
nature computational science

https://doi.org/10.1038/s43588-024-00596-6Brief Communication

Indexing and real-time user-friendly queries 
in terabyte-sized complex genomic datasets 
with kmindex and ORA

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s43588-024-00596-6


Supplementary Information

1 Benchmarks

1.1 Index construction

Indexes were constructed using k = 28. In the case of kmindex, which uses the findere approach, the 28-mers
are emulated using s-mers of size s = 23.

Except for kmindex, only two tools, MetaProFi and COBS, were able to finish building the index and per-
form queries. Supplementary Table 1 shows results for other tested tools that did not finish to build the index
or for which the queries were not possible.

Recall that count and filter k-mers are mandatory steps for all k-mer-based indexing tools. For example,
67% of the k-mers in this dataset are unique. Indexing them would more than double the index size and
produce imprecise query replies. However, these time-consuming steps are not included in MetaProFi and
COBS. This is why, for these two tools, and before constructing the indexes, we used KMC3 to count k-mers and
remove those seen only once and thus considered as erroneous.

Supplementary Table 2 shows that kmindex is ≈ 10 times faster and uses ≈ 3 times less memory and ≈ 6.5
less disk than the only other tools able to finish the index building with 900 GB of RAM and to perform a query
in less than 12h. These results highlight the fact that time and memory usage are a bottleneck for tools that
require to build a compacted version of the input data. Overall, for building the index, kmindex exhibits better
performances on all considered criteria.

Wall clock time
Max Memory

(GB)
Max temp.
disk (GB)

Comment

PAC [7] 14h59 190 191 + 1415β Empty result to queries

ggcat [3] 12h59 69 2472 + 1415β
"Max No open files: 211,648.
Query of one sequence killed after 12h.

Themisto [1] 9h14 (killed) > 900 4261 Killed because of RAM usage
HIBF [8] 16h53 (killed) > 900 0.3 Killed because of RAM usage
MetaGraph [6] 50h53 (killed) > 900 2144 Killed because of RAM usage
Bifrost [5] 12h57 (killed) > 900 0 Killed because of RAM usage
β in order to consider multiple files per sample, the original input file has to be
concatenated and so doubled using PAC, ggcat.

Supplementary Table 1: Tested tools for which we were not able to build an index
on the 50 Tara ocean samples or for which we were not able to perform a query.
Tested tool versions: PAC commit cee1b5c (as used in the original PAC paper) and
commit 940f18b (following a personal communication with the authors), ggcat:
version v0.1.0, Themisto: version v3.2.0, HIBF: (Raptor version: 3.0.0, Sharg ver-
sion: 1.0.1-rc.1, SeqAn version: 3.3.0-rc.1), MetaGraph version: 0.3.6., Bifrost ver-
sion: 1.3.0.

1



Step Wall clock time
Max Memory

(GB)
Max temp.
disk (GB)

Output size
on disk (GB)

MetaProFi [10]

KMC3 count 3h44 278 1019 1019
KMC3 dump 18h11 0 5684 5684
MetaProFi 8h20 232 226 226

Overall 30h15 278 5684 226

COBS [2]

KMC3 count 3h44 278 1019 1019
KMC3 dump 18h11 0 5684 5684
COBS 4h35 160 184 184

Overall 26h30 278 5684 184
kmindex All 2h56 107 878 164

Supplementary Table 2: Comparing kmindex indexing performances to
MetaProFi and COBS. The indexed dataset is composed of 50 Tara Oceans
metagenomes datasets (total size 1.4TB). “Wall clock time” corresponds to the
user time. “Max temp. disk” indicates the maximal disk used at runtime, this
can be a temporary usage as for kmindex. “Output size on disk” indicates the
size of the created files. kmindex can be run with a single command line, here
resumed in the “All” step. Tested tool versions: kmindex version: 0.4.0, MetaProFi
version 0.6.0, COBS commit 1cd6df2. Both COBS and MetaProFi require filtered
k-mers as inputs. We utilized KMC3 [4], version 3.2.2, to perform the counting and
k-mer filtration. The k-mers that appeared two or more times in any dataset were
retained.

1.2 Query performances

Supplementary Table 3 details the results provided in the main text and proposes an extended range of results.
Notably, it indicates the peak RAM usage at query time, not included in the main text. This highlights the
limited RAM usage of kmindex compared to MetaProFi and COBS during queries.

No. queries 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000
MetaProFi Time 12s72 15s28 1m33 2m57 3m02 3m37 11m56 1h29
MetaProFi Memory peak (GB) 0.3 0.3 0.3 0.32 0.44 2.25 21 203
COBS Time 1s51 1s41 1s91 10s73 1m37 15m14 2h00 15h56
COBS Memory peak (GB) 0.012 0.018 0.036 0.28 2.66 24.58 138 295
kmindex Time 0s06 0s23 0s87 3s94 18s03 58s35 1m13s 4m21s
kmindex Memory peak (GB) 0.005 0.005 0.006 0.01 0.05 0.45 4.9 46.7

Supplementary Table 3: Query time performance of the indexes on the 50 Tara
Ocean samples. Queries are composed of reads uniformly sampled from the 50
Tara Oceans datasets. Executions were performed on a cold cache.

1.3 False positive rates

In order to test the FP rate, we generated a random sequence (25% chance of each nucleotide at each position,
≈50% GC) of size 10000. We used it for querying the index of the 50 Tara Oceans samples, successively querying
the 9973 (10000-28+1) overlapping 28-mers of the query sequence. Note that we do not have a way to assess
if each queried random k-mer occurs in the indexed set or not. Thus it may appear by chance that such a
random k-mer indeed occurs in the set. This happens with a probability of ×10−9 in the biggest set. Hence
the reported False Positive rate is an upper bound. This detail does not impact the conclusions offered by the
results.

Results are presented in Supplementary Table 4. As stated in the main manuscript, MetaProFi and COBS,
the only tested tools with which we were able to perform queries, have an average false positive rate of 11.18%
and 13.29%, respectively. In contrast, with a similar and smaller index size, kmindex shows a negligible av-
erage false positive rate of 0.006%, below the expected theoretical result thanks to the usage of the findere
approach, indexing words of length 23 for querying 28-mers. Note that the difference 28−23 = 5 (noted z in
findere) is among the recomanded values. As hilighted in [9], the choice z value leads to robust results as
long as z > 2 and as the indexed words are bigger than 16.

2



Average Median Min Max
Theoretical 11.62 10.77 6.86 21.25
MetaProFi 11.18 9.92 6.93 21.55
COBS 13.29 12.30 7.07 24.60
kmindex 0.006 0 0 0.18

Supplementary Table 4: False positive rates (in %). Indexed: 50 Tara Oceans sam-
ples. Queried: k-mers (k = 28) from a random sequence of size 10k nucleotides.
Theoretical results correspond to the usage of BFs of size 30 billion bits as used by
MetaProFi. The COBS index was built using the “-f 0.25” option to set the FP rate
to 25%. kmindex results are below the expected theoretical rates at it implements
the findere approach [9] (see Supplementary Information, Section 1.3).

1.4 Warm and cold query results, and “fast-mode”

Supplementary Table 5 shows time and memory usage results when performing queries using kmindex. We
evaluate 3 query scenarios from the least to the most favorable: ‘c’ cold (empty cache), ‘w’ warm (successive
distinct queries), and ‘w+’ warm+ (successive identical queries). As expected, the query times decrease drasti-
cally with the cache benefit, illustrating the I/O bounds of kmindex. Note that the differences between ‘w’ and
‘w+’ decrease with the number of queries. Indeed, running a very large number of arbitrary queries increases
the probability of loading useful pages for subsequent queries.

In fast mode, the kernel is allowed to keep as many pages as possible in the cache resulting in significantly
faster queries at the cost of higher memory usage (near to the index size for 10 million queries). Under memory
pressure, the memory usage would be equivalent to the normal mode.

Querying
cache 1 10 100 1k 10k 100k 1M 10M

kmindex

c
T (s) 0.06 0.23 1.24 4.71 19.78 53.72 93.90 261

M (GB) 0.005 0.005 0.006 0.01 0.05 0.45 4.9 46.7

w
T 0.06 0.20 1.15 4.02 10.84 16.42 40.76 225
M 0.005 0.006 0.006 0.01 0.06 0.43 4.70 42.6

w+
T 0.02 0.1 0.74 2.65 5.64 13.54 42.12 227
M 0.005 0.006 0.006 0.01 0.05 0.44 4.48 43.70

kmindex fast

c
T 0.06 0.10 0.31 2.34 16.56 44.87 61.50 98.52
M 0.005 0.009 0.035 0.29 2.83 25.7 133 194

w
T 0.03 0.08 0.24 1.57 7.20 7.86 15.79 64.36
M 0.005 0.009 0.035 0.29 2.84 25.7 133 194

w+
T 0.06 0.05 0.07 0.18 1.04 4.63 15.18 62.33
M 0.005 0.009 0.035 0.29 2.84 25.7 133 194

Supplementary Table 5: Time (seconds) and memory (GB) performances when
querying from 1 read to 10 million reads over the 50 Tara Ocean samples indexed
with kmindex. We consider the following scenarios: ‘c’: cold (empty cache), ‘w’
warm (successive distinct queries), and ‘w+’ warm+ (successive identical queries).
Queries are performed using 32 threads.

1.5 kmindex dynamicity performances

kmindex disposes of two distinct ways to add novel samples to an existing index. The indexing time does not
depend on the chosen approach. As presented in Supplementary Table 6, when merging indexes together, the
query time is optimal, equivalent to the one obtained from the same index built directly on the full dataset.
However, this approach has the constraint that all the merged indexes have to be built using the same param-
eters (hash function, number of partitions, bloom filter sizes). On the other hand, when distinct indexes are
registered together, each index is individually queried increasing the running time. However, as the indexing
parameters are independent, this solution is more flexible. It is well adapted when indexing highly diverse
samples such as samples from other Tara missions or distinct phylogenetic groups for instance.

3



No. queries 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000
kmindex original (50 samples at once) 0.13 0.13 0.40 2.46 16.52 41.44 54.87 100.36
kmindex merged (5×10 samples merged) 0.14 0.15 0.40 2.47 16.54 43.92 53.81 92.26
kmindex register (5×10 samples registered) 0.37 0.64 1.91 10.76 45.68 72.68 82.43 259.98

Supplementary Table 6: Time performances (seconds) when querying from 1 read
to 10 million reads over the 50 Tara Ocean samples indexed with kmindex. The
index is built either as “original”, “merged”, or “register". With the “original” ap-
proach, the 50 samples are indexed in a unique process. With the “merged” and
the “register" approaches, the 50 samples are separated into 5 groups of 10 sam-
ples each. The “merged” approach consists of physically extending an existing in-
dex, thus ending up with a unique index with the same performances as in the
“original” approach. The “register” approach consists of registering independent
indexes together.

4



2 Illustrations of the Ocean Read Atlas

Supplementary Figure 1: Screenshot of the “Ocean Read Atlas” result interface.
Top: the biogeography distribution of the queried sequence is shown among all
data samples. The size of the point depicts the similarity of the queried sequences
with the corresponding sample. Bottom: a bubble plot representing the correla-
tion between the query presence and the environmental variables of the samples
in which it occurs.

5



Supplementary Figure 2: The ORA web service is organized in 3 distinct entities: 1)
a database containing the environmental parameters and the biosample informa-
tion of the campaign, 2) the kmindex server allowing index request, and 3) the ORA
server making the link between the 2 previous entities and allowing visualization
of the results via a web interface.

References

[1] Jarno N Alanko, Jaakko Vuohtoniemi, Tommi Mäklin, and Simon J Puglisi. Themisto: a scalable colored
k-mer index for sensitive pseudoalignment against hundreds of thousands of bacterial genomes. bioRxiv,
pages 2023–02, 2023.

[2] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs: a compact bit-sliced signature
index. In String Processing and Information Retrieval: 26th International Symposium, SPIRE 2019, Segovia,
Spain, October 7–9, 2019, Proceedings 26, pages 285–303. Springer, 2019.

[3] Andrea Cracco and Alexandru I Tomescu. Extremely fast construction and querying of compacted and
colored de bruijn graphs with ggcat. Genome Research, pages gr–277615, 2023.

[4] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz. Kmc 2: fast
and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[5] Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of colored and
compacted de bruijn graphs. Genome biology, 21(1):1–20, 2020.

[6] Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher Barber, Gunnar
Rätsch, and André Kahles. Metagraph: Indexing and analysing nucleotide archives at petabase-scale.
BioRxiv, 2020.

[7] Camille Marchet and Antoine Limasset. Scalable sequence database search using Partitioned Aggregated
Bloom Comb-Trees. In Recomb 2022- 26th Annual International Conference on Research in Computa-
tional Molecular Biology, La jolla, United States, May 2022.

[8] Svenja Mehringer, Enrico Seiler, Felix Droop, Mitra Darvish, René Rahn, Martin Vingron, and Knut Rein-
ert. Hierarchical interleaved bloom filter: enabling ultrafast, approximate sequence queries. Genome
Biology, 24(1):1–25, 2023.

[9] Lucas Robidou and Pierre Peterlongo. findere: fast and precise approximate membership query. In Inter-
national Symposium on String Processing and Information Retrieval, pages 151–163. Springer, 2021.

[10] Sanjay K Srikakulam, Sebastian Keller, Fawaz Dabbaghie, Robert Bals, and Olga V Kalinina. Metaprofi: an
ultrafast chunked bloom filter for storing and querying protein and nucleotide sequence data for accurate
identification of functionally relevant genetic variants. Bioinformatics, 39(3):btad101, 2023.

6




