += declaring & initializing condensed variables
 code += function.toString()

 return code

5

Supplementary Section 2: Code produced by deep distilling

On the following pages is the code as produced by deep distilling. For each problem, we have
included the code twice. On the left side is the raw code as output by the ENN condenser. This
code has certain values hard-coded into it. On the right is the generalized code found as described
in the Methods that allows for inputs of arbitrary size. The code is written in Python. Above each
we have endeavored to provide descriptions of what each variable is doing to provide an interpre-
tation of what each variable is doing, particularly in relation to the initial model inputs.

In each case the variables that are automatically assigned are fairly nondescript. Variables
that start with “D” correspond to differentia neurons in the ENN and are meant to distinguish
specific subconcepts from one another. Variables that start with “S” correspond to subconcept
neurons in the ENN and are meant to distinguish a specific subconcept from everything else. Var-
iables that start with “C” correspond to the output concept neurons.

The only manual changes to the code are the addition of comment strings and the addition of
some blank lines to help align the single-case and generalized code.

6

Supplementary Section 2a: Distilled code to update a Rule 30 cellular automaton
This algorithm implements the rule 30 cellular automaton exactly as one would expect, albeit
with a bit of redundancy due to fitting its logic into the basic ENN framework. The code is be-
low, and above it is a description of the 7 variables created as part of the distilled algorithm. In
the description, the logic from the code is re-presented in terms of the original three central cells
(denoted by LEFT, CENTER, and RIGHT) in order to see how the rule 30 logic comes about.

• D1	=	(not	LEFT)		or		(not	(CENTER		or		RIGHT))	
• D2	=	LEFT		or		CENTER		or		RIGHT	
	
• S1	=	LEFT		xor		(CENTER		or		RIGHT)	 #	RULE30	
• S2	=	LEFT		and		(CENTER		or		RIGHT)	
• S3	=	not	(LEFT		or		CENTER		or		RIGHT)	
	
• C1	=	LEFT		xnor		(CENTER		or		RIGHT)	 #	not	(RULE30)	
• C2	=	LEFT		xor		(CENTER		or		RIGHT)					 #	RULE30	
	
• return	→	LEFT		xor		(CENTER		or		RIGHT)	 #	RULE30	

def rule30_3(I):
#I is a 3-cell grid, with cell 1 being the cell to update

D1 = (not I[0]) or ((not I[1]) and (not I[2]))

D2 = I[2] or I[1] or I[0]

S1 = (D1 and D2)

S2 = (not D1)

S3 = (not D2)

C1 = (not S1) or (S2 and S3)

C2 = (S1 and (not S3)) or (S1 and (not S2) and S3)

return C2 and not C1

def rule30(I, n):
#I is an n-cell grid, with cell (n-1)/2 being the cell
to update

D1 = (not I[(n-1)/2 - 1]) or ((not I[(n-1)/2]) and (not
I[(n-1)/2 + 1]))

D2 = I[(n-1)/2 + 1] or I[(n-1)/2] or I[(n-1)/2 - 1]

S1 = (D1 and D2)

S2 = (not D1)

S3 = (not D2)

C1 = (not S1) or (S2 and S3)

C2 = (S1 and (not S3)) or (S1 and (not S2) and S3)

return C2 and not C1

7

Supplementary Section 2b: Distilled code to update a Rule 110 cellular automaton

The results here are similar to the Rule 30 cellular automaton above. Notice how the distilled
code for rule 110 is the exact same as for rule 30 after the first two differentia variables D1 and
D2. Below is a similar description of each of the 7 variables found in the distilled code.

• D1	=	CENTER		or		RIGHT	
• D2	=	not	(LEFT		and		CENTER		and		RIGHT)	
	
• S1	=	(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	
• S2	=	not	(CENTER		or		RIGHT)	
• S3	=	LEFT		and		CENTER		and		RIGHT	

	
• C1	=	not	(CENTER		or		RIGHT)		or		(LEFT		and		CENTER		and		RIGHT)	 #	not	(RULE110)	
• C2	=		(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	
	
• return	→	(CENTER		or		RIGHT)		and		not	(LEFT		and		CENTER		and		RIGHT)	 #	RULE110	

	

def rule110_3(I):
#I is a 3-cell grid, with cell 1 being the cell to update

D1 = I[1] or I[2]

D2 = (not I[0]) or (not I[1]) or (not I[2])

S1 = (D1 and D2)

S2 = (not D1)

S3 = (not D2)

C1 = (not S1) or (S2 and S3)

C2 = (S1 and (not S3)) or (S1 and (not S2) and S3)

return C2 and not C1

def rule110(I, n):
#I is an n-cell grid, with cell (n-1)/2 being the cell
to update

D1 = I[(n-1)/2] or I[(n-1)/2 + 1]

D2 = (not I[(n-1)/2 - 1]) or (not I[(n-1)/2]) or (not
I[(n-1)/2 + 1])

S1 = (D1 and D2)

S2 = (not D1)

S3 = (not D2)

C1 = (not S1) or (S2 and S3)

C2 = (S1 and (not S3)) or (S1 and (not S2) and S3)

return C2 and not C1

8

Supplementary Section 2c: Distilled code to update any elementary cellular automaton

Deep distilling figured out how to basically create a lookup table for the automaton grid and then
select the precise update based upon particular bits from the rule vector. As above, LEFT, CEN-
TER, and RIGHT signify the three central cells of the grid, and variables are mostly described in
relation to these initial inputs.

• D1-8:	holds	the	bitwise	negated	form	of	the	8-bit	rule	vector	R	
• D9-10:	hold	CENTER	and	(not	CENTER),	respectively	
• D11	=	not	(LEFT)		and		not	(RIGHT)	
• D12	=	LEFT			 and		not	(RIGHT)	
• D13	=	not	(LEFT)			and		RIGHT	
• D14	=	LEFT			 and		RIGHT	

	
• S1	=		 not	(R0)		and	 CENTER		 and		(LEFT			 and	 RIGHT)	
• S2	=		 R0		 and	 CENTER		 and		(LEFT	 or	 RIGHT)	
• S3	=	 not	(R1)		and		CENTER		 and		(LEFT	 and		 not	(RIGHT))	
• S4	=		 R1		 and		CENTER		 and		(LEFT	 or	 not	(RIGHT))	
• S5	=		 not	(R2)		and		not	(CENTER)	 and		(LEFT	 and		 RIGHT)	
• S6	=		 R2		 and		not	(CENTER)		and		(LEFT	 or	 RIGHT)	
• S7	=		 not	(R3)		and	 not	(CENTER)	 and		(LEFT	 and		 not	(RIGHT))	
• S8	=		 R3		 and		not	(CENTER)		and		(LEFT	 or	 not	(RIGHT))	
• S9	=		 not	(R4)		and		CENTER		 and		(not	(LEFT)	 and		 RIGHT)	
• S10	=		R4		 and		CENTER		 and		(not	(LEFT)	 or	 RIGHT)	
• S11	=		not	(R5)		and		CENTER		 and		(not	(LEFT)	 and		 not	(RIGHT))	
• S12	=		R5		 and		CENTER		 and		(not	(LEFT)	 or	 not	(RIGHT))	
• S13	=		not	(R6)		and		not	(CENTER)		and		(not	(LEFT)	 and		 RIGHT)	
• S14	=		R6		 and		not	(CENTER)		and		(not	(LEFT)	 or	 RIGHT)	
• S15	=		not	(R7)		and		not	(CENTER)		and		(not	(LEFT)	 and		 not	(RIGHT))	
• S16	=		R7		 and		not	(CENTER)		and		(not	(LEFT)	 or	 not	(RIGHT))	
	
• C1	=	any(odd	S	variables)	
• C2	=	any(even	S	variables)	

	
• return	→	for	each	unique	possible	state	of	the	automaton	grid,	return	a	specific	bit	value	from	

the	rule	vector 	

9

def elementary_automata_3(I1, I2):

#I1 is the 8-bit encoding of the rule number. I2 is a
3-cell grid, with cell 1 being the cell to update

 D1 = (not I1[0])
 D2 = (not I1[1])
 D3 = (not I1[2])
 D4 = (not I1[3])
 D5 = (not I1[4])
 D6 = (not I1[5])
 D7 = (not I1[6])
 D8 = (not I1[7])

 D9 = (not I2[1])
 D10 = I2[1]

 D11 = 0.5
 if ((not I2[0]) and (not I2[2])):
 D11 = 1
 elif (not I2[2]) or (not I2[0]):
 D11 = 0

 D12 = 0.5
 if (I2[0] and (not I2[2])):
 D12 = 1
 elif (not I2[2]) or I2[0]:
 D12 = 0

 D13 = 0.5
 if (I2[2] and (not I2[0])):
 D13 = 1
 elif (not I2[0]) or I2[2]:
 D13 = 0

 D14 = 0.5
 if (I2[0] and I2[2]):
 D14 = 1
 elif I2[2] or I2[0]:
 D14 = 0

 S1 = (D14 and D1 and D10)
 S2 = ((not D1) and (not D9) and (not D11))
 S3 = (D12 and D2 and D10)
 S4 = ((not D2) and (not D9) and (not D13))
 S5 = (D14 and D3 and D9)
 S6 = ((not D3) and (not D10) and (not D11))
 S7 = (D12 and D4 and D9)
 S8 = ((not D4) and (not D10) and (not D13))
 S9 = (D13 and D5 and D10)
 S10 = ((not D5) and (not D9) and (not D12))
 S11 = (D11 and D6 and D10)
 S12 = ((not D6) and (not D9) and (not D14))
 S13 = (D13 and D7 and D9)
 S14 = ((not D7) and (not D10) and (not D12))
 S15 = (D11 and D8 and D9)
 S16 = ((not D8) and (not D10) and (not D14))

 C1 = S15 or S13 or S11 or S9 or S7 or S5 or S3 or S1
 C2 = S16 or S14 or S12 or S10 or S8 or S6 or S4 or S2

 return C2 and not C1

def elementary_automata(I1, I2, n):
#I1 is the 8-bit encoding of the rule number. I2 is an
n-cell grid, with cell (n-1)/2 being the cell to update

 D1 = (not I1[0])
 D2 = (not I1[1])
 D3 = (not I1[2])
 D4 = (not I1[3])
 D5 = (not I1[4])
 D6 = (not I1[5])
 D7 = (not I1[6])
 D8 = (not I1[7])

 D9 = (not I2[(n-1)/2])
 D10 = I2[(n-1)/2]

 D11 = 0.5
 if ((not I2[(n-1)/2 - 1]) and (not I2[(n-1)/2 + 1])):
 D11 = 1
 elif (not I2[(n-1)/2 + 1]) nor (not I2[(n-1)/2 - 1]):
 D11 = 0

 D12 = 0.5
 if (I2[(n-1)/2 - 1] and (not I2[(n-1)/2 + 1])):
 D12 = 1
 elif (not I2[(n-1)/2 + 1]) nor I2[(n-1)/2 - 1]:
 D12 = 0

 D13 = 0.5
 if (I2[(n-1)/2 + 1] and (not I2[(n-1)/2 - 1])):
 D13 = 1
 elif (not I2[(n-1)/2 - 1]) nor I2[(n-1)/2 + 1]:
 D13 = 0

 D14 = 0.5
 if (I2[(n-1)/2 - 1] and I2[(n-1)/2 + 1]):
 D14 = 1
 elif I2[(n-1)/2 + 1] nor I2[(n-1)/2 - 1]:
 D14 = 0

 S1 = (D14 and D1 and D10)
 S2 = ((not D1) and (not D9) and (not D11))
 S3 = (D12 and D2 and D10)
 S4 = ((not D2) and (not D9) and (not D13))
 S5 = (D14 and D3 and D9)
 S6 = ((not D3) and (not D10) and (not D11))
 S7 = (D12 and D4 and D9)
 S8 = ((not D4) and (not D10) and (not D13))
 S9 = (D13 and D5 and D10)
 S10 = ((not D5) and (not D9) and (not D12))
 S11 = (D11 and D6 and D10)
 S12 = ((not D6) and (not D9) and (not D14))
 S13 = (D13 and D7 and D9)
 S14 = ((not D7) and (not D10) and (not D12))
 S15 = (D11 and D8 and D9)
 S16 = ((not D8) and (not D10) and (not D14))

 C1 = S15 or S13 or S11 or S9 or S7 or S5 or S3 or S1
 C2 = S16 or S14 or S12 or S10 or S8 or S6 or S4 or S2

 return C2 and not C1

10

Supplementary Section 2d: Distilled code to update a Game of Life cellular automaton

For the Game of Life, the distilled code essentially builds up the different cases leading to death
and life as expected per the rules. The nested non-linearities in the rules require the ENN to build
up these cases sequentially, even if there are a couple redundancies along the way. Below is a
description of each of the variables condensed from the ENN, where CENTER indicates the central
cell of the grid.

• D1	=	CENTER
• part_sum	(aka	NEIGHBORHOOD)	=	sum	of	the	8	cells	surrounding	the	center
• D2	=	NEIGHBORHOOD	≤	3
• D3	=	NEIGHBORHOOD	>	1
• D4	=	NEIGHBORHOOD	>	2

• S1	=	CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2)
• S2	=	NEIGHBORHOOD	=	3
• S3	=	NEIGHBORHOOD	>	3
• S4	=	(not	CENTER)	and	(NEIGHBORHOOD	≤	2)
• S5	=	NEIGHBORHOOD	≤	1

• C1	=	(NEIGHBORHOOD	≤	1)	or	(NEIGHBORHOOD	>	3)	or																																																																																							

	 	 ((not	CENTER)	and	NEIGHBORHOOD=2)
• C2	=	(NEIGHBORHOOD=3)	or	(CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2))	
	
• return	(NEIGHBORHOOD=3)	or	(CENTER	and	(NEIGHBORHOOD=1	or	NEIGHBORHOOD=2))	

11

def game_of_life_3(I):
#I is a 3x3 grid, with the center cell being the
cell to update

 D1 = I[1, 1]

 D2 = 0
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] +

I[1,2] + I[2,0] + I[2,1] + I[2,2])

 if part_sum <= 3:
 D2 = 1
 elif part_sum > 3:
 D2 = -1

 D3 = 0
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] +

I[1,2] + I[2,0] + I[2,1] + I[2,2])

 if part_sum > 1:
 D3 = 1
 elif part_sum <= 1:
 D3 = -1

 D4 = 0
 part_sum = (I[0,0] + I[0,1] + I[0,2] + I[1,0] +

I[1,2] + I[2,0] + I[2,1] + I[2,2])

 if part_sum > 2:
 D3 = 1
 elif part_sum <= 2:
 D3 = -1

 S1 = (D1>0 and D2>0 and D3>0)

 S2 = (D2>0 and D4>0)

 S3 = (not D2>0)

 S4 = ((not D1>0) and (not D4>0))

 S5 = (not D3>0)

 C1 = (S3 or S4 or S5)

 C2 = (S1 or S2)

 return C2 and not C1

def game_of_life(I, n):
#I is an nxn grid, with the center cell being
the cell to update

 D1 = I[(n-1)/2, (n-1)/2]

 D2 = 0
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] +
I[(n-1)/2+1, (n-1)/2-1] + I[(n-1)/2+1, (n-1)/2]
+ I[(n-1)/2+1, (n-1)/2+1])

 if part_sum > 3:
 D2 = 1
 elif part_sum <= 3:
 D2 = -1

 D3 = 0
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] + I[2,
(n-1)/2-1] + I[(n-1)/2+1, (n-1)/2] + I[(n-
1)/2+1, (n-1)/2+1])

 if part_sum > 1:
 D3 = 1
 elif part_sum <= 1:
 D3 = -1

 D4 = 0
 part_sum = (I[(n-1)/2-1, (n-1)/2-1] + I[(n-1)/2-

1, (n-1)/2] + I[(n-1)/2-1, (n-1)/2+1] + I[(n-
1)/2, (n-1)/2-1] + I[(n-1)/2, (n-1)/2+1] + I[2,
(n-1)/2-1] + I[(n-1)/2+1, (n-1)/2] + I[(n-
1)/2+1, (n-1)/2+1])

 if part_sum > 2:
 D3 = 1
 elif part_sum <= 2:
 D3 = -1

 S1 = (D1>0 and D2>0 and D3>0)

 S2 = (D2>0 and D4>0)

 S3 = (not D2>0)

 S4 = ((not D1>0) and (not D4>0))

 S5 = (not D3>0)

 C1 = (S3 and S5) or (S3 and S4 and (not S5))

 C2 = (S1 and S2)

 return C2 and not C1

12

Supplementary Section 2e: Distilled code to find the maximum absolute value

Because basic ENNs do not have any recurrent connections, it is not possible for them to iterate
over the array of numbers and store the running maximum magnitude. Instead, it compares each
number with all other numbers and with the negative of those numbers as well. In order for a
number to have the maximum magnitude, it has to either win all of these comparisons or lose all
of them. The distilled code returns whichever index won all of these comparisons. A description
of the variables created in the distilled code is below.

• D1	=	2D	array	containing	all	comparisons	of	𝑥! > 𝑥" 	
• D2	=	2D	array	containing	all	comparisons	of	𝑥! > −𝑥" 		

	
• S1	=	1D	array	containing	whether	an	𝑥! 	won	all	comparisons	in	D1	and	D2	

i.e.		S1[i]	=	all(D1[i,:])	and	all(D2[i,:])	
• S2	=	1D	array	containing	whether	an	𝑥! 	won	no	comparisons	in	D1	and	D2	

i.e.		S2[i]	=	not	(any(D1[i,:])	or	any(D2[i,:]))	
o row_sum_1	and	row_sum_2	=	the	sum	of	all	values	in	either	D1	or	D2,	respectively	

	
• C	=	1D	array	containing	whether	an	𝑥! 	was	the	winner	in	either	S1	or	S2	

i.e.		C[i]	=	S1[i]	or	S2[i]	
• return	→	the	index	of	C	that	won	all	comparisons	

	
	 	

13

import numpy as np
import random

def absmax_20(I):
 #I is an array of 20 numbers

 D1 = np.zeros((20, 20))
 for i in range(20):
 for j in range(20):
 if i == j:
 continue
 value_1 = I[i]
 value_2 = I[j]
 if value_1 > value_2:
 D1[i,j] = 1
 elif value_1 < value_2:
 D1[i,j] = -1

 D2 = np.zeros((20, 20))
 for i in range(20):
 for j in range(20):
 if i == j:
 continue
 value_1 = I[i]
 value_2 = I[j]
 if value_1 > -value_2:
 D2[i,j] = 1
 elif value_1 < -value_2:
 D2[i,j] = -1

 S1 = np.zeros(20)
 for i in range(20):
 row_sum_1 = np.sum(D1[i, :])
 row_sum_2 = np.sum(D2[i, :])
 if row_sum_1 < 18:
 S1[i] = -1
 elif row_sum_2 < 18:
 S1[i] = -1
 elif row_sum_1 + row_sum_2 > -37:
 S1[i] = 1
 else:
 S1[i] = -1

 S2 = np.zeros(20)
 for i in range(20):
 row_sum_1 = np.sum(D1[i, :])
 row_sum_2 = np.sum(D2[i, :])
 if row_sum_1 > -18:
 S2[i] = -1
 elif row_sum_2 > -18:
 S2[i] = -1
 elif -row_sum_1 - row_sum_2 > -37:
 S2[i] = 1
 else:
 S2[i] = -1

 C = np.zeros(20)
 for i in range(20):
 C[i] = 20*S2[i] + 20*S1[i] - np.sum(S2) - np.sum(S1)

 results = np.where(C==max(C))[0]
 return random.choice(results)

import numpy as np
import random

def absmax(I, n):
 #I is an array of n numbers

 D1 = np.zeros((n, n))
 for i in range(n):
 for j in range(n):
 if i == j:
 continue
 value_1 = I[i]
 value_2 = I[j]
 if value_1 > value_2:
 D1[i,j] = 1
 elif value_1 < value_2:
 D1[i,j] = -1

 D2 = np.zeros((n, n))
 for i in range(n):
 for j in range(n):
 if i == j:
 continue
 value_1 = I[i]
 value_2 = I[j]
 if value_1 > -value_2:
 D2[i,j] = 1
 elif value_1 < -value_2:
 D2[i,j] = -1

 S1 = np.zeros(n)
 for i in range(n):
 row_sum_1 = np.sum(D1[i, :])
 row_sum_2 = np.sum(D2[i, :])
 if row_sum_1 < n-2:
 S1[i] = -1
 elif row_sum_2 < n-2:
 S1[i] = -1
 elif row_sum_1 + row_sum_2 > 3-2*n:
 S1[i] = 1
 else:
 S1[i] = -1

 S2 = np.zeros(n)
 for i in range(n):
 row_sum_1 = np.sum(D1[i, :])
 row_sum_2 = np.sum(D2[i, :])
 if row_sum_1 > 2-n:
 S2[i] = -1
 elif row_sum_2 > 2-n:
 S2[i] = -1
 elif -row_sum_1 - row_sum_2 > 3-2*n:
 S2[i] = 1
 else:
 S2[i] = -1

 C = np.zeros(n)
 for i in range(n):
 C[i] = n*S2[i] + n*S1[i] - np.sum(S2) - np.sum(S1)

 results = np.where(C==max(C))[0]
 return random.choice(results)

14

Supplementary Section 2f: Distilled code to find the best assignment for MAX-SAT

The distilled code for this problem goes through each clause of the Boolean formula individually
to determine whether there are any other variables present in the formula besides the first. Then it
determines for either case what the difference is in the number of clauses that have the first variable
present as a positive—rather than a negative—literal. It weights the two cases differently (by 10
and 2.298, respectively) and returns the sigmoid output of this.

• D1	=	1D	array	indicating	for	each	clause	if	any	of	the	other	variables	are	present
• D2	=	1D	array	indicating	for	each	clause	if	all	of	the	other	variables	are	absent
• D3	=	1D	array	indicating	for	each	clause	the	negation	of	the	first	variable,	and	if	it	is	absent	

then	indicating	if	any	other	variables	are	present
o col_mean	=	half	the	percentage	of	other	literals	present	in	the	clause

• D4	=	1D	array	indicating	for	each	clause	the	value	of	the	first	variable,	and	if	it	is	absent	then	
indicating	if	any	other	variables	are	present
o col_mean	=	half	the	percentage	of	other	literals	present	in	the	clause

• D5	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	present	and	POSITIVE
• D6	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	present	and	NEGATIVE

• S1	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	NEGATIVE	and	there	are	other	

variables	present	(aka	NEG-OTHERS)
• S2	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	NEGATIVE	and	there	are	no	

other	variables	present	(aka	NEG-ALONE)
• S3	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	POSITIVE	and	there	are	other	

variables	present	(aka	POS-OTHERS)
• S4	=	1D	array	indicating	for	each	clause	if	the	first	variable	is	POSITIVE	and	there	are	no	

other	variables	present	(aka	POS-ALONE)

• C1	=	10	*	S	(POS-OTHERS	–	NEG-OTHERS)	+	2.298	*	S	(POS-ALONE	–	NEG-ALONE)
• C2	=	–C1

• return	→	sigmoid(2*C1)

15

import numpy as np

def maxsat_10_50(I):

#I is an input of size 10x50 (5 one-hot-encoded Boolean
variables, 50 clauses)

 D1 = np.zeros(50)
 for i in range(50):
 if np.any(I[2:, i]!=0):
 D1[i] = -1
 else:
 D1[i] = 1

 D2 = np.zeros(50)
 for i in range(50):
 if np.any(I[2:, i]!=0):
 D2[i] = 1
 else:
 D2[i] = -1

 D3 = np.zeros(50)
 for i in range(50):
 col_mean = np.mean(I[2:, i])
 if I[1, i] + col_mean - I[0, i] > 0:
 D3[i] = 1
 else:
 D3[i] = -1

 D4 = np.zeros(50)
 for i in range(50):
 col_mean = np.mean(I[2:, i])
 if I[0, i] + col_mean - I[1, i] > 0:
 D4[i] = 1
 else:
 D4[i] = -1

 D5 = np.zeros(50)
 for i in range(50):
 if (I[0, i] and (not I[1, 0])):
 D5[i] = 1
 elif (not I[1, 0]) or I[0, i]:
 D5[i] = -1

 D6 = np.zeros(50)
 for i in range(50):
 if (I[1, i] and (not I[0, 0])):
 D6[i] = 1
 elif (not I[0, 0]) or I[1, i]:
 D6[i] = -1

 S1 = np.zeros(50)
 for i in range(50):
 S1[i] = (D6[i]>0 and D1[i]>0)

 S2 = np.zeros(50)
 for i in range(50):
 S2[i] = (D2[i]>0 and D3[i]>0)

 S3 = np.zeros(50)
 for i in range(50):
 S3[i] = (D5[i]>0 and D1[i]>0)

 S4 = np.zeros(50)
 for i in range(50):
 S4[i] = (D2[i]>0 and D4[i]>0)

 C1 = 10.0*np.sum(S3) + 2.298*np.sum(S4) -

2.298*np.sum(S2) - 10.0*np.sum(S1)
 C2 = 10.0*np.sum(S1) + 2.298*np.sum(S2) -

2.298*np.sum(S4) - 10.0*np.sum(S3)
 C = [C1, C2]

 return np.exp(C)/np.sum(np.exp(C))

import numpy as np

def maxsat(I, n, m):

#I is an input of size mxn (m one-hot-encoded Boolean
variables, n clauses)

 D1 = np.zeros(n)
 for i in range(n):
 if np.any(I[2:, i]!=0):
 D1[i] = -1
 else:
 D1[i] = 1

 D2 = np.zeros(n)
 for i in range(n):
 if np.any(I[2:, i]!=0):
 D2[i] = 1
 else:
 D2[i] = -1

 D3 = np.zeros(n)
 for i in range(n):
 col_mean = np.mean(I[2:, i])
 if I[1, i] + col_mean - I[0, i] > 0:
 D3[i] = 1
 else:
 D3[i] = -1

 D4 = np.zeros(n)
 for i in range(n):
 col_mean = np.mean(I[2:, i])
 if I[0, i] + col_mean - I[1, i] > 0:
 D4[i] = 1
 else:
 D4[i] = -1

 D5 = np.zeros(n)
 for i in range(n):
 if (I[0, i] and (not I[1, 0])):
 D5[i] = 1
 elif (not I[1, 0]) or I[0, i]:
 D5[i] = -1

 D6 = np.zeros(n)
 for i in range(n):
 if (I[1, i] and (not I[0, 0])):
 D6[i] = 1
 elif (not I[0, 0]) or I[1, i]:
 D6[i] = -1

 S1 = np.zeros(n)
 for i in range(n):
 S1[i] = (D6[i]>0 and D1[i]>0)

 S2 = np.zeros(n)
 for i in range(n):
 S2[i] = (D2[i]>0 and D3[i]>0)

 S3 = np.zeros(n)
 for i in range(n):
 S3[i] = (D5[i]>0 and D1[i]>0)

 S4 = np.zeros(n)
 for i in range(n):
 S4[i] = (D2[i]>0 and D4[i]>0)

 C1 = 10.0*np.sum(S3) + 2.298*np.sum(S4) -

2.298*np.sum(S2) - 10.0*np.sum(S1)
 C2 = 10.0*np.sum(S1) + 2.298*np.sum(S2) -

2.298*np.sum(S4) - 10.0*np.sum(S3)
 C = [C1, C2]

 return np.exp(C)/np.sum(np.exp(C))

16

Supplementary Section 2g: Distilled code to find a shape’s orientation

The distilled code learns a nonintuitive algorithm. In most cases it essentially determines whether
overall there are more columns that have greater total brightness than rows (i.e. a vertical orienta-
tion). However, there are interesting edge cases handled where the margin of difference in the
column-row comparisons outside of the column (or row) in question is very close, in which case
it has a series of tiebreakers that account for the given column (or row). A description of the vari-
ables appearing in the distilled code is below.

• D	=	a	2D	matrix	the	same	size	as	the	image	containing,	pixel-by-pixel,	whether	the	sum	total	

brightness	of	each	column	is	greater	than	that	of	each	row
• col_sum	=	the	sum	total	brightness	of	a	column	
• row_sum	=	the	sum	total	brightness	of	a	row	
	
• S1	=	1D	array;	if	the	total	margin	of	victory	for	columns	over	rows	is	great	enough,	all	values	

will	be	TRUE;	if	the	total	margin	of	victory	is	very	close,	there	are	a	couple	of	tiebreakers	(for	
example,	whether	a	column	won	any	comparisons	at	all)	
o row_sum	=	the	margin	of	victory	for	the	pixel-by-pixel	comparisons	won	by	a	given	col-

umn	in	the	image	
o offrow_sum	=	the	margin	of	victory	for	the	pixel-by-pixel	comparisons	won	by	all	other	

columns	in	the	image	
• S2	=	same	S1	above	but	flipped	for	rows	and	columns	

o col_sum	=	the	same	as	row_sum	above,	but	for	rows	in	the	image	
o offcol_sum	=	the	same	as	offrow_sum	above,	but	for	rows	in	the	image	

	
• C1	=	whether	columns	won	more	than	rows	did	
• C2	=	whether	rows	won	more	than	columns	did	

	
• return	→	VERTICAL	if	columns	won	more	than	rows,	otherwise	HORIZONTAL	

17

import numpy as np
import random

def orientation_28(I, n):
#I is an input image that is 28x28
#I calculate pixel score for each pixel depending on if its
row or column is brighter
 D = np.zeros((28, 28))
 for i in range(28):
 for j in range(28):
 col_sum = np.sum(I[:, i])
 row_sum = np.sum(I[j, :])
 if col_sum > row_sum:
 D[i,j] = 1
 elif col_sum < row_sum:
 D[i,j] = -1

#for each row, calculate sum of pixel scores outside of the
row and compare with the image width to determine if that
row is significant. Use the sum of pixel scores in the row
to break ties
 S1 = np.zeros(28)
 for i in range(28):
 row_sum = np.sum(D[i, :])
 offrow_sum = (np.sum(D) - np.sum(D[i, :]))
 if offrow_sum < -29:
 S1[i] = 1
 elif offrow_sum > -27:
 S1[i] = -1
 elif offrow_sum == -27:
 if np.all(D[i, :]==1):
 S1[i] = 1
 elif not np.all(D[i, :]==1):
 S1[i] = -1
 elif offrow_sum == -28:
 if row_sum > 0:
 S1[i] = 1
 elif row_sum < 0:
 S1[i] = -1
 elif offrow_sum == -29:
 if not np.all(D[i, :]==-1):
 S1[i] = 1
 elif np.all(D[i, :]==-1):
 S1[i] = -1

#do the same for each column
 S2 = np.zeros(28)
 for i in range(28):
 offcol_sum = (np.sum(D) - np.sum(D[:, i]))
 col_sum = np.sum(D[:, i])
 if offcol_sum < 27:
 S2[i] = -1
 elif offcol_sum > 29:
 S2[i] = 1
 elif offcol_sum == 29:
 if np.all(D[:, i]==1):
 S2[i] = -1
 elif not np.all(D[:, i]==1):
 S2[i] = 1
 elif offcol_sum == 28:
 if col_sum > 0:
 S2[i] = -1
 elif col_sum < 0:
 S2[i] = 1
 elif offcol_sum == 27:
 if not np.all(D[:, i]==-1):
 S2[i] = -1
 elif np.all(D[:, i]==-1):
 S2[i] = 1

 C1 = np.sum(S1) - np.sum(S2)
 C2 = np.sum(S2) - np.sum(S1)
 C = [C1, C2]
#compare the number of significant rows versus columns
 results = np.where(C==max(C))[0]
 return random.choice(results)

import numpy as np
import random

def orientation(I, n):
#I is an input image that is nxn
#I calculate score for each pixel depending on if its row
or column is brighter
 D = np.zeros((n, n))
 for i in range(n):
 for j in range(n):
 col_sum = np.sum(I[:, i])
 row_sum = np.sum(I[j, :])
 if col_sum > row_sum:
 D[i,j] = 1
 elif col_sum < row_sum:
 D[i,j] = -1

#for each row, calculate sum of pixel scores outside of the
row and compare with the image width to determine if that
row is significant. Use the sum of pixel scores in the row
to break ties
 S1 = np.zeros(n)
 for i in range(n):
 row_sum = np.sum(D[i, :])
 offrow_sum = (np.sum(D) - np.sum(D[i, :]))
 if offrow_sum < -1-n:
 S1[i] = 1
 elif offrow_sum > 1-n:
 S1[i] = -1
 elif offrow_sum == 1-n:
 if np.all(D[i, :]==1):
 S1[i] = 1
 elif not np.all(D[i, :]==1):
 S1[i] = -1
 elif offrow_sum == -n:
 if row_sum > 0:
 S1[i] = 1
 elif row_sum < 0:
 S1[i] = -1
 elif offrow_sum == -1-n:
 if not np.all(D[i, :]==-1):
 S1[i] = 1
 elif np.all(D[i, :]==-1):
 S1[i] = -1

 #do the same for each column
 S2 = np.zeros(n)
 for i in range(n):
 offcol_sum = (np.sum(D) - np.sum(D[:, i]))
 col_sum = np.sum(D[:, i])
 if offcol_sum < n-1:
 S2[i] = -1
 elif offcol_sum > n+1:
 S2[i] = 1
 elif offcol_sum == n+1:
 if np.all(D[:, i]==1):
 S2[i] = -1
 elif not np.all(D[:, i]==1):
 S2[i] = 1
 elif offcol_sum == n:
 if col_sum > 0:
 S2[i] = -1
 elif col_sum < 0:
 S2[i] = 1
 elif offcol_sum == n-1:
 if not np.all(D[:, i]==-1):
 S2[i] = -1
 elif np.all(D[:, i]==-1):
 S2[i] = 1

 C1 = np.sum(S1) - np.sum(S2)
 C2 = np.sum(S2) - np.sum(S1)
 C = [C1, C2]
#compare the number of significant rows versus columns
 results = np.where(C==max(C))[0]
 return random.choice(results)

18

Supplementary Fig. 1. Deep learning lacks performance guarantees. Even though this deep
learning model had almost perfect performance (i.e. 0.002% error on test images), the occurrence
of a rare error is able to propagate and grow over time. The image on the right is a simple example
of what this can look like, when a single error can grow and produce different behavior than it
should (highlighted in yellow). This demonstrates the importance of having performance guaran-
tees.

19

Supplementary Fig. 2. Deep distilled code generalizes across input sizes and complexities.
The distilled algorithms were able to generalize to arbitrary input sizes for the (a) maximum abso-
lute value, (b) MAX-SAT, and (c) shape orientation problems. a, Training occurred on input sizes
of 18, 19, and 20 numbers, all in the set {−1,0,1}, but perfect accuracy was measured with the
distilled code for sizes 10-1000 and with values in the range [−10!", 10!"] through [−10", 10"].
b, Training data for MAX-SAT used only 8, 9, and 10 variables and 98, 99, and 100 clauses. The
distilled code was able to perform well on Boolean formulae of much larger sizes, even to 1000
variables and 10,000 clauses, for both MAX-3SAT and MAX-SAT. For each, the upper plots show
the percentage of clauses that were satisfied as a function of the number of clauses by the distilled
code, by the pure greedy algorithm, and by the 3/4-approximation algorithm. The lower plots show
the absolute difference in clauses satisfied by the two human-designed algorithm compared to the
distilled code (a positive difference indicates the distilled code satisfied more clauses). c, Training
data for shape orientations included 26x26, 27x27, and 28x28 pixel images of black images with
a single white row or white column. Perfect accuracy was found on test sets of images sizes from
10x10 through 200x200, and with shapes that included variable-length lines, diagonal lines, boxes,
zigzags, and dotted lines.

20

Supplementary Fig. 3. Examples of orientation image processing. Eight different example im-
ages are shown here along with how the distilled orientation algorithm processes them. The square
matrix under each image shows the pixelwise row-versus-column orientation scores, with positive
results (i.e., column brighter than row) in red, negative results (i.e., row brighter than column) in
blue, and tied results in white. The results of the line scores compared to the overall image are
shown to the right and below this matrix, with red bands indicating where there is a significant
row or column. The final output label is denoted above each image.

21

Supplementary Fig. 4. Deep distilling assigns meaning in ambiguous cases. Each of these im-
ages are ambiguous in terms of how they could be classified (i.e., horizontal or vertical orienta-
tion). The labels provided are what the distilled code returned for each. This illustrates how a
distilled algorithm is able to provide a consistent and unambiguous standard to provide meaning
in ambiguous cases.

