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Supplementary Section 1 Source code and machine learn-
ing algorithms

Note: Our code heavily relies in the Tensorflow library to execute all the Machine Learn-
ing algorithms. This library is frequently updated, and newer versions are not always
compatible with the older ones. Most of our development was done with Tensorflow 2.7
and 2.10, and these are the ones we would recommend. Please check Supplementary
Section 1.2 for more information.

This supplementary section describes the source code implemented to obtain the re-
sults discussed in the main manuscript:

• Supplementary Section 1.1 describes how to install the software.

• Supplementary Section 1.3 describes how to generate the training dataset.

• Supplementary Sections 1.4 to 1.11 describe the different machine learning (ML)
algorithms implemented, and the scripts used to test them.

Supplementary Subsection 1.1 Software installation

Before installing the software, it is recommended to have Python installed, including
Pip. It is also recommended to have Git and Conda (or Miniconda) installed. To run
the different machine learning algorithms, it is recommended to have a powerful GPU
(this research used Nvidia RTX 3090 and A6000 GPUs), and to have installed the Cuda
(https://developer.nvidia.com/cuda-toolkit) and CuDNN (https://developer.
nvidia.com/cudnn) libraries.

To install the software, the following steps should be executed:

1. Using Git, clone the main repository:

$ git clone git@github.com:croningp/electrondensity2.git

2. The previous command will download all the source code, including a file named
“environment.yml”. We can invoke Conda with this file to install all the required
libraries:

$ conda env create -f environment.yaml

3. This command will create a Conda environment named “electrondensity”.

4. Modify the environmental variables in “env.sh” to suit your configuration:

• DATA_DIR is the path where to store the datasets.

• LOG_DIR is the path where the files generated by the ML algorithms (such
as network weights or sampling outputs) will be saved.

• MODEL_DIR is the path where to save the ML models.

• CPU_COUNT specifies the number of CPUs used for the parallel processing
of datasets. Setting it to “-1” means that all the available CPUs will be used.
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5. In order to activate the Conda environment using the previous configuration, run:

$ source env.sh

6. The first time this command is executed, it will download and install Orbkit (https:
//orbkit.github.io/) locally within the project folder.

7. If all the steps were executed successfully and the Conda environment is enabled,
then the software is ready to use.

The source code is divided into two folders: “bin” and “src”.

• “bin” contains the scripts to be directly executed by the users from the command
prompt. These scripts can be used to generate the datasets, train the AI models,
and test them. Users who are only interested in executing the code as provided,
should only use this folder. An example of executing one of these scripts can be
seen in the following command:

$ python bin/dataset/generate_dataset.py QM9

• ”src” contains the different algorithms used by the scripts found in “bin”. Code from
“src” should not be executed directly. Users who want to, for example, implement
different AI algorithms, should use this folder.

Supplementary Subsection 1.2 Note about Tensorflow versions

Most of the development and testing was done using Tensorflow version 2.7. Based on
our experience and the extensive testing done, all the source code used in this research
should work with this version of Tensorflow. A Conda environment named “environ-
mentTF7.yml” is supplied with the Git repository which matches our Tensorflow 2.7
Conda environment.

In later stages of the development we updated Tensorflow to version 2.10, and in
our experience all the source code provided worked with this version too. A Conda
environment named “environmentTF10.yml” is supplied with the Git repository which
matches our Tensorflow 2.10 Conda environment.

We have also tested our source code with the last version of Tensorflow available at
the moment of writing this report. This version was 2.13. This version did not work
with some of our code. For example, it returned (at least) one error related with the
Learning Rate Scheduler. Some of the scripts which did not use the Learning Rate
Scheduler seemed to work fine, but we have not tested it. We have not tested our code
with Tensorflow version 2.11 or 2.12.

It is our suggestion to stick with either Tensorflow 2.7 or Tensorflow 2.10. Since the
version we tested the most was 2.7, that is the one we would recommened.

Supplementary Subsection 1.3 Generating the training dataset

This section will explain the different processing steps taken to prepare the dataset,
which in the case of this research was the publicly available QM9 dataset (http://
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quantum-machine.org/datasets/). All the steps described in this supplementary sec-
tion were automated in the following single command. This command downloaded the
dataset, generated the electron densities and electrostatic potentials for all the molecules
present in the QM9 dataset, and encapsulated them into a TFRecord file (https://www.
tensorflow.org/api_docs/python/tf/data/TFRecordDataset), ready to be inputted
into the different ML algorithms:

$ python bin/dataset/generate_dataset.py QM9

Note of caution: This command downloaded and unpacked the QM9 Dataset (∼530
Mb), created an individual folder for each molecule containing their electron densities
and electrostatic potentials (∼540Gb), and finally created two “TFRecord” files (train
and test) of 236Gb and 27Gb. Therefore, it is recommended to have around 1Tb avail-
able space before running it. Depending on the CPU used, this command can take
several hours. Once the command has been successfully executed, all the data except the
“TFRecord” files can be deleted. We recommend to keep all the files in case this process
needs to be repeated.

The rest of this supplementary section will explain all the different steps performed
by this command.

Note: Originally our code only focused on SMILES, but based on the suggestion from
one of the reviewers, we extended it to work with SELFIES too. Since the QM9 dataset
already came with the SMILES representations, for every molecule an extra processing
step was performed to transform its SMILES into its corresponding SELFIES. This was
done using the “selfies” Python package (https://pypi.org/project/selfies/). The
generated SELFIES were also stored in the TFRecord. This means that during training,
no extra processing was required.

1.3.1 bin/dataset/generate_dataset.py

The previous command started the data generation process by executing the generate_
dataset.py script. When executing this script, the name of the dataset to use must be
given as an extra argument. In our case, this argument was “QM9”. This script first
executed the get_dataset function, which fetched the dataset into a Dataset variable
named “dataset” and also configured the size and resolution of the tensors, which by
default are set to (64, 64, 64) points separated by 0.5 Angstroms. It then executed the
Dataset “generate” function, which will be explained in the next supplementary section.
In the case of the QM9 dataset this function can be found in /src/datasets/qm9.py.

1.3.2 src/datasets/QM9.py generate()

This function is where most of the functionality to generate the dataset was centralised.
It started by creating two folders (if they did not already exist): one where to save the
downloaded data, and another where to save the data once it had been processed. It
continued by downloading the QM9 dataset. The URL address from where the data was
downloaded can be found in the variable self.url. It then extracted the contents of the
downloaded file, which created a “xyz” file for each QM9 molecule (over 136,000 files).
These “xyz” files contained different numerical properties related to each molecule. The
most important properties for this research were the (x, y, z) coordinates for each atom,
and the SMILES representation of the molecule.
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The generate() function continued by executing another function within the same
file named _compute_electron_density. When this function is invoked, it can take
as argument “esp=True” in which case it will generate the electron density and electro-
static potential for each molecule. If this argument is set to “False”, then it will only
generate electron densities. Details of this function will be explained in the next section
(Supplementary Section 1.3.3).

Once the electron densities and electrostatic potentials were generated, it created a
list containing all the SMILES strings, and initialised a tokeniser based on this. This
tokeniser was implemented as a table that related each SMILES token (such as a “C”
for carbon, or “=” for double bond) with an identification number. Finally, it randomly
split the data between train and test (90/10) datasets, and saved them into TFRecords.
These TFRecords contained entries for each molecule present in the QM9 dataset, and
each entry contained the data related to the molecule (electron density, electrostatic
potentials, SMILES, and other data contained within the “xyz” file).

Once finished, it generated two files: “train.tfrecords” and “valid.tfrecords”. These files
were ready to be directly inputted into the different ML algorithms.

1.3.3 src/datasets/QM9.py _compute_electron_density()

This function iterated through all the extracted “xyz” files. For each of them, it invoked
the function _parse_single_qm9_file.

This “parse” function started by reading the “xyz” file and storing in a Python dic-
tionary the information it contained: number of atoms, (x,y,z) coordinates of each atom,
SMILES representation, and different properties such as dipole moment, zero point vi-
brational energy, gap difference between LUMO and HOMO, . . .

Focusing on the coordinates, it first arranged the molecule so that the geometric
centre was at the beginning of the coordinate system. Then it used the “xtb tool” (https:
//github.com/grimme-lab/xtb) to generate a Molden file, and a sparse array containing
electrostatic information (if required).

Given the Molden file, the corresponding electron density was calculated using the
function rho_compute from Orbkit. This electron density was calculated for the cube
defined before in the configuration section (which defaults to 64,64,64 and 0.5 Angstrom
of step size).

Given the sparse array containing the electrostatic potentials, first an empty cube of
size 64,64,64 was created filled with zeros, and then this cube was updated with the data
points from the sparse array. Later on when this data will be inputted into a ML model,
these points will be dilated to occupy a bigger space, see Supplementary Section 1.6, but
at this stage of the data processing, this cube was mostly empty.

The dictionary created before was updated with information regarding the electro-
static potentials and electron densities of the current molecule. At the end of _parse_
single_qm9_file, this dictionary was saved to disk.

The process describing how the electron densities and sparse electrostatic potentials
were obtained can be seen in Supplementary Figure 1. Supplementary Figure 2, shows
two examples of electrostatic potentials calculated using the method just described. In
this figure, the molecule in the left is water, while the one in the right is a random
molecule from the QM9 dataset.
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Supplementary Figure 1: From QM9 xyz descriptors to 3D electron densities and sparse
electrostatic potentials. The data from the QM9 dataset was transformed into elec-
tron densities using “xTB” quantum mechanical methods, followed by the function
“rho_computer” from Orbkit. To obtain the electrostatic potentials “xTB” electrostaic
potential calculator was used to obtain sparse representations.

Supplementary Figure 2: Examples of electrostatic potentials calculated using xTB elec-
trostatic potential calculator. Left: the electrostatic potential of a water molecule cal-
culated with the explained method. Right: the electrostatic potential of a random QM9
molecule calculated with the explained method. In this figure the term “ESP” was used
instead of “electrostatic potential”.
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Supplementary Subsection 1.4 src/models/layers.py

Since the different machine learning implementations shared some degree of functionality,
it was decided to centralise the shared functionality in the file src/models/layers.py.
In this file it can be found definitions for residual layers, attention layers, transformer
blocks, and layers that either added or removed dimensionality to the tensors.

1.4.1 Residual connections

Our implementation was based on Keras’ Resnet50 (https://github.com/keras-team/
keras-applications/blob/master/keras_applications/resnet50.py). We also de-
fined “identity” or “conv” blocks depending on if the input tensor was directly shortcutted
or if it went through a convolution. Since our experiments used Tensors of different di-
mensions, the code was adapted to automatically work with tensors of four, three or two
dimensions, using 3D, 2D or 1D convolutions. By default “relu” activation functions was
used, although “leakyrelu” was also available.

1.4.2 Add and drop dimension layers

The “add dimension” layer used Tensorflow’s expand_dims function, adding a new di-
mension at the end (-1). After the dimension was added, a convolution of the required
dimensionality was performed.

The “drop dimension” layer performed a convolution of the required dimensionality
with the number of filters set to 1. After this convolution, Tensorflow’s squeeze function
was used to remove the dimension with only 1 value.

1.4.3 Attention layer

Our attention layer implementation is adapted from SAGAN [1], but using 3D or 2D
convolutions depending on the input tensor. In particular, we based our implementation
in the following project:

https://github.com/taki0112/Self-Attention-GAN-Tensorflow/.

1.4.4 Transformer block

Our transformer block implementation was adapted from:
https://keras.io/examples/nlp/text_classification_with_transformer/
But using attention layers as defined above, convolution layers instead of dense layers,

and batch normalisation instead of layer normalisation.

Supplementary Subsection 1.5 Using a Variational autoencoder
(VAE) to model the QM9 dataset

A Variational Autoencoder (VAE) was used to model the chemical space defined by the
electron densities as derived from the QM9. This VAE took as input the 3D tensors
representing the electron densities, followed by several layers of 3D convolutions to com-
press the data into a 1D latent vector (Supplementary Figure 3), and then used mirrored
layers of transposed convolutions to reconstruct the input data (Supplementary Figure
4). Therefore, the objective of the VAE was to learn a 1D latent space where the data
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Supplementary Figure 3: Using a VAE to encode a 3D electron density with 260,000 points
into a 1D vector with 400 points. The VAE’s encoder took as input high dimensionality
data and compressed it into a 1D latent vector with 400 positions (in this example).

Supplementary Figure 4: Using a VAE to decode a 1D vector into a 3D electron density.
The VAE’s decoder took as input a 1D vector with 400 positions (in this example), and
reconstructed it into a higher dimensionality tensor (a 3D tensor of 64,64,64 units) .

could be compressed and de-compressed losing the minimum amount of information. See
Supplementary Figure 5 for an outline of this process.

The base VAE can be found in src/models/VAE.py, see Supplementary Section 1.5.1
for more information. An extended VAE using residual connections can be found in
src/models/VAEresnet.py, see Supplementary Section 1.5.2 for more information. An
extended VAE using attention mechanisms can be found in src/models/VAEattention.
py, see Supplementary Section 1.5.3 for more information.

To train these models, the script bin/train/train_vae.py should be used, see 1.5.4
for more information.

1.5.1 src/models/VAE.py

This script contained the base VAE implementation. The extended implementations
mentioned before built upon it. Our VAE implementation followed the one described in
the book “Generative Deep Learning” by David Foster. Our code was heavily based on
theirs: https://github.com/davidADSP/GDL_code/blob/tensorflow_2/models/VAE.
py, but using 3D convolutions instead. As it is common with VAEs, our loss functions
had two components: a reconstruction loss which compared input and output 3D volumes
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Supplementary Figure 5: Using a Variational Autoencoder to model the QM9 chemical
space. The VAE model took as input the electron density from a QM9 molecule, and
aimed to reconstruct it. In doing so, it learned to compress 3D electron densities into 1D
latent vectors.

using mean squared error, and the Kullback-Leibler divergence used to measure how much
the VAE’s latent distribution diverted from the standard normal distribution.

The main changes related to how the data was pre-processed and post-processed.
Focusing on the data pre-processing, the first step required to add an extra dimension,
because all the electron density tensors were 3D, but to perform 3D convolutions the data
must be 4D. The next step applied a “tanh” function to each data point in each tensor to
guarantee that all the data points were between -1 and +1. Finally, a value of “1e-4” was
added to each point, followed by applying a log operation, followed by dividing the result
by “1e-4”. After these steps, the data was inputted into the VAE. Once the data came
out of the VAE, the reverse operations were executed minus the tanh operation: First
the outputs (every point) was multiplied by “1e-4”, then an exp operation was executed,
and finally “1e-4” is subtracted.

The architecture of this VAE can be seen in Supplementary Figure 8, but using normal
convolutions instead of residual connections.

Some other extra functionality that can be found in this file:

• The function sample_model_validation. This function was used with a callback
to sample the model after every epoch. It took a batch from the training data,
inputted it into the VAE, and saved to disk the reconstructed output.

• The function interpolation_two_molecules. This function received as input two
molecules and a number of steps, and it performed a linear interpolation as it can
be seen in the main manuscript, and in Supplementary Figures 6 and 7. First, it
used the VAE’s molecule encoder to obtain the 1D latent representations of the
two input molecules. Then it did a N-step interpolation between the two latent
representations, and for each step it used the VAE decoder to reconstruct its 3D
volume and saved it to disk.

• The function substract_add_molecules. This function received as input two
batches of data. It obtained the latent 1D representation for each molecule in
the batches, and then added and subtracted the batches (producing two different
outputs), finally it reconstructed the 3D representations and saved them to disk.
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Supplementary Figure 6: Using the VAE latent space to interpolate between two
molecules. The electron densities from two different molecules (origin and target) were
encoded into their respective 1D latent vectors. A linear interpolation was executed from
Origin to Target through the latent vectors. Each latent vector calculated as part of this
interpolation, was then reconstructed into its related 3D electron density.

Supplementary Figure 7: Using the VAE latent space to interpolate between two
molecules. This figure shows in more detail the calculations performed to create the
previous figure. First, a source and a target molecule are chosen. Then, using the VAE
encoder, a 1D latent vector representation is obtained for each of these mocules. Then,
a linear interpolation is done between these two latent vectors, and each middle step is
decoded into a 3D electron density using the VAE decoder.

13



Supplementary Figure 8: VAE using residual connections used to model the QM9 dataset.
Both encoder and decoder used residual connections. Before being inputted into the
encoder, the 3D electron density was passed through a tanh and a log operation. At the
other end, before being reconstructed, the generated 3D volume was passed through a
exp operation..

1.5.2 src/models/VAEresnet.py

This VAE used residual connections. It subclassed the base VAE described in Supplemen-
tary Section 1.5.1, but replacing Tensorflow’s stock convolutional layers with the residual
layers described in Supplementary Section 1.4.1. While the base VAE upsampled the data
in the decoder using transpose convolutions; here the decoder used residual convolutions,
followed by an upsampling layer. This is the VAE that offered the best results, and the
one used in the research described in the main manuscript. See Supplementary Figure 8
for an outline of its architecture.

To showcase its results, Supplementary Figure 9 shows five electron densities as gen-
erated by this VAE. The left column displays the electron densities inputted to the VAE,
which were generated from the QM9 dataset as explained in Supplementary Section 1.3.
The right column displays the previous molecules after going through the VAE.

1.5.3 src/models/VAEattention.py

This VAE used both residual connections (as the VAE described in Supplementary Sec-
tion 1.5.2) and transformer blocks as detailed in Supplementary Section 1.4.4. To find
the best VAE architecture, different strategies were tested, with different configurations
of convolutional layers, residual connections and transformer blocks. For example, us-
ing as reference the VAE shown in Supplementary Figure 8, we tried adding attention
mechanisms both after the encoder and before the generator (therefore mirrored blocks),
or only at the end of the generator, or after every convolution, . . . among many other
configurations. But none of them improved the accuracy of the VAE with only residual
connections, while the computational cost increased. Therefore, even though based on
the literature it was expected that this implementation would produce the best results,
it was instead decided to stick with the VAE with only residual connections.

1.5.4 bin/train/train_vae.py

While the previous VAE supplementary sections explained how the ML models were
implemented, this supplementary section will describe the script used to train them. We
will focus on describing the parameters that need to be set-up. These parameters will be
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Supplementary Figure 9: Examples of reconstructed Electron Densities using the VAE.
Left: Electron densities as obtained from the QM9 dataset. Right: The reconstructed
electron densities as generated by the VAE. The QM9 molecules in the left column were
inputted into the VAE, and it generated the molecules shown in the right column.
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divided into three blocks: General configuration, VAE model architecture, and training
configuration.

— General configuration:

• Line 19: Here the user can decide the GPUs to use. If only one GPU is present in
the system, this value can be set to ’0’. Otherwise, the user can specify the GPUs
to use as a list.

• “RUN_FOLDER” (line 20). Folder where all the models and generated data will
be saved. This folder must exist before the script is executed.

• “mode” (line 21). Mode can be set to either ’build’ or ’load’. ’build’ should be used
to initialise and start the first training run, while ’load’ can be used to continue a
previous training run. If ’build’ is chosen, a folder with the current date will be
created inside RUN_FOLDER, where all the data will be saved. If ’load’ is chosen,
the user must specify the folder from where to fetch the data and continue the
training in line 33. This folder must contain a file named “weights.h5”. This file
is auto-generated while training. If another file with weights is used to load and
continue training, line 76 must be modified.

• “DATA_FOLDER” (line 35). This folder must contain the TFRecord files generated
when the training data was created, see Supplementary Section 1.3. If the name of
the TFRecord files is not left as generated by default (’train’ and ’valid’), the new
names must be changed in the “path2tf” and “path2va” variables (lines 40 and 41).

• Training and testing batch sizes. The batch sizes can be set in lines 43 and 44,
where the class TFRecordLoader is used to load the training sets.

— VAE model architecture:

• Type of VAE. The type of VAE can be chosen in line 53. The names used can
be “VAE”, “VAEresnet” or “VAEattention”. These three names relate to the VAE
models described before, and they are the name of the Python classes that can be
used to create the “vae” Python object. The following parameters (except the last
one, learning rate) will define the attributes used to create the VAE class.

• “encoder_conv_filter”. This parameter will be a list describing the convolutional
filters used for each layer within the encoder. For example, if this parameter is set
to “[16, 32, 64, 128]”, the encoder will have four layers (the length of the list defines
the number of layers), and the first layer will use convolutions with 16 filters, the
second one with 32 filters, the third one with 64 filters, and the last one with 128
filters.

• “encoder_conv_kernel_size”. This parameter will be a list like before, where each
element in the list will define the kernel size of the convolutions within their respec-
tive layers. For example, if this parameter is set to “[3, 3, 3, 5]”, the encoder will
have four layers, where the first three layers will use kernel of size 3, while the last
kernel will use kernels of size 5. The length of this list must be exactly the same as
the previous list.

• “encoder_conv_strides”. This parameter will be a list like before describing the
strides taken while doing the convolutions. The length of this list must be exactly
the same as the previous list.
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• The following three parameters are the same as the three just explained, but their
names start with “dec_”. These parameters define the same functionality as the
previous ones, but in the decoder. The decoder will use transpose convolutions
instead of normal convolutions. The length of their lists must be the same as
before. Usually in VAEs the decoder mirrors the encoder. This is not mandatory in
this implementation, but the shape of the output data must be equal to the shape
of the input data.

• “z_dim”. The output of the last enconder’s layer will be flattened into a 1D array
of size “z_dim”.

• “use_batch_norm”. This parameters can be set to True or False, and it is only
enabled when using the base VAE. If True, a Batch Normalisation layer will be
added after every convolution. If using “VAEresnet” or “VAEattention”, Batch
Normalisation will be always used after the convolutions, following Keras’ ResNet50
implementation.

• “use_dropout”. This parameters can be set to True or False, and it is only en-
abled when using the base VAE. If True, dropout regularisation will be applied
after the convolution layers (and after Batch Normalisation if present). Dropout
normalisation is not used if using “VAEresnet” or “VAEattention”.

• “r_loss_factor”. This parameter relates to the VAE loss function, and represents a
factor by which the reconstruction loss is multiplied by, before being added to the
Kullback–Leibler loss.

• “LEARNING_RATE”. This parameter is not part of the VAE constructor, but it is
part of the model architecture, since Tensorflow requires to know the learning rate
before compiling the model. This parameter relates to the learning rate factor used
when training the models.

— Training configuration:

• “EPOCHS” (line 79). Total number of epochs to iterate trough the training data.

• “INITIAL_EPOCH (line 80). If using “mode = "load"”, this parameters indicates
the epoch from where to continue the training. In “mode = "build"” this parameter
is ignored.

• “EPOCHS_PRINT” (line 81). The callback described in Supplementary Section
1.5.1 that samples the model will be executed every “EPOCHS_PRINT” epochs.

Once the parameters have been properly configured, the user started (or continued)
training the model with:

$ python bin/train/train_vae.py

For this command to work properly the “electrondensity” Conda environment must
be enabled (see Supplementary Section 1.1).

When executed in “build” mode, this script created a new folder inside logs/vae
named with the current date, for example logs/vae/2022-06-09. Inside the folder
named with the current date (for example logs/vae/2022-06-09), there will be a params.
pkl file and two folders named edms and weights:
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Supplementary Figure 10: Example of an electrostatic potential calculated from an elec-
tron density, using a trained Fully Convolutional Network (FCN). The objective of the
FCN was to calculate electrostatic potentials from electron densities. This Supplemen-
tary Figures shows on the left an example of an input molecules obtained from the QM9
dataset, and on the right its electrostatic potentials as calculated by the FCN.

• params.pkl is a Python Pickle file containing the parameters used to create the
model.

• edms contains a number of Pickle files created each time the callback function was
used to sample the model. These Pickle files contained 3D tensors representing
electron densities generated using the validation set.

• weights contains a list of “h5” files. Each of these files contained the weights of
the model saved after a particular epoch. These are the files that later on can be
loaded into the model to either keep training (when executed in load mode) or to
test new data.

Supplementary Subsection 1.6 Using a Fully Convolutional Net-
work (FCN) to convert electron
densities to electrostatic poten-
tials

A Fully Convolutional Network (FCN) was used to calculate the electrostatic potentials
from a molecule given its electron densities. This FCN took as input 3D tensors rep-
resenting the electron densities, used several layers of 3D convolutions, and then used
mirrored layers of transposed convolutions to generate the related 3D tensor representing
the electrostatic potential, see Supplementary Figure 10. Therefore, the objective of the
FCN was to learn how to calculate 3D electrostatic potentials given 3D electron densities.

The FCN sub-classed the VAE class (see Supplementary Section 1.5.1), and used
residual connections in a similar way to the VAE described in Supplementary Section
1.5.2. The FCN source code can be found in src/models/ED2ESP.py, see Supplementary
Section 1.6.1 for more information. To train this model, the script found in bin/train/
train_ed2esp.py should be used, see 1.6.2 for more information.

1.6.1 src/models/ED2ESP.py

This file contained the source code that implemented the FCN. It sub-classed the base
VAE to get some of the boilerplate functionality, but the model itself was implemented
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Supplementary Figure 11: Fully Convolutional Network (FCN) used to calculate electro-
static potentials from electron densities. The QM9 dataset was used to train the FCN.
First, for all the QM9 molecules, their electrostatic potentials were calculated using xTB
(as previously explained). Then the QM9 molecule (its electron density) was inputted
into the FCN, and this outputted an electrostatic potential. This outputted electrostatic
potential was compared with the one generated using xTB, and the FCN was trained to
generate electrostatic potentials as similar as possible to the ones generated using xTB.

from scratch.
The FCN was implemented as a simpler VAE: it had two mirrored networks similar

to the VAE’s encoder and decoder, but instead of flattening the last layer of the encoder
into a 1D latent vector, in the FCN the encoder was directly connected to the decoder,
see Supplementary Figure 11. Similarly to the VAE implementation described in Sup-
plementary Section 1.5.2, the FCN was implemented using residual connections, since
this showed to improve the results. Upsampling in the decoder was also achieved using
an “Upsampling” layer after performing a convolution. Another major difference was the
loss function used. In our implementation the FCN also used a simplified version of the
VAE’s loss function only using the reconstruction loss, and ignoring the KL terms.

The other main difference relates to the way the training data was processed. The FCN
training data contained for each molecule pairs of electron densities, which were inputted
into the network, and electrostatic potentials, which were compared against the network
outputs. The input 3D tensors containing electron densities were processed in the same
way as before (see Supplementary Section 1.5.1). The output 3D electrostatic potentials
were what our model was compared against, and the training was based on the difference
between what the network outputted, and what the dataset contained (the reconstruction
loss). As explained in the “Generating the training data” section (Supplementary Section
1.3.3), the tensors in the dataset representing the electrostatic potentials were very sparse:
they did not contain continuous data, but single points. Thus, the pre-processing step
in this file transformed the electrostatic potentials from single points to continuos 3D
volumes. To achieve this, the single points were dilated. In our implementation, each
point was dilated into a 3D neighbourhood of size 5. The data points were also scaled
between 0 and 1. See Supplementary Figure 12 to visualise the processing pipeline, and
Supplementary Figure 13 to see examples of generated electrostatic potentials using the
described method.

1.6.2 bin/train/train_ed2esp.py

The script bin/train/train_ed2esp.py should be used to train the FCN. Before invok-
ing it, its contents should be modified to match the required configuration. Since this
file is very similar to bin/train/train_vae.py (Supplementary Section 1.5.4), in this
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Supplementary Figure 12: Diagram showing how the electrostatic potentials were ob-
tained from the QM9 dataset, and processed to be inputted into the FCN. Using the
XYZ data from the QM9 dataset, first a sparse representation was obtained using xTB,
and then this sparse representaion was converted into a volume using 2-channel dillations.

Supplementary Figure 13: Examples of electrostatic potentials generated with the de-
scribed FCN. This figure shows, in the left column, electron densities as fetched from
the QM9 dataset, in the middle column electrostatic potentials as calculated using quan-
tum methods, and on the right column, electrostatic potentials as generated through the
described neural network, which used as input the electron densities shown in the left
column. In this figure, “ED” is a shorthand for electron density, and “ESP” is a shorthand
for electrostatic potential.
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supplementary section we will only focus on the differences.

• The general configuration parameters were exactly the same as before with the
exception of how the TFRecordLoader object was created. While before when
creating this object we only specified the batch size as a parameter, in this script
we also needed to specify as a property that the data must contain electrostatic
potentials (lines 44 and 45), because by default only electron densities were loaded.
These changes have already been applied.

• The network architecture was the same as before. The main difference is that
the network was created using the class VAE_ed_esp. When creating the network,
the parameters z_dim, use_batch_norm, use_dropout and r_loss_factor were
ignored. These parameters were needed in the constructor because the code sub-
classed from the base VAE, but the FCN did not use them. The rest of the param-
eters can be freely modified to define the network architecture.

• The training configuration parameters were the same as before.

The user should start or continue training the model with the following command:

$ python bin/train/train_ed2esp.py

For this command to work properly, the “electrondensity” Conda environment must
be enabled (see Supplementary Section 1.1).

When executed in “build” mode, this script created a new folder inside logs/vae_ed_
esp named with the current date, for example logs/vae_ed_esp/2022-06-09. Inside
the folder named with the current data (for example logs/vae_ed_esp/2022-06-09),
there will be a params.pkl file and two folders named edms and weights:

• params.pkl is a Python Pickle file containing the parameters used to create the
model.

• edms contains a number of Pickle files created each time the callback function was
used to sample the model. These Pickle files contained 3D tensors representing
electrostatic potentials generated using the validation set.

• weights contains a list of “h5” files. Each of these files contained the weights of
the model saved after a particular epoch. These are the files that later on can be
loaded into the model to either keep training (when executed in load mode) or to
test new data.

Supplementary Subsection 1.7 Predicting numerical properties from
electron densities

This supplementary section discusses the model used to predict numerical properties
from electron densities. Both the electron densities and the different numerical properties
were obtained from the QM9 dataset. The model can be found in src/models/CNN3D_
featureprediction.py, see Supplementary Section 1.7.1 for more information. To train
this model, the script found in bin/train/train_property_prediction.py should be
used, see 1.7.2 for more information.

Although the code to perform these predictions is included as part of the project
repository, none of the results shown in the main manuscript were obtained using this
network.
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1.7.1 src/models/CNN3D_featureprediction.py

This script contains a ML model that predicted a numerical (float) value from input mul-
tidimensional data. In our case, the input multidimensional data were 3D tensors repre-
senting electron densities, while the numerical properties were any of the values contained
in the QM9 dataset, such as dipole moment, or isotropic polarisability, among many oth-
ers. The full list of numerical properties can be seen in the file src/datasets/qm9.py,
within the function read_qm9_file() (lines 32 to 50). To perform the numerical predic-
tion, the model took as input 3D tensors, processed them through a series of convolutional
layers, and then flattened and inputted them into a single output neuron which outputted
a float value. The loss function used was “mean squared error”.

1.7.2 bin/train/train_property_prediction.py

To train this network, the user should use the script bin/train/train_property_prediction.
py. Before invoking it, its contents should be modified to match the required configura-
tion. Since this file is very similar to bin/train/train_vae.py (Supplementary Section
1.5.4), in this supplementary section we will only focus on the differences.

• The general configuration parameters were exactly the same as before with the
exception of how the TFRecordLoader object was created. While before when
creating this object we only specified the batch size as a parameter, in this script
we also needed to specify as a property the numerical properties to load from the
QM9 dataset (lines 43 and 44). The full list of numerical properties can be seen
in the file src/datasets/qm9.py, within the function read_qm9_file (lines 32 to
50).

• The architecture configuration contained four parameters, although the first one
(“cubeside”) can be ignored. Both “filters” and “strides” must be lists of equal length
describing the number of filters per layer, and the strides that the convolutions will
take. “dense_size” is the number of neurons in the dense flattened layer after the
last layer of convolutions.

• The training configuration parameters are the same as before.

The user should start or continue training a model with the following command:

$ python bin/train/train_property_prediction.py

For this command to work properly the “electrondensity” Conda environment must
be enabled (see Supplementary Section 1.1).

Supplementary Subsection 1.8 Decorating electron densities with
electrostatic potentials

In the previous supplementary sections, the inputs to all the ML models were electron
densities as obtained from the QM9 dataset. Supplementary Section 1.3 detailed how the
training data was obtained, while Supplementary Section 1.5.1 detailed how the data was
preprocessed before being inputted into the network. In Supplementary Section 1.3.3 it
was also detailed how to calculate the electrostatic potentials for every molecule using
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Supplementary Figure 14: Process showing the result of decorating electron densities
with electrostatic potentials. The decorated electron densities are achived are achieved
my multiplying the original electron densities with the original electrostatic potentials.
In this figure, “ED” means Electron density, and “ESP” means Electrostatic potentials.

the XYZ information provided by the QM9 dataset. In this supplementary section it will
be explained how electron densities and electrostatic potentials were combined into a new
data structure which from now on will be referred as decorated electron densities. In our
experience, decorated electron densities slightly improved the results over non-decorated
electron densities.

To decorate the electron densities the following steps were performed:

1. Both electron densities and electrostatic potentials were obtained from the QM9
dataset using quantum methods as explained in Supplementary Section 1.3.3.

2. The electrostatic potentials were preprocessed in a similar way to how it was de-
scribed in Supplementary Section 1.6.1 but using dilations with a 3D neighbourhood
of 10 units.

3. The dilated electrostatic potentials were multiplied with the electron densities.

4. A “tanh” operation was applied.

5. A value of “1e-4” was added to each point, followed by applying a log operation,
followed by dividing the result by “1e-4”.

6. A “tanh” operation was applied.

7. The data was re-scaled between 0 and 1.

8. The data was now inputted into the different models.

Supplementary Figure 14 shows two different decorated electron densities.
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Supplementary Figure 15: Decreasing the size of the host’s cavity. The cavity of the host
was decreased by applying a 3D max pool operation with different kernel sizes (in this
image, kernels of size 1, 2 and 3).

Supplementary Subsection 1.9 Decreasing the size (volume) of
the cavity

It is reported in the literature that given a host, the best guests will occupy around a 55%
of the host’s cavity [2]. Therefore, given a host, an expert chemist would focus on studying
guests that occupy a 55% of the host’s volume. To achieve a similar functionality in our
optimisation algorithms, we decreased the size of the cavity before testing the different
guests: given a host’s electron density calculated as described in Supplementary Section
1.3.3, a post-processing step was performed to decrease the size of the cavity.

To do this, we applied a “max_pool3d” (as provided by Tensorflow) over the 3D cube
defining the electron density. When using this operation, if a kernel of size 1 was used
then there were no changes, but if kernels of a bigger size were used, the electron density
dilated, decreasing the size of the cavity, see Supplementary Figure 15. Unless otherwise
specified, all the results shown were obtained using the stock electron density, without
decreasing the size of the cavity.

Supplementary Subsection 1.10 Using the GPT model to gener-
ate SMILES sequences

The Generative Pre-trained Transformer (GPT) architecture is an autoregressive lan-
guage model that uses stacked transformer blocks with attention mechanisms (see Sup-
plementary Section 1.4.4) to generate novel data from a given seed [3]. It is commonly
used to generate human-like text. For example, given an input like “I am writing”, the
GPT model would generate something like “the Supplementary Information”. In this re-
search, our GPT model received as input the start of a SMILES sequence, and generated
as output the rest of the SMILES sequence to complete the molecule. For example, given
the SMILES string “O” as input (just one oxygen atom), our GPT SMILES model would
generate an output string such as “O=C=O” (CO2) (among many other molecules whose
SMILES sequence starts with an oxygen). See Supplementary Figure 16 for an outline of
this process.
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Supplementary Figure 16: The SMILES GPT model received as input a SMILES string
representing the start of a molecule, and outputted a completed molecule in SMILES
representation. The 2D drawing of the molecules displayed in this image was obtained
using RDKit, and it was not generated by the SMILES GPT model. This model only
worked with SMILES data.
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Supplementary Figure 17: SMILES GPT model architecture. This architecture is very
similar to the decoder part of a standard Transformer model. The input to this model
are sequences of SMILES tokens, plus the special token <START> to signal the start of
a molecule. It then follows a number of Attention layers. The model outputs the special
token <START>, followed by the SMILES tokens, and finishing with the special token
<END>.

1.10.1 src/models/gpt.py

Our SMILES GPT architecture was heavily based on the following Keras example:
https://keras.io/examples/generative/text_generation_with_miniature_gpt/

The main architectural difference is that while this example used only one Transformer
block, our implementation allowed for a variable number of stacked Transformer blocks
(see Supplementary Figure 17). Another difference in our implementation, is that while
this example used the stock Keras’ training step with “SparseCategoricalCrossentropy”
as loss function, we implemented our own training (and test) step following the following
Keras example, which allowed for a finer control:
https://keras.io/examples/audio/transformer_asr/

The callback/function to generate new text was also slightly different, since in our
case we generated SMILES sequences token by token, which was simpler than generating
full English sentences. This function took as seed the “<START>” token or a SMILES
sequence without the “<END>” token. This seed was then inputted into the model, which
generated a new token. This new token was appended into the previous sequence, and
inputted again into the model. The process was repeated until the model outputted an
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Supplementary Figure 18: Examples of SMILES sequences generated using the described
architecture. Using the SMILES representation of molecules on the left as starting point,
SMILES tokens were removed from the right of the representation, and the GPT model
was asked to generate the rest of the molecule using that incomplete SMILES representa-
tion as seed. The 2D diagrams of the molecules were drawn from the SMILES sequences
using RDKit.

“<END>” token. Supplementary Figures 18 and 19 shows examples of SMILES sequences
generated using this process.

1.10.2 Generating new SMILES sequences: greedy vs probabilistic sampling

The function used to generate new tokens operated in two different modes: greedy or
using probabilistic sampling. In greedy mode, when generating a new SMILES token, the
model chose the one with the highest score (as outputted by the model). In probabilistic
sampling, first the user needed to specify a window “n” (for example five). Then, once the
model generated an output, the top “n” tokens were saved based on their scores, and then
one of them was chosen randomly but weighted by their respective scores. Thus, tokens
with highest scores were more likely to be chosen, but tokens with low scores could also
be chosen. This type of selection is also known as “roulette algorithm”.

1.10.3 bin/train/train_gpt.py

The script used to train the model is very similar to the training scripts discussed before
(see Supplementary Sections 1.5.4 and 1.6.2). The general and training configuration
sections are the same as before, with the only difference being that the user had to make
sure that the SMILES data was loaded (see lines 33 and 34). The main differences in
this file are in the section where the architecture was defined. In this section, a Python
object using the GPT class was created, and the following four parameters need to be
defined:

• “embed_dim”: The dimension of the embedding layer.

• “num_heads”: Number of heads used in the multi-head attention blocks.

• “feed_forward_dim”: Number of neurons that the feed-forward dense layers con-
tained.

• “num_trans_blocks”: Number of stacked Transformer blocks.
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Supplementary Figure 19: Examples of SMILES sequences generated the described archi-
tecture. Columns one, three and five display SMILES sequences fetched from the QM9
dataset, and their related 2D diagram generated using RDKit. The 10 first tokens from
these sequences were inputted into the described GPT model. Columns two, four and
six display the tokens generated by the model, and the reconstructed molecule. The 2D
diagrams of the molecules were drawn from the SMILES sequences using RDKit.
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Supplementary Figure 20: The transformer model expanded the previously discussed
GPT model by adding an encoder that took as input electron densities, while the decoder
received as input an SMILES sequence and generated the related SMILES sequence. The
input electron was processed through the Encoder The Decoder focused on generating
SMILES tokens, but its attention layers received information from the encoder.

The user should start or continue training the model with the following command:

$ python bin/train/train_gpt.py

For this command to work properly, the “electrondensity” Conda environment must
be enabled (see Supplementary Section 1.1).

Supplementary Subsection 1.11 Using the Transformer model to
generate SMILES sequences from
electron densities and/or electro-
static potentials

While the just described SMILES GPT model (Supplementary Section 1.10) is a purely
generative model, from SMILES to SMILES, it is the objective now to expand this model
to transform electron densities (or electrostatic potentials or a combination of both –
from now on when electron densities are mentioned, it might refer to any of these three
possibilities) into SMILES. The reasoning behind this is that this research focused on
operating with molecules represented as 3D data such as electron densities, but to fully
characterise a molecule its atoms and positions must be known – having only the 3D
data is not enough. Therefore it is the objective now to create a machine learning model
that will take as input 3D data such as electron densities, and will output the SMILES
sequence that best describes it, see Supplementary Figure 20.

1.11.1 src/models/ED2smiles.py

Our electron densities to SMILES architecture is heavily based on the following Keras
example:
https://keras.io/examples/audio/transformer_asr/

As in this example, we used the decoder to generate strings of characters (in our case
SMILES sequences), while the encoder was used to process the multi-dimensional data
(in our case 3D electron densities). Therefore, the encoder received as input 3D tensors
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containing electron densities (see Supplementary Section 1.3.3), used stacked Transformer
blocks to extract and calculate attention matrices, and sent these attention matrices to
the decoder. The decoder had two inputs: the attention matrices from the encoder and
the sequences of SMILES tokens from the dataset. The decoder used these inputs to
calculate the best SMILES sequence related molecule inputted as electron density. See
Supplementary Figure 21 to see the model architecture.

Our implementation of the Encoder, Decoder and Token Embedding were the same as
in the shared example, with very minor variations. Our focus was placed on designing an
encoder “Molecule Embedding” layer that would take as input a 3D tensor representing
the electron density of a molecule, and would output 2D data that could operate in the
decoder with the 2D data from the Token Embedding.

To achieve this transformation from 3D to 2D, first the 3D data was expanded to 4D
so that 3D convolutions could be applied. To transform the 4D tensors into 2D, we tested
two different strategies:

The first one started with 3D convolutions, setting the number of filters to 1, dropping
the dimension with size 1 after the convolution had been done, and then repeating this
process with 2D convolutions and 1D convolutions until the data was 2D. As an example,
if the initial 4D was (64, 64, 64, 64), setting the number of filters to 1 would output
(1, 64, 64, 64) and then dropping the first dimension would output (64, 64, 64). If this
process is repeated again, we would first obtain (1, 64, 64), and then dropping the first
dimension we would obtain 2D data: (64, 64).

The second strategy used again 3D convolutions, but their strides were of different
sizes depending on the dimension. These convolutions were applied until two of the
dimensions had a size of 1, and then dropping them, thus getting again 2D data. As an
example, if the initial 4D data was (64, 64, 64, 64) and the strides of the 3D convolutions
were (1, 2, 2), keeping the number of filters to 64, an initial convolution would output (64,
64, 32, 32). We can repeat these convolutions with these strides until it outputs (64, 64,
1, 1), and then dropping the two single unit dimensions, to obtain (64, 64). We expected
the second strategy to produce better results, since it kept the data 4D for longer, but
both strategies produced very similar results.

Supplementary Figures 22, 23 and 24 show in the left columns different electron
densities that were inputted to the described model, and in the right columns the SMILES
outputted by the model (with a drawing of the molecule using RDKit).

As happened with the SMILES GPT architecture described before, the generation of
SMILES sequences could follow a greedy approach, or a probabilistic sampling one (see
Supplementary Section 1.10.2). An interesting feature of selecting the next token using
probabilistic sampling is that the model could be used to generate new molecules that fit
a particular pocket defined by a target electron density. Supplementary Figure 25 shows
an example of this application. On the left of this Figure there can be seen the target
electron densities and their related molecules. On the right section there can be seen
different molecules generated using probabilistic sampling that could fit this pocket.

1.11.2 src/models/ESP2smiles.py

This script describes the same model as just discussed (Supplementary Section 1.11.1),
but taking as input electrostatic potentials instead of electron densities. The electrostatic
potentials were obtained from the QM9 dataset as explained in Supplementary Section
1.3.3, and they were preprocessed by using dilations as discussed in Supplementary Sec-
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Supplementary Figure 21: Examples of SMILES sequences generated using the described
architecture. The Encoder received the 3D electron density, and processed it through it
attention layers. The decoder received as input the “<START>” token, and the attention
matrix from the encoder. Using this information, the decoder generated a SMILES
sequence representing the Electron Density inputted through the encoder.
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Supplementary Figure 22: Examples of translated electron densities into SMILES se-
quences. Left: Examples of 3D electron densities inputted to the Encoder. Right:
The generated SMILES sequences outputted by the Decoder. The 2D diagrams of the
molecules were drawn from the SMILES sequences using RDKit.
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Supplementary Figure 23: Examples of translated electron densities into SMILES se-
quences. For each of the pairs of molecules shown, the electron density of the molecules
on the left was used as input, and the model outputted the SMILES sequence on the
right. The 2D diagrams of the molecules were drawn from the SMILES sequences using
RDKit.

Supplementary Figure 24: Examples of translated electron densities into SMILES se-
quences. For each of the pairs of molecules shown, the electron density of the molecules
on the left was used as input, and the model outputted the SMILES sequence on the
right. The 2D diagrams of the molecules were drawn from the SMILES sequences using
RDKit.
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Supplementary Figure 25: Using the transformer model and probabilistic sampling to
find molecules with similar electron density pockets. The electron density displayed in
red was used as input. The decoder chose the next token using probabilistic sampling.

tion 1.6.1.

1.11.3 src/models/ED_ESP2smiles.py

This script describes the same model as just discussed (Supplementary Section 1.11.1),
but taking as input electron densities decorated with electrostatic potentials. The electron
densities and electrostatic potentials were obtained from the QM9 dataset as explained
in Supplementary Section 1.3.3, and pre-processed and combined as explained in Supple-
mentary Section 1.8. This is the method which offered the best results.

1.11.4 bin/train/train_e2s.py esp2s.py edesp2smiles.py

These three scripts are used to trained the three models just described:

• bin/train/train_e2s.py can be used to train the transformer model that takes
as input electron densities (see Supplementary Section 1.11.1).

• bin/train/train_esp2s.py can be used to train the transformer model that takes
as input electrostatic potentials (see Supplementary Section 1.11.2).

• bin/train/train_edesp2smiles.py can be used to train the transformer model
that takes as input decorated electron densities (see Supplementary Section 1.11.3).

These three scripts are exactly the same, and they are very similar to the training
scripts discussed before (see Supplementary Sections 1.5.4 and 1.6.2). The only differences
between these three scripts are that the scripts that used electrostatic potentials as part
of the training data needed to fetch this data from the dataset (see lines 40 and 41),
and that the correct class needed to be chosen when creating the object that will do the
training (see line 54).

The main difference between these three training scripts and the training scripts we
discussed previously (such as the training script discussed in Supplementary Section 1.5.4)
relates to the parameters used when creating the training object (lines 55 to 59):

• “num_hid” refers to the number of hidden dimensions used in the model. This is
similar to the embedding dimension discussed during the GPT implementation (see
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Supplementary Section 1.10.3). This parameter was used to define the number of
filters the convolutions used inside the molecular embedding, and also the number
of neurons in the last dense layer inside the transformer blocks used both in the
encoder and decoder.

• “num_head” refers to the number of heads used when defining the multi-head at-
tention.

• “num_feed_forward” refers to the number of neurons in the first dense layer inside
the transformer blocks used both in the encoder and decoder.

• “num_layers_enc” and “num_layers_dec” refer to the number of stacked trans-
formed blocks used both in the encoder and decoder.

The user should start or continue training the model with the following command:

$ python bin/train/train_e2s.py

Or any of the other two scripts discussed in this supplementary section. Remember
that for this command to work properly, the “electrondensity” Conda environment must
be enabled (see Supplementary Section 1.1).

When executed in “build” mode, this script created a new folder inside logs/e2s
named with the current date, for example logs/e2s/2022-06-09. The name of the e2s
subfolder depended on the script used: train_e2s.py used e2s, train_esp2s.py used
esp2s, and edesp2smiles.py used ed_esp2smiles. Inside the folder named with the
current data (for example logs/esp2s/2022-06-09), there will be a file params.pkl and
two folders named smiles and weights:

• params.pkl is a Python Pickle file containing the parameters used to create the
model.

• smiles contains a number of Pickle files that were created each time the callback
function was used to sample the model. These Pickle files contained SMILES se-
quences generated using the validation set.

• weights contains a list of “h5” files. Each of these files contained the weights of
the model saved after a particular epoch. These are the files that later on can be
loaded into the model to either keep training (when executed in load mode) or to
test new data.

1.11.5 Testing the accuracy of the electron density to SMILES translation

The source code included three different scripts (one for each type of input as described
above) to benchmark the accuracy of the Transformer model once it had been trained.
These benchmark scripts tested the accuracy of the translation using molecules from
the validation dataset (built from the QM9 dataset, see Supplementary Section 1.3.2).
To benchmark our models, the SMILES sequences generated using electron densities as
input were compared against the SMILES sequences from the QM9 dataset. Further
benchmarking to test the quality of the data generated using the Transformer model,
such as the diversity of SMILES generated, is discussed in Supplementary Section 4.

The three scripts used to test the accuracy can be found in src/utils:
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• test_accuracy_ed2smiles.py used as input electron densities via the model de-
scribed in Supplementary Section 1.11.1 and trained with the script bin/train/
train_e2s.py as explained in Supplementary Section 1.11.4.

• test_accuracy_esp2smiles.py used as input electrostatic potentials via the model
described in Supplementary Section 1.11.2 and trained with the script bin/train/
train_esp2s.py as explained in Supplementary Section 1.11.4.

• test_accuracy_edesp2smiles.py used as input decorated electron densities via
the model described in Supplementary Section 1.11.3 and trained with the script
explained in Supplementary Section 1.11.4 (bin/train/edesp2smiles.py).

These three scripts are identical with the exception of the data and model loaded.
They can be executed with a command such as:

$ python src/utils/test_accuracy_e2s.py logs/ed2smiles/2021-08-31/weights/

The actual name of the script is test_accuracy_ed2smiles.py (or any of the others
discussed in the list before). In this example it has been shortened to test_accuracy_
e2s.py so that it fits in a line of text. The second part of the command (in this exam-
ple logs/ed2smiles/2021-08-31/weights/) is the folder were the weights to test were
saved.

Once executed, the script started by creating a “txt” file inside the weights folder,
using as name the current date (including hour and minutes). It then loaded the QM9
validation dataset TFRecord using a TFRecordLoader as in the training scripts, and then
it created a model as in the training script. Then, for every h5 file inside the weights folder,
it loaded these weights into the model, fetched N batches from the validation dataset (in
our tests N=5), and used the model to generate the SMILES sequences related to each
molecule in each batch. The generated SMILES were cleaned (more on this later) and
compared with the original QM9 SMILES from the QM9 dataset. This comparison was
done in two ways:

1. Perfect molecule matching. If the target molecule is “O=C=O” only an output of
exactly “O=C=O” will be considered as valid.

2. Token matching. If the target molecule is “O=C=O” and the model outputted
“O=C=C” this would consider that 4 of the 5 tokens were guessed correctly, and
assigned to this entry an 80% accuracy.

The accuracy returned for each of these two ways was the average through all the
batches and through all the molecules. In our tests we used 5 batches of 64 molecules,
thus the value returned was the total over 320 molecules.

To match the SMILES generated through the model, with the ones as fetched from
the QM9 dataset, the generated ones had to be “cleaned”. To clean them, the outputted
SMILES sequences were processed in the following way:

1. Every null token was replaced with a stop token.

2. Every token after the first stop was replaced with a stop token.
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1.11.6 Translating electron densities into SMILES using a trained model

This supplementary section focuses on using a trained model to translate electron densi-
ties (or electrostatic potentials, or decorated electron densities) into SMILES. To perform
this translation it is mandatory to have a trained model (the h5 file) using one of the
training scripts described in Supplementary Section 1.11.4. Depending on the input data
(electron densities, electrostatic potentials, or decorated electron densities) one of the
following scripts found in src/utils should be used:

• ed_to_smiles.py used as input electron densities via the model described in Sup-
plementary Section 1.11.1 and trained with the script bin/train/train_e2s.py as
explained in Supplementary Section 1.11.4.

• esp_to_smiles.py used as input electrostatic potentials via the model described
in Supplementary Section 1.11.2 and trained with the script bin/train/train_
esp2s.py as explained in Supplementary Section 1.11.4.

• edesp_to_smiles.py used as input decorated electron densities via the model de-
scribed in Supplementary Section 1.11.3 and trained with the script explained in
Supplementary Section 1.11.4 (bin/train/edesp2smiles.py).

These three scripts are identical with the exception of the model loaded. They can
be executed with a command such as:

$ python src/utils/ed2smiles.py electron_densities.p

Where electron_densities.p should be the file with the electron densities (or any
of the other inputs) that we want to translate to SMILES. For this command to work
properly it is important to have enabled the “electrondensity” Conda environment (as
explained in Supplementary Section 1.1). These scripts made heavy use of the RDkit
software package, which was installed as part of this Conda environment.

These scripts started by loading the Transformer model with the trained weights. To
properly load the model, first it was needed to indicate where the dataset was located
in disk (line 85) and then indicate where the weights were (line 94). To properly load
the model, the script needed to load a batch of data, and use this batch to build the
model. This data was not used later on, but it was needed to build the model. Once
the model was loaded with the weights, the script continued loading the tokenizer, which
used a Python dictionary saved as a Pickle file, linking SMILES token to number ids.
This file should be in the same folder as were the data was (like 85). Once the tokenizer
is loaded, the next step loaded a Pandas file which contained a list of all the known
commercial molecules. This data was used later on to visualise the molecules and quickly
discern if the molecules were commercially available or not. The script continued loading
the data we passed as argument when launching the script (in the example above this
file was electron_densities.p). Once this data had been loaded, it was inputted into
the model to obtain the related SMILES sequences. Finally, for each SMILES molecule,
they were marked as commercially available or not, its synthetic accessibility score was
calculated and displayed, and a 2D visual diagram of the molecule was drawn using
RDKit.

After this script was executed, the user received a PNG file, with all the SMILES as
outputted by the ML model, their related 2D diagrams, the synthetic accessibility score,
and its commercial availability.
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Supplementary Subsection 1.12 Using the Transformer model to
generate SELFIES sequences from
electron densities and/or electro-
static potentials

In exactly the same way as in the previous section (Supplementary Section 1.11), a
series of scripts are also provided to transform electron densities and/or electrostatic
potentials into SELFIES sequences. It is worth noting that the Transformer decoder
receives tokenised sequences (where SMILES or SELFIES tokens are converted into id
numbers), therefore from its perspective it doesn’t matter if the inputs are SMILES or
SELFIES because all its seeing are tokens such as ’11’ or ’32’. This means that the
changes to generate SELFIES instead of SMILES are minimal:

1. The Transformer model created to generate SELFIES can be seen in src/models/
ED_ESP2selfies.py. This model is very similar to the one discussed in Supplemen-
tary Section 1.11.3. We are only focusing on generating SELFIES from decorated
electron densities since this input is the one that generated better results.

2. This model can be trained with bin/train/train_edesp2selfies.py.

3. Once the model has been trained, we can finally use it to generate SELFIES se-
quences from decorated electron densities as inputs. To do so, we can use the script
src/utils/edesp_to_selfies.py.

This process is very similar to the one described in Supplementary Section 1.11.6, but
for SELFIES instead of SMILES.

Supplementary Section 2 Optimisation algorithms and
optimisation results

Note: Originally our code only focused on SMILES, but based on the suggestion from one
of the reviewers, we extended it to work with SELFIES too. All the following optimisation
algorithms can be used with either of them.

The main results reported in the main manuscript focussed on finding guest molecules
that best fitted inside a target host. To achieve this, the machine learning models de-
scribed in Supplementary Section 1 were used inside an optimisation pipeline, where
gradient descent was used to optimise latent vectors as generated by the VAE to output
3D guests that fitted inside the target host, and then the Transformer model was used
to convert these 3D guests into SMILES sequences to fully characterise them. See Sup-
plementary Figure 26 for an outline of this process. In this Supplementary section it will
be explained how the different optimisation pipelines were implemented, and the results
we obtained when executing them.

All the different optimisation experiments followed the same steps:

1. Generate an initial population of guests.

2. Optimise this population of guests against a target fitness function using gradient
descent.

3. Obtain the SMILES representation from the optimised guests.
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Supplementary Figure 26: Outline displaying the steps taken during the optimisation
process: First a host was selected, then a random population of guests were generated,
and gradient descent was used to fit them inside the host. Finally, the Transformer model
was used to translate the outputted guest into its related SMILES sequence.

Supplementary Subsection 2.1 src/utils/optimiser_utils.py

The script src/utils/optimisers_utils.py contains the main building blocks that will
be used later on to define the different optimisation pipelines. These building blocks relate
to the following pipeline steps:

• Generate an initial population of guests (Supplementary Section 2.1.1).

• Optimise this population of guests against a target fitness function using gradient
descent (Supplementary Section 2.1.2).

• Load a target host (Supplementary Section 2.1.3).

• Load the machine learning model (Supplementary Section 2.1.4).

2.1.1 Generating the initial population of guest

The function that generated the initial population of guests starts in line 21, “initial_
population”. This function had five parameters:

1. batch_size referred to the size of the population. We used populations as big as
possible, which depending on the GPU were between 48 and 64.

2. random referred to if the initial population would be randomly generated or if
existing data would be used instead. If random, the last two parameters can be
ignored. All the reported results used random populations.

3. z_dim referred to the size of the latent vector. This size needs to match the size of
the latent vector used when training the VAE. Our size was usually 400.
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4. datapath referred to the path to find the data to be used to create the initial
population. If the initial population was randomly generated this parameter was
not used.

5. vae referred to a loaded VAE model that was used to generate the latent vectors
from the initial population of molecules. If the initial population was randomly
generated this parameter was not used.

Since all the reported results used a random initial population, we will only discuss
this option. To generate the initial random population we used the random_uniform
function from Keras Backend. The shape of the random uniform vector was defined by
the batch size and the length of the latent vector, as just discussed in the list above. The
other two parameters this function needed were “minval” and “maxval”, which referred
to the lower and upper boundary of the uniform distribution to draw samples from. We
tested different boundaries, such as “-2,2” or “-5,5”. Most of the reported results were
obtained with “-2,2”.

This function returned a tensor of size (batch_size, z_dim).

2.1.2 Fitness functions

The different optimisation experiments used a combination of the following three fitness
functions with different objectives:

• To maximise the size of the molecule.

• To minimise the overlapping between host and guest electron densities.

• To maximise the interactions between host and guest electrostatic potentials.

A visualisation of these fitness functions can be seen on Supplementary Figure 27.
All of them performed optimisation through gradient descent. This script contained the
functionality required to perform for each of them one gradient descent step. The scripts
describing the full optimisation experiments, with multiple gradient descent steps, can
be found in Supplementary Section 2.2. We will now explain how a single optimisation
step was performed for each of these fitness functions. Due to Tensorflow requirements,
each of these functions was decorated with “@tf.function”.

To perform one step towards maximising (or minimising) the size of a molecule, the
function grad_size (line 196) was used. This function received two parameters:

1. noise referred to a tensor of size (batch_size, z_dim) which represented the VAE
latent vectors. This latent vector must refer to electron densities.

2. vae referred to a loaded VAE model. The latent vector of this VAE must be of size
z_dim. This VAE must had been trained on electron densities.

To perform one step towards maximising the size of the molecule, this function did
the following:

1. Used the VAE decoder to, given an input latent vector (noise), reconstruct the 3D
shapes of the molecules.
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Supplementary Figure 27: The three fitness functions used in the different optimisation
experiments. Top Left: This fitness function aimed to maximise the size of the molecule.
Top Right: This fitness function aimed to minimise the overlapping between electron
densities. Bottom: This fitness function aimed to maximise the electrostatic interactions
between host and guest.

41



Supplementary Figure 28: Top: Generating a latent vector using a random distribution,
and then using the VAE to reconstruct the 3D molecule from the latent vector. This
was achieved using the decoder part of the VAE. Bottom: Using a Fully Convolutional
Network to calculate the electrostatic potential from a molecule’s electron density.

2. These 3D shapes just outputted by the VAE were post-processed in a identical way
to how VAE outputs were post-processed (see Supplementary Section 1.5.1). We
named this reconstructed 3D molecules as output. This step can be seen at the
top of Supplementary Figure 28.

3. Tensorflow’s tf.reduce_sum took as input output and was used to calculate a single
value representing the whole 3D electron density by adding together the electron
density at each location (within the 64,64,64 tensor). This value was used to define
the fitness of each molecule.

4. Tensorflow’s tf.gradients was used to calculate the changes needed to increase (or
decrease) the fitness of the molecule. This function took as input two parameters:
(1) fitness as just described in the previous point, (2) and noise as received as
a parameter in the grad_size function. This function (tf.gradients) returned
a tensor, which we named gradients which explained how to modify the latent
vectors (noise) in order to maximise (or minimise if subtracted) their fitness values.

5. grad_size returned three tensors: fitness, gradients and output.

To perform one step towards minimising (or maximising) the overlapping between
host and guest electron densities, the function grad_ed_overlapping (line 214) was used.
This function received three parameters, being “noise” and “vae” the same as before. The
new parameter was named “host” and it must be a 3D tensor representing the electron
density of the target host.

To perform one step towards minimising (or maximising) the overlapping between
host and guest electron densities, this function did exactly the five steps as the previous
fitness function, with only two small differences:
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• The variable which before was named as output in step two, was named as guests
in this function.

• In step three tf.reduce_sum took as input the product between host and guest.
Thus while before the code was tf.reduce_sum(output) now it is tf.reduce_
sum(guest*host).

With these two changes, the gradients vectors as returned by Tensorflow’s tf.
gradients indicated how to modify the latent vectors to minimise (or maximise if added)
the overlapping between host and guest molecules.

To perform one step towards minimising (or maximising) the interactions between
host and guest electrostatic potentials, the function grad_esp_overlapping (line 238)
was used. This function received four parameters:

1. noise referred to a tensor of size (batch_size, z_dim) which represented the VAE
latent vectors. This latent vector must refer to electron densities.

2. vae referred to a loaded VAE model. The latent vector of this VAE must be of size
z_dim. This VAE must had been trained on electron densities.

3. ed2esp referred to a loaded machine learning model to calculate electrostatic po-
tentials from electron densities. This was implemented using a FCN as detailed in
Supplementary Section 1.6.

4. hostesp referred to a tensor describing the target host’s electrostatic potential.

To perform one step towards maximising the electrostatic potential interactions, this
function did the following:

1. Generated the 3D electron densities from the latent vectors (which were named
as noise in the input parameters). This step is the same as steps one and two
discussed when describing the gradient step to maximise the size of a molecule.
The output of this step was named guests. This step can be seen at the top of
Supplementary Figure 28.

2. Used the model ed2esp to calculate the electrostatic potentials from guests. This
step can be seen at the bottom of Supplementary Figure 28.

3. The output from ed2esp (a tensor with values from 0 to 1) was post-processed to
mimic the original data: first they were normalised between -1 and 1, and finally
they were multiplied by “0.33” to be in the same range as the original data in the
training set. We named the output from this step guests_esps.

4. Tensorflow’s tf.reduce_sum took as input the product between guests_esps and
the input parameter hostesp. We named the result of this calculation fitness.

5. Tensorflow’s tf.gradients was used to calculate the gradients in the same was
as before. This function took as input the just calculated fitness and the input
parameter noise. We named the result of this step gradients.

6. This function returned the following four variables: fitness, gradients, guests and
guests_esps.
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2.1.3 Loading hosts

This script contained functions to load the different hosts used during our research. To
obtain a host to load into our system, first the XYZ file of the target host must be
obtained, and it should be processed in exactly the same way as we did with the QM9
molecules, see Supplementary Section 1.3.3. Thus, from the initial XYZ file, we must
calculate its electron density and electrostatic potential in exactly the same way as before.
The results must be saved in a Pickle file. A single Pickle file must be used for each host.
In the results described in the main manuscript we used two different hosts: CB6 and Pd
cage.

This script contained two functions to load the CB6 host:

• load_host loaded the electron density of the target host into a Tensorflow tensor.
This function had two parameters: (1) filepath must be the path to the Pickle file
that contains the host — its electron density. (2) batch_size must be a number,
and it represented how many times the host was repeated in the output tensor. This
function loaded the Pickle file into a variable, and then used Tensorflow’s tf.tile
to transform it into a Tensorflow tensor, repeated as many times as required by the
batch_size parameter.

• load_host_ed_esp loaded the electron density and electrostatic potential of the
target host into two different Tensorflow tensors, one for each type. This function
had three parameters: (1) filepathED must be the path to the Pickle file that
contains the host — its electron density. (2) filepathESP must be the path to the
Pickle file that contains the electrostatic potential of the host. This must be in
sparse format, es discussed in Supplementary Section 1.3.3. This function would,
after loading the sparse tensor, dilate it using five by five windows, and then scale
the data between 0 and 1. This is the same process as discussed in Supplementary
Section 1.6.1. (3) batch_size must be a number, and it represented how many
times the host was repeated in each of the output tensor. This function loaded the
two Pickle files into two variables, dilated the electrostatic potential, and then used
Tensorflow’s tf.tile to transform them into Tensorflow tensors, repeated as many
times as required by the batch_size parameter.

The script also contained two functions to load the Pd cage host. These two functions
are identical to the previous ones. The only difference is that the Pd cage did not fit in a
(64,64,64) tensor, but an (80,80,80) was required instead. Therefore these two functions
take the Pickle files with tensors of size (80,80,80) and cuts them around the borders to
fit a size (64,64,64). This removed some of the outer parts of the electron density, but
since we only cared about the inside cavity, this was not a problem. To perform this
operation (transforming the original cage with size 80,80,80 to a cage with size 64,64,64)
we used Python’s array slicing functionality. Thus this transformation was achieved with
the following command:

host = host[:, 8 : −8, 8 : −8, 8 : −8, :]
Check Supplementary Figure 29 to see the Cage host before and after this transfor-

mation.

2.1.4 Loading the machine learning models

The optimisation experiments used two different machine learning models: (1) A VAE to
convert latent vectors into 3D tensors representing a molecule (its electron density or its
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Supplementary Figure 29: Transforming the Pd Cage host to fit into a (64,64,64) Cube.
Since the Pd Cage host was stored in a Numpy array, this transformation was done my
simply slicing the array into the right size. Left: Fully sized Cage (size 80,80,80). Right:
Transformed size with size (64,64,64).

electrostatic potential), see Supplementary Section 1.5, and (2) a FCN that transformed
an electron density into its related electrostatic potential, see Supplementary Section
1.6. It has also been discussed the Transformer model that transforms electron densities
into SMILES sequences. This model was not used during the optimisation experiments,
but only at the end to convert the guest candidates into SMILES. We could have used
it to obtain SMILES sequences during the optimisation processes, and then use this
information as part of the optimisation, but it was decided not to do it and keep the
optimisation processes using only structural 3D data.

This script contains two functions, one to load the VAE and one to load the FCN:

1. load_vae_model referred to the function used to load the VAE model. It had only
one argument, “modelpath” which must be the path from where to load the model.
Inside this path there must be a “params.pkl” file, with the parameters used when
creating the model, and a folder named “weights” with a file named “weights.h5”
inside, which contains the weights to load.

2. load_ED_to_ESP referred to the function used to load the FCN that would trans-
form the electron densities into electrostatic potentials. As the previous function,
it has one argument, “modelpath”, which works in the same way as before.

Supplementary Subsection 2.2 Optimisation scripts

The scripts used to perform the different optimisation experiments can be found inside
the bin/optimisers folder. Each of these scripts can be executed with a command such
as:

$ python bin/optimisers/host_guest_overlapping.py

Where host_guest_overlapping.py can be replaced with any of the other scripts.
Remember that for this command to work properly, the “electrondensity” Conda environ-
ment must be enabled (see Supplementary Section 1.1). The output of these commands
differred depending on the script executed, but all of them saved into disk a number
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of Pickle files containing the 3D electron densities (and/or electrostatic potentials) at
different snapshots of the optimisation process. At the minimum these scripts saved the
initial random population, and the final and optimised population. These Pickle files
could then be inputted into the Transformer model (see Supplementary Section 1.11.6)
to obtain the SMILES sequences related to each 3D electron density.

In this supplementary section we will know describe each of the optimisation scripts.
The order at which they will be described here is the order at which the scripts were
written and tested.

2.2.1 bin/optimisers/host_guest_overlapping.py

This script focused on running experiments that tried to find guests for the CB6 host. In
this script the calculations were performed using only electron density data. Therefore,
given a host’s electron density, and a candidate guest’s electron density, this script tried
to minimise the overlapping between electron densities by manipulating the guest. How
this manipulation was performed depended purely on the gradient descent steps, and
it was transparent to the user. Checking the evolution of the molecules through the
optimisation processes, the manipulations usually consisted on a mixture of rotations
and decreasing the size of the guest, but the user had to input on this.

This script performed the following steps:

1. Line 27: The variable BATCH_SIZE was used to define the size of the population of
guests.

2. Lines 28-29: The host’s electron density was loaded into a variable (see Supplemen-
tary Section 2.1.3).

3. Line 30: The VAE model was loaded (see Supplementary Section 2.1.4).

4. Lines 32-40: An initial population of guests (in latent vector form) was randomly
generated, see Supplementary Section 2.1.1. We named this population noise_t.
From the latent vector noise_t. The 3D structures of these molecules (in latent
form) were generated and saved into disk.

5. Line 42: A for loop started that iterated 10,000 times. This number of iterations
was empirically chosen. This number of iterations seemed to make sure that the
optimisation was finished. The following instructions are all inside the for loop.

6. Line 43 (inside the for loop): A gradient step was taken to minimise the overlapping
between host and guests electron densities. This gradient step was performed using
the function grad_ed_overlapping described in Supplementary Section 2.1.2. This
function returned three values: fitness, gradients and outputs (the 3D shapes of the
electron densities).

7. Line 44 (inside the for loop): The fitness value just obtained was displayed on
screen.

8. Line 45 (inside the for loop): The noise_t latent vector was modified using the gra-
dient information obtained before. In particular, this script performed the following
manipulation: noise_t-=0.05*gradient. The“0.05” was empirically chosen, and
it represented a sort of learning rate.
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Supplementary Figure 30: Diagram outlining CB6 host-guest optimisation using only
electron densities. First, an initial random population of guests was generated. Then,
the overlapping between these guests and the target host was calculated. Finally, the
guests were modified through gradient descent to minimise this overlapping.

9. Line 46 (inside the for loop): The noise_t latent vector was clipped between -4 and
+4 using the “clip” function from Numpy. This clipping operation was performed
to make sure that the latent vector did not divert towards impossible values. This
operation finishes the gradient descent iteration.

10. Lines 48-53 (inside the for loop): The current guests were saved into disk. As the
optimisation progressed, different snapshots of the guests population were saved
into disk.

This process is outlined in Supplementary Figure 30. The electron densities obtained
can be transformed into SMILES using a very similar process to the one depicted in
Supplementary Figure 35, but using only the electron density data.

The results obtained using this script can be seen in Supplementary Section 2.3.1.

2.2.2 bin/optimisers/maximise_size.py

This script focused on running experiments that tried to maximise the size of a molecule
by increasing the size of its electron density. In this script the calculations were performed
using only electron density data.

This script performed the following steps:

1. Line 24: The variable BATCH_SIZE was used to define the size of the population of
molecules.

2. Line 25: The VAE model was loaded (see Supplementary Section 2.1.4).

3. Lines 27-31: An initial population of molecules (in latent vector form) was randomly
generated, see Supplementary Section 2.1.1. We named this population noise_t.
From the latent vector noise_t. The 3D structures of these molecules (in latent
form) were generated and saved into disk.

4. Line 33: A for loop started that iterated 10,000 times. This number of iterations
was empirically chosen. This number of iterations seemed to make sure that the
optimisation was finished. The following instructions are all inside the for loop.
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Supplementary Figure 31: Diagram outlining the optimisation process used to increase
the size of the molecules using only electron density data. First, an initial random
population of guests was generated. Then, the size (as in volume) of the guests was
calculated. Finally, the guests were modified through gradient descent to maximise their
sizes.

5. Line 34 (inside the for loop): A gradient step was taken to maximise the size of
the molecule. This gradient step was performed using the function grad_size
described in Supplementary Section 2.1.2. This function returned three values:
fitness, gradients and outputs (the 3D shapes of the electron densities).

6. Line 35 (inside the for loop): The fitness value just obtained was displayed on
screen.

7. Line 36 (inside the for loop): The noise_t latent vector was modified using the gra-
dient information obtained before. In particular, this script performed the follow-
ing manipulation: noise_t-=0.001*gradient. The“0.001” was empirically chosen,
and it represented a sort of learning rate.

8. Lines 39-41 (inside the for loop): The current molecules were saved into disk. As
the optimisation progressed, different snapshots of the molecules population were
saved into disk.

This process is outlined in Supplementary Figure 31. The electron densities obtained
can be transformed into SMILES using a very similar process to the one depicted in
Supplementary Figure 35, but using only the electron density data.

The results obtained using this script can be seen in Supplementary Section 2.3.2.

2.2.3 bin/optimisers/maximise_polar.py

Note: This script was never used in the results shown in the main manuscript. It will be
discussed here because it part of the source code, and we might used it in the future.

This script focused on running experiments that tried to maximise the polarity of
a molecule. As discussed in Supplementary Section 1.3.3, the QM9 dataset, for each
molecule, contained mainly three data entries: the atoms’ XYZ positions, the molecule’s
SMILES representation, and 17 different single value properties, such as the dipole mo-
ment of the molecule, its internal energy at 0 K, . . . One of these properties that is of
interest here is the molecule’s isotropic polarisability. Thus, the objective of this opti-
misation experiment was to perform gradient descent molecular optimisation based on
this property. To achieve this, first we trained a neural network that took as input an
electron density and outputted a single value related to the isotropic polarisability (see
Supplementary Section 1.7 where this network was explained) Then, given a population

48



of electron densities, we could calculate using this neural network the isotropic polar-
isability for each of them, and then perform a gradient descent to either maximise or
minimise it.

Before performing the optimisation loop, this script introduced two new functions:

1. Line 25: load_PredictionModel. This function has a single argument, modelpath,
which must be the path to a model trained as discussed in Supplementary Section
1.7. This function returns the loaded model.

2. Line 44: grad. This is a fitness function very similar to the ones discussed in
Supplementary Section 2.1.2. it has three parameters: noise and vae are the same
as in the previous fitness functions; cnn3D must the a neural network loaded with
the previous function (load_PredictionModel). To perform a gradient descent
step, in a similar way to the previous fitness functions, first it used the VAE to
generate the 3D electron densities from the latent vectors, then it used the “cnn3D”
which took as input the just generated 3D electron densities, and outputted a single
value for each electron density, related to their isotropic polarisability. We named
this the fitness. Finally it used Tensorflow’s tf.gradients to calculate the gradient,
taking as input the fitnesses just calculated, and the latent vectors. This function
returned three variables: the fitnesses, the gradients, and the 3D electron densities.

To perform optimisation based on the isotropic polarisability, this script performed
the following steps:

1. Line 65: The variable BATCH_SIZE was used to define the size of the population of
molecules.

2. Line 66: The VAE model was loaded (see Supplementary Section 2.1.4).

3. Line 67: The 3D-CNN model to calculate single value properties from electron
densities was loaded (see Supplementary Section 1.7).

4. Lines 69-74: An initial population of molecules (in latent vector form) was randomly
generated, see Supplementary Section 2.1.1. We named this population noise_t.
From the latent vector noise_t. The 3D structures of these molecules (in latent
form) were generated and saved into disk.

5. Line 75: A for loop started that iterated 10,000 times. This number of iterations
was empirically chosen. This number of iterations seemed to make sure that the
optimisation was finished. The following instructions are all inside the foor loop.

6. Line 76 (inside the for loop): A gradient step was taken to maximise the isotropic
polarisability of the molecule. This gradient step was performed using the function
grad described above. This function returned three values: fitness, gradients and
outputs (the 3D shapes of the electron densities).

7. Line 77 (inside the for loop): The fitness value just obtained was displayed on
screen.

8. Line 78 (inside the for loop): The noise_t latent vector was modified using the gra-
dient information obtained before. In particular, this script performed the following
manipulation: noise_t-=0.01*gradient. The“0.01” was empirically chosen, and
it represented a sort of learning rate.

49



9. Line 79 (inside the for loop): The noise_t latent vector was clipped between -1 and
+1 using the “clip” function from Numpy. This clipping operation was performed
to make sure that the latent vector did not divert towards impossible values. This
operation finishes the gradient descent iteration.

10. Lines 81-83 (inside the for loop): The current molecules were saved into disk. As
the optimisation progressed, different snapshots of the molecules population were
saved into disk.

The electron densities obtained can be transformed into SMILES using a very similar
process to the one depicted in Supplementary Figure 35, but using only the electron
density data.

The results obtained using this script can be seen in Supplementary Section 2.3.3.

2.2.4 bin/optimisers/maximise_hg_polar.py

This script focused on running experiments that tried to find guests for the CB6 host.
In this script the calculations were performed using only electron density data. Given
a host’s electron density, and a candidate guest’s electron density, this script tried to
minimise the overlapping between electron densities by manipulating the guest, and it also
tried to maximise the isotropic polarisability of the guest. Thus, this script combined the
previously discussed scrips host_guest_overlapping.py (Supplementary Section 2.2.1)
and maximise_polar.py (Section 2.2.3).

To achieve this, this script introduced a new fitness function, which combined the
fitness function to minimise overlapping introduced in Supplementary Section 2.1.2 and
the fitness function used to maximised isotropic polarisability discussed in the previous
section (Supplementary Section 2.2.3). This fitness function was named grad (line 42).
It had four input parameters, the first three (noise, vae and cnn3d) were exactly the
same as the fitness function described in the previous section (Supplementary Section
2.2.3). The fourth one was the host, which is the same as in the fitness function grad_
ed_overlapping described in Supplementary Section 2.1.2.

This fitness function performed the following steps:

1. Lines 56-57: Generated the 3D electron densities from the latent vectors (which
were named as “noise” in the input parameters). This step is the same as steps
one and two in the list describing the gradient step to maximise the size of the
molecules. The output of this step was named “guests”.

2. Line 59: Used Tensorflow’s tf.reduce_sum to calculate the overlapping between
hosts and guests (tf.reduce_sum(guest*host)). The result of this operation was
named fitness_overlapping. This fitness value was multiplied by a negative
number. We used “-10”, which was calculated empirically.

3. Line 60: Used the input parameter “cnn3D” and the just generated “guests” to cal-
culate the isotropic polarisability for each of the guests. The result of this operation
was named fitness_polarity.

4. Line 61: Both fitness values were combined. fitness=fitness_overlapping+
fitness_polarity.
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Supplementary Figure 32: Outline displaying the steps taken during the optimisation
process: First a host was selected, then a random population of guests were generated,
and gradient descent was used to fit them inside the host while maximising its isotropic
polarisability. Finally, the Transformer model was used to translate the outputted guest
into its related SMILES sequence.

5. Line 62: This “fitness” value was used with Tensorflow’s tf.gradients function
to calculate the gradients against the input latent vectors (noise). gradients=tf.
gradients(fitness,noise).

6. Line 63: The fitness function returned the following variables: fitness, gradients,
guests, fitness_overlapping and fitness_polarity.

To perform optimisation based on minimising host/guest overlapping while maximis-
ing the guest polarity, this script followed very similar steps to the optimisation script
discussed before in Supplementary Section 2.2.3. The only difference is that this script
used the fitness function introduced in this Supplementary section, instead of the one
used before. Everything else remained the same. Supplementary Figure 32 outlines the
process this script did to find guests based on the described fitness function.

The electron densities obtained can be transformed into SMILES using a very similar
process to the one depicted in Supplementary Figure 35, but using only the electron
density data.

The results obtained using this script can be seen in Supplementary Section 2.3.4.

2.2.5 bin/optimisers/maximise_hg_esp.py

This script focused on running experiments that tried to find guests for the CB6 host. In
this script the calculations were performed using both electron densities and electrostatic
potentials. Given a host and a candidate guest, this script tried to minimise the overlap-
ping between electron densities, and it tried to maximise the electrostatic interactions.
See Supplementary Figure 33 for an outline of this process.

This script did not introduce any new fitness functions, and the optimisation source
code is almost the same to the previous scripts, although this script introduced some new
code which mostly focused on improving the output files generated so that it was easier
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Supplementary Figure 33: Outline displaying the steps taken during the optimisation
process: First a host was selected, then a random population of guests were generated, and
gradient descent was used to fit them inside the host while maximising the electrostatic
interactions between host and guess.

to analyse them later on. We will first discuss the new source code added, and then we
will focus on the optimisation procedures.

1. Line 30. A variable named ed_factor is declared here. This script used two dif-
ferent fitness functions: one to minimise the overlapping between host and guests,
and one to maximise the electrostatic interactions. This variable ed_factor ex-
plained how these two fitness functions were combined. A simple calculation such as
fitness=r*f1+(r-1)*f2 was followed, where “r” would be replaced by ed_factor.
The fitness related to minimising electron densities overlapping was multiplied by
ed_factor, while the part related to maximising electrostatic interactions was mul-
tiplied by 1-ed_factor.

2. Lines 32-41: A folder is created where to save the files the optimiser created. This
folder was named using the current date.

3. Lines 47-48: The CB6 host was loaded using the function load_host_ed_esp, ex-
plained in Supplementary Section 2.1.3.

4. Lines 49-50: The AI models were loaded. These models were the VAE model and
the NN that converts electron densities to electrostatic potentials. This functions
were explained in Supplementary Section 2.1.3.

5. Lines 52-63: An initial population of molecules (in latent vector form) was randomly
generated, see Supplementary Section 2.1.1. We named this population noise_t.
From the latent vector noise_t, the 3D structured were generated and saved into
disk. The 3D structures created here were the electron densities and the electrostatic
potentials.

This would finish the set-up, and the optimisation loop started. While before the op-
timisation ran in a loop for 10,000 iterations with a fixed learning rate, now the loop used
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a variable learning rate that decreased as more iterations were executed. To implement
this, we defined a variable named factor, which iterated through the following values:
1, 5, 10, 20 and 50. For each of these values, 10,000/factor optimisation steps were
taken, using as learning rate lr=0.05/factor. Therefore, initially 10,000 iterations were
taken using a learning rate of 0.5. Then, 2000 iterations were taken using a learning rate
of 0,01; followed by 1000 iterations with a learning rate of 0.005, 500 optimisation steps
with a learning rate of 0.0025, and finishing with 200 optimisation steps with a learning
rate of 0.001.

Another important consideration of this script is that it combined two different fit-
ness functions (electron density overlapping and electrostatic interactions) into a single
value. How the two fitness functions were combined was explained at the start of this
supplementary section when the ed_factor variable was discussed.

The optimisation loop was implemented with two for loops:

1. Line 66: The outer loop started. In this loop, factor iterated being assigned values
in the list [1,5,10,20,50].

2. Lines 67-67 (inside outer loop): The learning rate was calculated from factor (lr=
0.05/factor). The calculate learning rate was also converted into a string to print
it later on.

3. Line 70: (inside outer loop): The inner loop started. This inner loop iterated
10000/factor iterations.

4. Lines 72-73 (inside inner loop): The gradient of the current latent vector was cal-
culated using the grad_esp_overlapping, which calculated the electrostatic inter-
actions, see 2.1.2. The fitness value returned by this function was printed.

5. Lines 74-75 (inside inner loop): The latent vectors were modified using the gradi-
ent information just calculated. The latent vectors were modified using this com-
mand: noise_t-=lr*gradients*(1-ed_factor). After this, the latent vectors
were clipped between -5 and 5, in a similar way to how was discussed previously.

6. Lines 77-81 (inside inner loop): The current guests were saved into the folder created
before.

7. Lines 84-85 (inside inner loop): The gradient of the current latent vector was calcu-
lated using the grad_ed_overlapping, which calculated the overlapping between
host and guest electron densities, see 2.1.2. The fitness value returned by this
function was printed.

8. Lines 86-87 (inside inner loop): The latent vectors were modified using the gradient
information just calculated. The latent vectors were modified using this command:
noise_t-=lr*gradients*ed_factor. After this, the latent vectors were clipped
between -5 and 5, in a similar way to how was discussed previously.

9. Lines 89-91 (inside inner loop): The current guests were saved into the folder created
before.

This process is outlined in Supplementary Figure 34. The electron densities obtained
can be transformed into SMILES using a the process depicted in Supplementary Figure
35.

The results obtained using this script can be seen in Supplementary Section 2.3.5.
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Supplementary Figure 34: Diagram outlining the optimisation process used to find guests
for the CB6 host, using both electron densities and electrostatic potentials. First, an ini-
tial random population of guests was generated. Then, the overlapping between these
guests and the target host was calculated. After this, the electrostatic interactions be-
tween the guests and the host were calculated. Finally, the guests were modified through
gradient descent to minimise the overlapping of electron densities, while maximising the
electrostatic interactions.

Supplementary Figure 35: Diagram outlining how the Transformer model was used to
generated SMILES sequences from 3D electron densities decorated with electrostatic po-
tential information. The encoder received as input the decorated electron densities, while
the decoder received as input the “<START>” token. With this information, the Trans-
former generated the SMILES sequence that best matched the decorated electron density.
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Supplementary Figure 36: Optimisation process aiming to find guests that fitted inside
the Pd Cage, using only electron density data. The outputted optimised guests were
translated into SMILES sequences using the described Trasnformer model.

2.2.6 bin/optimisers/cage_hg.py

This script focused on running experiments that tried to find guests for the Pd Cage
host. In this script the calculations were performed using only electron densities. Given
a host and a candidate guest, this script tried to minimise the overlapping between host
and guest electron densities, see Supplementary Figure 36.

This script did not introduce any new fitness functions, and the optimisation source
code is almost the same to the previous scripts, although this script introduced some new
code which mostly focused on improving the output files generated so that it was easier
to analyse them later on. We will first discuss the new source code added, and then we
will focus on the optimisation process.

The steps performed before the optimisation started were:

1. Line 25: The variable BATCH_SIZE was used to define the size of the population of
guests.

2. Lines 26-27: The host’s electron density was loaded into a variable (see Supplemen-
tary Section 2.1.3).

3. Line 28: The VAE model was loaded (see Supplementary Section 2.1.4).

4. Lines 33-37: An initial population of guests (in latent vector form) was randomly
generated, see Supplementary Section 2.1.1. We named this population noise_t.
From the latent vector noise_t, the 3D structures were generated and saved into
disk.

The optimisation process was divided into two steps: (1) gradient descent was used
to increase the size of the molecules as much as possible, (2) gradient descent was used
to minimise the overlapping between host and guest. Before, when using the CB6, it
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was not required to increase the size of the molecules, because the CB6 host is “small”
compared to the average molecule present in the QM9 dataset, thus almost every random
molecule generated overlapped with the CB6 host. On the other hand, the Pd Cage is
“bigger” than the average QM9 molecule, and therefore a randomly generated molecule
would probably fully fit inside, with minimal overlapping. This is why, when working
with the Pd Cage, we increased first the size of the molecules, to try and force some
degree of overlapping.

The optimisation loop which increased the size of the molecules was executed first,
and it did the following steps:

1. Line 40: A for loop started that iterated 5,000 times. This number of iterations
was empirically chosen. This number of iterations seemed to make sure that the
optimisation was finished. The following instructions are all inside the for loop.

2. Line 41 (inside the for loop): A gradient step was taken to maximise the size of
the molecule. This gradient step was performed using the function grad_size
described in Supplementary Section 2.1.2. This function returned three values:
fitness, gradients and outputs (the 3D shapes of the electron densities).

3. Line 42 (inside the for loop): The fitness value just obtained was displayed on
screen.

4. Line 43 (inside the for loop): The noise_t latent vector was modified using the gra-
dient information obtained before. In particular, this script performed the following
manipulation: noise_t-=0.01*gradient. The “0.01” was empirically chosen, and
it represented a sort of learning rate.

5. Line 44 (inside the for loop): The noise_t latent vector was clipped between -5 and
+5 using the “clip” function from Numpy. This clipping operation was performed
to make sure that the latent vector did not divert towards impossible values. This
operation finishes the gradient descent iteration.

6. Lines 46-48 (inside the for loop): The current molecules were saved into disk. As
the optimisation progressed, different snapshots of the molecules population were
saved into disk.

At this point, noise_t contained a list of molecules (their latent vectors) with max-
imised sizes. The next part of the optimisation process tried to minimise the overlapping
of these molecules with the Pd Cage host. The optimisation loop was implemented
in the same way as in the previous supplementary section, were the learning rate de-
creased every (in this case) 8,000 iterations, exactly as we did before. The actual gradi-
ent optimisation process was the same as in Supplementary Section 2.2.1: the function
grad_ed_overlapping was used to calculate the gradients related to the host/guest over-
lapping, and the latent vectors in noise_t were modified using these gradients.

This process is outlined in Supplementary Figure 37. The electron densities obtained
can be transformed into SMILES using a very similar process to the one depicted in
Supplementary Figure 35, but using only the electron density data.

The results obtained using this script can be seen in Supplementary Section 2.3.6.
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Supplementary Figure 37: Diagram outlining the optimisation process used to find guests
for the Pd Cage host by minimising the host/guest electron densities overlapping. First,
an initial random population of guests was generated. Then, the overlapping between
these guests and the target host was calculated. Finally, the guests were modified through
gradient descent to minimise this overlapping.

2.2.7 bin/optimisers/cage_hg_esp.py

This script focused on running experiments that tried to find guests for the Pd Cage
host. In this script the calculations were performed using both electron densities and
electrostatic potentials. Given a host and a candidate guest, this script tried to minimise
the overlapping between electron densities, and it tried to maximise the electrostatic
interactions. See Supplementary Figure 38 for an outline of this process.

This script is very similar to the script discussed in Supplementary Section 2.2.5. Here
we will only highlight the differences:

• The host loaded was the Pd Cage instead of CB6.

• Before performing the electron densities and electrostatic potentials optimisations,
a gradient descent loop was used to increase the size of the molecules from the
initial population. This loop was very similar to the one described in the previous
supplementary section, were the size of the molecules was also increased. In this
case, the loop iterated 1,000 times, instead of 5,000.

• The learning rate was calculated with lr=0.01/factor instead of lr=0.05/factor.

• No clipping was performed to noise_t after it had been updated with the new
gradients.

The full optimisation process is outlined in Supplementary Figure 39. The electron
densities obtained can be transformed into SMILES using the process depicted in Sup-
plementary Figure 35.

The results obtained using this script can be seen in Supplementary Section 2.3.7.

2.2.8 bin/optimisers/cage_hg_esp_lee.py

This script focused on running experiments that tried to find guests for the Pd Cage
host. In this script the calculations were performed using both electron densities and
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Supplementary Figure 38: Outline displaying the steps taken during the optimisation
process: First a host was selected, then a random population of guests were generated, and
gradient descent was used to fit them inside the host while maximising the electrostatic
interactions between host and guess.

Supplementary Figure 39: Diagram outlining the optimisation process used to find guests
for the PD Cage host, using both electron densities and electrostatic potentials. First, an
initial random population of guests was generated. Then, the overlapping between these
guests and the target host was calculated. After this, the electrostatic interactions be-
tween the guests and the host were calculated. Finally, the guests were modified through
gradient descent to minimise the overlapping of electron densities, while maximising the
electrostatic interactions.
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electrostatic potentials. Given a host and a candidate guest, this script tried to minimise
the overlapping between electron densities, and it tried to maximise the electrostatic
interactions. Thus, the guests were manipulated to achieve this.

This script is very similar to the scripts discussed in Supplementary Section 2.2.5 and
Supplementary Section 2.2.7. The main difference is that before, inside the optimisation
loop, the latent vector was modified twice: once based on the gradients derived from the
electron densities overlapping, and once derived from the electrostatic interactions. In
this script, a new fitness function was created, named combined_ed_esp, which calculated
the gradients for both fitness functions (electron density overlapping and electrostatic
interactions), then combined both fitness values, and then modified the latent vector.
Therefore, while before the latent vectors were modified twice, in this script they were
only modified once.

This new function, as discussed, was named combined_ed_esp and had the following
input parameters:

1. latent_vector referred to a tensor of size (batch_size, z_dim) which represented
the VAE latent vectors. This latent vector must refer to electron densities. Before,
this input parameter was named noise.

2. vae referred to a loaded VAE model. The latent vector of this VAE must be of size
z_dim. This VAE must had been trained on electron densities.

3. ed2esp referred to a loaded machine learning model to calculate electrostatic po-
tentials from electron densities. This was implemented using a FCN as detailed in
Supplementary Section 1.6.

4. hosted referred to a tensor describing the target host’s electron density.

5. hostesp referred to a tensor describing the target host’s electrostatic potential.

6. ed_factor referred to float value which indicated how both fitness functions were
combined. It had values between 0 and 1.

This new fitness function executed the following steps:

1. Line 40: The gradient of the input latent vector against was calculated using
grad_esp_overlapping, which calculated the electrostatic interactions, see 2.1.2.
It returned four values: fitness, esp_gradients, 3D electron densities, and 3D elec-
trostatic potentials.

2. Line 41: The fitness calculated was printed.

3. line 44: The gradient of the input latent vector was calculated using grad_ed_
overlapping, which calculated the overlapping between electron densities, see 2.1.2.
It returned three values: fitness, ed_gradients, and 3D electron densities.

4. Line 45: The fitness calculated was printed.

5. Line 48: The gradients were combined using the following formula: gradients=ed_
gradients*ed_factor+esp_gradients*(1-ed_factor).

6. Line 50: The following values were returned: fitness, gradients, 3D electron densi-
ties, 3D electrostatic potentials.
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The optimisation process was very similar to the one described in Supplementary
Section 2.2.5, with a decreasing learning rate, but now using only one fitness function:
combined_ed_esp as just described.

The main difference compared with the script described in Supplementary Section
2.2.5, is that while before the script ran once with a user set ed_factor, now the optimi-
sation process was repeated a number of times, screening different values for ed_factor
between 0 and 1.

The full optimisation process is outlined in Supplementary Figure 39. The electron
densities obtained can be transformed into SMILES using the process depicted in Sup-
plementary Figure 35.

The results obtained using this script can be seen in Supplementary Section 2.3.8.

2.2.9 bin/optimisers/cage_hg_split_esp.py

This script focused on running experiments that tried to find guests for the Pd Cage
host. In this script the calculations were performed using both electron densities and
electrostatic potentials. Given a host and a candidate guest, this script tried to minimise
the overlapping between electron densities, and it tried to maximise the electrostatic
interactions. Thus, the guests were manipulated to achieve this.

This script is very similar to the scripts discussed in Supplementary Section 2.2.5 and
Supplementary Section 2.2.7. The main difference is that in the previous optimisation
experiments which aimed to maximise the electrostatic interactions between host and
guest, we used the fitness function grad_esp_overlapping, explained in Supplementary
Section 2.1.2, which multiplied the electrostatic potentials from the host with the ones
from the guest, and then summed the resulting 3D tensor together to into a single value.
On the other hand, in this script the host’s electrostatic potentials were split into their
positive or negative parts, and the host/guest interactions were calculated individually
with each of them. Then, they were combined together using a weight factor to decided if
more weight was given to the positive or negative parts. The main reasoning behind this
is that in the case of the Pd Cage, the palladium atoms are critical to find good guests.
Therefore, instead of considering the whole host’s electrostatic potentials in equal terms,
we wanted the optimisation processes to focus more on the palladium atoms, but also to
still consider everything else.

To achieve this, two new functions were introduced, being the first one split_host_
esp. This received as input a tensor representing the electrostatic potentials from the
host, and returned two different tensors: one that only contained the positive values, and
another that only contained the negative ones, see Supplementary Figure 40.

The second new function is a new fitness function named combined_ed_esp. This
function had eight input parameters. Five of them: latent_vector, vae, ed2esp, hosted
and ed_factor, were exactly the same as the fitness function introduced in the previ-
ous section (Supplementary Section 2.2.8). We will now discuss the three new input
parameters:

• hostesp_pos referred to a tensor describing the positive values within the target
host’s electrostatic potential.

• hostesp_neg referred to a tensor describing the negative values within the target
host’s electrostatic potential.
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Supplementary Figure 40: Splitting the electrostatic potential from the Pd Cage into its
positive and negative parts. This was achieved by creating two new tensors: one that
only stored the positive parts of the original electrostatic potential, and one that only
stored the negative parts.

• esp_pos_factor referred to float value which indicated how the electrostatic po-
tential calculations between the positive and negative parts of the host, and the
guests, were combined. It had values between 0 and 1.

This new fitness function executed the following steps:

1. Line 46: Calculated the fitness and gradients between the input latent vector and
hostesp_pos using grad_esp_overlapping. We named the fitness fp and the
gradients esp_grads_p.

2. Line 47: Calculated the fitness and gradients between the input latent vector and
hostesp_neg using grad_esp_overlapping. We named the fitness fn and the
gradients esp_grads_n..

3. Line 48: The gradients were combined using the following formula: esp_grads=
esp_grads_p*esp_pos_factor+esp_grads_n*(1-esp_post_factor).

4. Line 50: The fitnesses were combined using the following formula: combined_
fitness=fp+fn.

5. Line 54: The gradient of the input latent vector against the the overlapping between
electron densities was calculated using grad_ed_overlapping, see 2.1.2. It returned
three values: fitness, ed_gradients, and 3D electron densities.

6. Line 58: The gradients were combined using the following formula: gradients=ed_
gradients*ed_factor+esp_gradients*(1-ed_factor).

61



7. Line 60: The following values were returned: fitness, gradients, 3D electron densi-
ties, 3D electrostatic potentials.

The actual optimisation process was very similar to the ones described previously, in
particular to the one described in the previous section (Supplementary Section 2.2.8).
The main difference with respect to the previous script, is that while that one screened
a range of values for ed_factor, in this script ed_factor was fixed, and instead a range
of values for esp_pos_factor was screened.

The full optimisation process is very similar to the one outlined in Supplementary
Figure 39. In a similar way to how in this figure it is shown how gradients calculated
from the electron density overlapping were combined with gradients calculated from the
electrostatic potential interactions, in this script gradients calculated from electrostatic
potential interactions of the positive part of the host with the guests were also combined
with gradients calculated from electrostatic potential interactions of the negative part of
the host with the guests The electron densities obtained can be transformed into SMILES
using the process depicted in Supplementary Figure 35.

This method did not improve the results obtained previously, and thus results from
this method are not present in the main manuscript.

The results obtained using this script can be seen in Supplementary Section 2.3.9.

Supplementary Subsection 2.3 Optimisation results

The following sections show the results obtained after executing the scripts described in
Section 2.2. These scripts generated a population of guests that minimised or maximised
the different fitness functions. These guests were outputted as 3D electron densities
(or electrostatic potentials). Using the Transformer model described in Section 1.11,
we translated these 3D structures into SMILES sequences, and then using RDkit we
calculated the 2D structure to draw the molecule as can be seen in the different figures.
Thus, every figure contains a number of molecules, where each molecule is represented
by its SMILES sequence and its 2D structure. In some of the later results, it can be seen
that besides the SMILES sequence there is a “Y” or “N” letter, indicating if the molecule
is commercially available or not, and besides this letter a number, which indicates the
synthetic accessibility score as calculated using RDKit.

Before showing the results, it is important to remember that the Transformer model
generated the SMILES sequences token by token, and that the next token could be
chosen in a “greedy” way (directly picking the one with maximum probability) or using
“probabilistic sampling”. These two options were discussed in Section 1.10.2. Unless the
opposite is said, all the results shown followed the “greedy” approach.

Finally, as discussed in Section 1.11, the Transformer model took as input electron
densities, electrostatic potentials, or decorated electron densities (see Section 1.8). Unless
the opposite is said, all the results were calculated using electron densities. If another
type of input was used, this will be specified in the figure captions.

2.3.1 Results from bin/optimisers/host_guest_overlapping.py

These results were obtained using the host_guest_overlapping.py script described in
Section 2.2.1. The results can be seen in Supplementary Figures 41 to 44.
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Supplementary Figure 41: Molecules obtained when trying to minimise the overlapping
between CB6 host and guest electron densities. The optimisation routine only worked
using electron densities. The final ones were converted into SMILES using the previously
described Transformer model. The 2D images of molecules displayed in this image where
obtained using RDkit.
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Supplementary Figure 42: Molecules obtained when trying to minimise the overlapping
between CB6 host and guest electron densities. These molecules were obtained using the
probabilistic sampling approach. The optimisation routine only worked using electron
densities. The final ones were converted into SMILES using the previously described
Transformer model. The 2D images of molecules displayed in this image where obtained
using RDkit.
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Supplementary Figure 43: Molecules obtained when trying to minimise the overlapping
between CB6 host and guest electron densities. These molecules were obtained using the
probabilistic sampling approach. The optimisation routine only worked using electron
densities. The final ones were converted into SMILES using the previously described
Transformer model. The 2D images of molecules displayed in this image where obtained
using RDkit.
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Supplementary Figure 44: Molecules obtained when trying to minimise the overlapping
between CB6 host and guest electron densities. These molecules were obtained using the
probabilistic sampling approach. The optimisation routine only worked using electron
densities. The final ones were converted into SMILES using the previously described
Transformer model. The 2D images of molecules displayed in this image where obtained
using RDkit.
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2.3.2 Results from bin/optimisers/maximise_size.py

These results were obtained using the maximise_size.py script described in Section
2.2.2. The results can be seen in Supplementary Figure 45.

2.3.3 Results from bin/optimisers/maximise_polar.py

These results were obtained using the maximise_polar.py script described in Section
2.2.3. The results can be seen in Supplementary Figures 46 and 47.

2.3.4 Results from bin/optimisers/maximise_hg_polar.py

These results were obtained using the maximise_hg_polar.py script described in Section
2.2.4. The results can be seen in Supplementary Figures 48 to 51.
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Supplementary Figure 45: Molecules obtained when trying to maximise the size of their
electron densities. The optimisation routine only worked using electron densities. The
final ones were converted into SMILES using the previously described Transformer model.
The 2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 46: Molecules obtained when trying to maximise their isotropic
polarisability. The optimisation routine only worked using electron densities. The final
ones were converted into SMILES using the previously described Transformer model. The
2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 47: Molecules obtained when trying to minimise their isotropic
polarisability. The optimisation routine only worked using electron densities. The final
ones were converted into SMILES using the previously described Transformer model. The
2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 48: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising the isotropic polar-
isability from the guests. The optimisation routine only worked using electron densities.
The final ones were converted into SMILES using the previously described Transformer
model. The 2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 49: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising the isotropic polar-
isability from the guests. The optimisation routine only worked using electron densities.
The final ones were converted into SMILES using the previously described Transformer
model. The 2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 50: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising the isotropic polar-
isability from the guests. The optimisation routine only worked using electron densities.
The final ones were converted into SMILES using the previously described Transformer
model. The 2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 51: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising the isotropic polar-
isability from the guests. The optimisation routine only worked using electron densities.
The final ones were converted into SMILES using the previously described Transformer
model. The 2D images of molecules displayed in this image where obtained using RDkit.
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Supplementary Figure 52: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0. The optimisation routine only worked using electron
densities. The final ones were converted into SMILES using the previously described
Transformer model. The 2D images of molecules displayed in this image where obtained
using RDkit.

2.3.5 Results from bin/optimisers/maximise_hg_esp.py

These results were obtained using the maximise_hg_esp.py script described in Section
2.2.5. A total of 20 experiments/runs were done using this script using different values
for ed_factor. This generated 960 different guests. These were converted into SMILES
sequences using the two methods based on electron density data described in Section 1.11,
plus the method using decorated electron densities described in Section 1.8. Therefore,
each 3D tensor representing a guest could output three slightly different molecules. Thus,
the total number of molecules generated was 2880. Since this is a very big number, we will
only show some of there here. Unless mentioned, the molecules shown were obtained using
the method using decorated electron densities. The results can be seen in Supplementary
Figures 52 to 71.
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Supplementary Figure 53: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.05. The optimisation routine only worked using electron
densities. The final ones were converted into SMILES using the previously described
Transformer model. The 2D images of molecules displayed in this image where obtained
using RDkit.
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Supplementary Figure 54: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.1
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Supplementary Figure 55: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.2
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Supplementary Figure 56: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.3
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Supplementary Figure 57: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.4
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Supplementary Figure 58: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.5
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Supplementary Figure 59: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.6
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Supplementary Figure 60: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.7
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Supplementary Figure 61: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. These molecules were generated using the probabilistic sampling method.
ed_factor = 0.7
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Supplementary Figure 62: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. These molecules were generated using the probabilistic sampling method.
The SMILES representation of these molecules was calculated using only their electron
densities. ed_factor = 0.7
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Supplementary Figure 63: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.8
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Supplementary Figure 64: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. These molecules were generated using the probabilistic sampling method.
The SMILES representation of these molecules was calculated using only their electron
densities. ed_factor = 0.8
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Supplementary Figure 65: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. These molecules were generated using the probabilistic sampling method.
The SMILES representation of these molecules was calculated using only their electron
densities. ed_factor = 0.8
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Supplementary Figure 66: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.9
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Supplementary Figure 67: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 68: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 69: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 70: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 71: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 1.0
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Supplementary Figure 72: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The size of the cavity was reduced using the method described in Supple-
mentary Section 1.9. ed_factor = 0.6

Similar optimisation rounds were done decreasing the size of the cavity as described in
Supplementary Section 1.9. A total of 27 optimisation rounds were executed, generating
1296 guests. As before, we will only highlight here some of the results obtained. All of the
following guests were obtained for the CB6 host decreasing its cavity by using a kernel
of size 4 (using the method described in Supplementary Section 1.9). See Supplementary
Figures 72 to 76.

2.3.6 Results from bin/optimisers/cage_hg.py

These results were obtained using the cage_hg.py script described in Supplementary
Section 2.2.6. The results can be seen in Supplementary Figure 77.

2.3.7 Results from bin/optimisers/cage_hg_esp.py

These results were obtained using the cage_hg_esp.py script described in Supplementary
Section 2.2.7. A total of 38 experiments/runs were done using this script using different
values for ed_factor. This generated 1520 different guests. These were converted into
SMILES sequences using the two methods based on electron density data described in
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Supplementary Figure 73: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. These molecules were obtained using the probabilistic sampling method.
The size of the cavity was reduced using the method described in Supplementary Section
1.9. ed_factor = 0.6
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Supplementary Figure 74: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The size of the cavity was reduced using the method described in Supple-
mentary Section 1.9. ed_factor = 0.7
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Supplementary Figure 75: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The size of the cavity was reduced using the method described in Supple-
mentary Section 1.9. ed_factor = 0.8
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Supplementary Figure 76: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The size of the cavity was reduced using the method described in Supple-
mentary Section 1.9. ed_factor = 0.9
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Supplementary Figure 77: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities.
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Supplementary Figure 78: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0

Supplementary Section 1.11, plus the method using decorated electron densities described
in Supplementary Section 1.8. Therefore, each 3D tensor representing a guest could
output three slightly different molecules. Thus, the total number of molecules generated
was 4560. Since this is a very big number, we will only show some of there here. The
results can be seen in Supplementary Figures 78 to 103.
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Supplementary Figure 79: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.001
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Supplementary Figure 80: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.05
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Supplementary Figure 81: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.1
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Supplementary Figure 82: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.2
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Supplementary Figure 83: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.3
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Supplementary Figure 84: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.5
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Supplementary Figure 85: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.7
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Supplementary Figure 86: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.8

109



Supplementary Figure 87: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.9
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Supplementary Figure 88: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 89: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.999
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Supplementary Figure 90: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 1.0
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Supplementary Figure 91: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0
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Supplementary Figure 92: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.001
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Supplementary Figure 93: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.05
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Supplementary Figure 94: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1
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Supplementary Figure 95: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.2
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Supplementary Figure 96: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3
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Supplementary Figure 97: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.5

120



Supplementary Figure 98: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.7
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Supplementary Figure 99: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.8

122



Supplementary Figure 100: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9
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Supplementary Figure 101: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.95

124



Supplementary Figure 102: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.999
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Supplementary Figure 103: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 1.0
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Supplementary Figure 104: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0

2.3.8 Results from bin/optimisers/cage_hg_esp_lee.py

These results were obtained using the cage_hg_esp_lee.py script described in Supple-
mentary Section 2.2.8. A total of 32 experiments/runs were done using this script using
different values for ed_factor. This generated 1384 different guests. These were con-
verted into SMILES sequences using the two methods based on electron density data
described in Supplementary Section 1.11, plus the method using decorated electron den-
sities described in Supplementary Section 1.8. Therefore, each 3D tensor representing a
guest could output three slightly different molecules. Thus, the total number of molecules
generated was 3528. Since this is a very big number, we will only show some of there
here. The results can be seen in Supplementary Figures 104 to 129.
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Supplementary Figure 105: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.05
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Supplementary Figure 106: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.1
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Supplementary Figure 107: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.2
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Supplementary Figure 108: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.3
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Supplementary Figure 109: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.4
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Supplementary Figure 110: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.5
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Supplementary Figure 111: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.6
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Supplementary Figure 112: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.7
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Supplementary Figure 113: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.8
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Supplementary Figure 114: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.9
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Supplementary Figure 115: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 116: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 1.0
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Supplementary Figure 117: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0
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Supplementary Figure 118: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.05
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Supplementary Figure 119: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1
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Supplementary Figure 120: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.2
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Supplementary Figure 121: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3
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Supplementary Figure 122: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.4
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Supplementary Figure 123: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.5
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Supplementary Figure 124: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6
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Supplementary Figure 125: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.7
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Supplementary Figure 126: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.8

149



Supplementary Figure 127: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9
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Supplementary Figure 128: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.95
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Supplementary Figure 129: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 1.0

152



Supplementary Figure 130: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 0.0

2.3.9 Results from bin/optimisers/cage_hg_split_esp.py

These results were obtained using the cage_hg_split_esp.py script described in Supple-
mentary Section 2.2.9. A total of 125 experiments/runs were done using this script using
different values for ed_factor and pf_factor. This generated 5,000 different guests.
These were converted into SMILES sequences using the two methods based on electron
density data described in Supplementary Section 1.11, plus the method using decorated
electron densities described in Supplementary Section 1.8. Therefore, each 3D tensor rep-
resenting a guest could output three slightly different molecules. Thus, the total number
of molecules generated was 12,768. Since this is a very big number, we will only show
some of there here. The results can be seen in Supplementary Figures 130 to 169.

2.3.10 SELFIES results from bin/optimisers/maximise_hg_esp.py

These results were obtained using the maximise_hg_esp.py script described in Supple-
mentary Section 2.2.5. To obtain these results, the cavity of CB6 was reduced using
the method described in Supplementary Section 1.9. In particular, two rounds were per-
formed, in the first one a kernel of size 3 was used, while in the second one a kernel of
size 4 was used. A total of 12 experiments for each cavity size (therefore, 12 twice 2
equals 24 experiments) were done using this script using different values for ed_factor.
This generated 1152 different guests. These were converted into SELFIES sequences with
the method using decorated electron densities described in Supplementary Section 1.8.
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Supplementary Figure 131: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 0.2
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Supplementary Figure 132: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 0.4
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Supplementary Figure 133: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 0.6
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Supplementary Figure 134: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 0.8
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Supplementary Figure 135: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 1.0
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Supplementary Figure 136: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 2.0
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Supplementary Figure 137: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.0, pf_factor = 10.0
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Supplementary Figure 138: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 0.0
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Supplementary Figure 139: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 0.2
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Supplementary Figure 140: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 0.4
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Supplementary Figure 141: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 0.6
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Supplementary Figure 142: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 0.8
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Supplementary Figure 143: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 1.0
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Supplementary Figure 144: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 2.0
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Supplementary Figure 145: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.1, pf_factor = 10.0
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Supplementary Figure 146: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 0.0
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Supplementary Figure 147: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 0.2
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Supplementary Figure 148: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 0.4
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Supplementary Figure 149: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 0.6
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Supplementary Figure 150: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 0.8
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Supplementary Figure 151: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 1.0
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Supplementary Figure 152: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 2.0
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Supplementary Figure 153: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.3, pf_factor = 10.0
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Supplementary Figure 154: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 0.0
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Supplementary Figure 155: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 0.2
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Supplementary Figure 156: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 0.4
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Supplementary Figure 157: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 0.6
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Supplementary Figure 158: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 0.8
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Supplementary Figure 159: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 1.0
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Supplementary Figure 160: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 2.0
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Supplementary Figure 161: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.6, pf_factor = 10.0
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Supplementary Figure 162: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 0.0
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Supplementary Figure 163: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 0.2
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Supplementary Figure 164: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 0.4
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Supplementary Figure 165: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 0.6
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Supplementary Figure 166: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 0.8
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Supplementary Figure 167: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 1.0
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Supplementary Figure 168: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 2.0
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Supplementary Figure 169: Molecules obtained when trying to minimise the overlapping
between host (Pd Cage) and guest electron densities, while maximising their electrostatic
interactions. The translation from guests to SMILES sequences was done using decorated
electron densities. ed_factor = 0.9, pf_factor = 10.0
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Supplementary Figure 170: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor = 0

Please note the following Supplementary Figures display the obtained guests and their
related SMILES representation. To the best of our knwoledge “rdkit” (the library we used
to generate the figures) does not work with SELFIES. Therefore, once the SELFIES were
obtained, they were transformed into SMILES, and these SMILES were passed to “rdkit”
to generate the figures. The results can be seen in Supplementary Figures 170 to 195.

2.3.11 SELFIES results from bin/optimisers/cage_hg_esp_lee.py

These results were obtained using the cage_hg_esp_lee.py script described in Supple-
mentary Section 2.2.8. A total of 19 experiments/runs were done using this script using
different values for ed_factor. This generated 760 different guests. These were converted
into SELFIES sequences with the method using decorated electron densities described in
Supplementary Section 1.8. Please note the following Supplementary Figures display the
obtained guests and their related SMILES representation. To the best of our knwoledge
“rdkit” (the library we used to generate the figures) does not work with SELFIES. There-
fore, once the SELFIES were obtained, they were transformed into SMILES, and these
SMILES were passed to “rdkit” to generate the figures. The results can be seen in Sup-
plementary Figures 196 to 214.
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Supplementary Figure 171: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.05
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Supplementary Figure 172: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.1
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Supplementary Figure 173: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.2
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Supplementary Figure 174: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.3
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Supplementary Figure 175: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.4
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Supplementary Figure 176: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.5
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Supplementary Figure 177: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.6
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Supplementary Figure 178: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.7
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Supplementary Figure 179: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.8
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Supplementary Figure 180: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.9
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Supplementary Figure 181: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor =
0.95
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Supplementary Figure 182: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 3. ed_factor = 1
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Supplementary Figure 183: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor = 0
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Supplementary Figure 184: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.05
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Supplementary Figure 185: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.1
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Supplementary Figure 186: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.2
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Supplementary Figure 187: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.3
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Supplementary Figure 188: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.4
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Supplementary Figure 189: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.5
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Supplementary Figure 190: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.6
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Supplementary Figure 191: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.7
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Supplementary Figure 192: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.8
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Supplementary Figure 193: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.9
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Supplementary Figure 194: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor =
0.95
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Supplementary Figure 195: Molecules obtained when trying to minimise the overlapping
between host (CB6) and guest electron densities, while maximising their electrostatic
interactions. The volume of the cavity was reduced with a kernel of size 4. ed_factor = 1
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Supplementary Figure 196: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0
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Supplementary Figure 197: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.0001
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Supplementary Figure 198: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.001
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Supplementary Figure 199: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.01
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Supplementary Figure 200: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.05
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Supplementary Figure 201: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.1
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Supplementary Figure 202: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.2
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Supplementary Figure 203: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.3
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Supplementary Figure 204: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.4
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Supplementary Figure 205: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.5
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Supplementary Figure 206: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.6
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Supplementary Figure 207: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.7
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Supplementary Figure 208: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.8
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Supplementary Figure 209: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.9
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Supplementary Figure 210: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.95
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Supplementary Figure 211: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.99
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Supplementary Figure 212: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.999
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Supplementary Figure 213: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 0.9999
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Supplementary Figure 214: Molecules obtained when trying to minimise the overlapping
between host (cage) and guest electron densities, while maximising their electrostatic
interactions. ed_factor = 1
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Supplementary Section 3 Experimental validation

Supplementary Subsection 3.1 General experimental section

3.1.1 Solvents and commercial reagents

Solvents and commercial reagents were used as received. All reactions requiring an-
hydrous conditions were carried-out in oven-dried glassware. All reactions (not performed
in an NMR tubes) were agitated using magnetic stirrer bars. Room temperature is taken
as 293 K. Flash column chromatography were carried out using silica gel cartages on a Bio-
tage Selekt automated flash system. Cucurbit[6]uril, 2-aminobutane, N-ethylmethylamine
and isopropylamine were sourced from Sigma-Aldrich. N-methylpropylamine, 3-amino-
pentane, N-methyl-2-butylamine, 4-aminoheptane, (prop-2-yn-1-yl)(propan-2-yl)amine,
3,4-dimethylcyclopent-2-en-1-one, 2,5-dimethyl-1H-pyrrole-3-carbonitrile and m-toluni-
trile were sourced from Fluorochem. 1-Methyl-prop-2-ynylamine was sourced from Apollo
Scientific. 2-Ethynyl-3-methylpyrazine was sourced from “abcr”.

3.1.2 NMR

NMR spectra were recorded on a Bruker Avance III HD 600 spectrometer operating at
600.1 MHz for 1H, respectively. NMR spectra were digitally processed (phase and baseline
corrections, integration, peak analysis) using MestReNova 14.0.0. Chemical shifts are
reported in parts per million (ppm) using residual protonated solvent signals as reference
(for 1H NMR spectra D2O = 4.79 ppm, DMSO-d6 = 2.50 ppm).

Supplementary Subsection 3.2 Synthesis

3.2.1 Synthesis of ligand 1

Supplementary Figure 215: Ligand 1. Chemical structure of ligand 1.

Ligand 1 (Supplementary Figure 215) was synthesized as described in the literature.
NMR and mass data were consistent with those previously reported.[4]

3.2.2 Synthesis of cage [Pd214](BArF )4

Cage [Pd214](BArF )4 (Supplementary Figure 216) was synthesized as described in the
literature. NMR and mass data were consistent with those previously reported.[5]
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Supplementary Figure 216: Cage [Pd214](BArF )4. Chemical structure of cage
[Pd214](BArF )4.

Supplementary Subsection 3.3 Cucurbituril CB[6] guest binding
tritations

3.3.1 Overview and curve-fitting function

The association constant Ka between CB[6] and various amines was determined through
1H NMR titration in D2O/formic acid-d2 1:1, v/v. For each titration, a solution of
CB[6] with a guest amine was titrated into a solution of the amine, thus maintaining
the concentration of the amine constant throughout the titration.

In all CB[6]-amine systems, a single set of signals was observed in the 1H NMR
spectra of the host-guest system, indicating that the system is in fast exchange on the
NMR timescale. For each CB[6]-amine systems, the peak position of a characteristic
1H NMR signal of the amine was plotted against the concentration of CB[6]. A global
non-linear curve fitting function was then used to fit the data in Origin 2020 to a 1:1
binding model developed by Nitschke et al.:[6]

δ = δ0 +∆δ

(
(Ka([H]0 + [G]0) + 1)−

√
(Ka([H]0 + [G]0) + 1)2 − 4K2

a [H]0[G]0

)
2Ka[H]0

With:

δ the measured chemical shift of the host

δ0 the chemical shift of empty host

∆δ the maximal change in chemical shift of the host

Ka the binding constant

[H]0 the total concentration of host

[G]0 the total concentration of guest
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Origin 2020 function:
y=y0+DY*((1+Ka*(P+x))-sqrt(((1+Ka*(P+x))^2)-4*Ka*Ka*P*x))/(2*Ka*P)

3.3.2 Titration data for Cucurbituril CB[6]

Interaction with N-methylpropylamine G10 NMR titrations were performed by
additions of aliquots of CB[6] (0.02 M) in a solution of the amine G10 (0.001 M) in
D2O/formic acid-d2 1:1, v/v, to a 0.001 M solution of amine G10 in D2O/formic acid-d2
1:1, v/v. The binding constant Ka (M−1) of amine G10 to CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K was determined to be Ka = 5.47 ± 0.49 × 103 M−1, based on the data
of the NHCH3 peak of G10. See Supplementary Figure 217.

Interaction with N-ethylmethylamine G11 NMR titrations were performed by
additions of aliquots of CB[6] (0.01 M) in a solution of the amine G11 (0.001 M) in
D2O/formic acid-d2 1:1, v/v, to a 0.001 M solution of amine G11 in D2O/formic acid-d2
1:1, v/v. The binding constant Ka (M−1) of amine G11 to CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K was determined to be Ka = 4.17 ± 0.07 × 102 M−1, based on the data
of the CH3 peak of G11. See Supplementary Figure 218.

Interaction N-methyl-2-butylamine G12 NMR titrations were performed by ad-
ditions of aliquots of CB[6] (0.001 M) in a solution of the amine G12 (0.001 M) in
D2O/formic acid-d2 1:1, v/v, to a 0.001 M solution of amine G12 in D2O/formic acid-d2
1:1, v/v. The binding constant Ka (M−1) of amine G12 to CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K was determined to be Ka = 1.42 × 102 ± 0.03 M−1, based on the data
of the CH2CH3 peak of G12. See Supplementary Figure 219.

Interaction 2-aminobutane G13 NMR titrations were performed by additions of
aliquots of CB[6] (0.02 M) in a solution of the amine G13 (0.001 M) in D2O/formic
acid-d2 1:1, v/v, to a 0.001 M solution of amine G13 in D2O/formic acid-d2 1:1, v/v.
The binding constant Ka (M−1) of amine G13 to CB[6] in D2O/formic acid-d2 1:1, v/v
at 298 K was determined to be Ka = 1.34 × 102 ± 0.02 M−1, based on the data of the
CH2CH3 peak of G13. See Supplementary Figure 220.

Interaction with 3-aminopentane G14 NMR titrations were performed by additions
of aliquots of CB[6] (0.03 M) in a solution of the amine G14 (0.001 M) in D2O/formic
acid-d2 1:1, v/v, to a 0.001 M solution of amine G14 in D2O/formic acid-d2 1:1, v/v. The
binding constant Ka (M−1) of amine G14 to CB[6] in D2O/formic acid-d2 1:1, v/v at
298 K was determined to be Ka = 13.5 ± 0.5 M−1, based on the data of the CH3 peak
of G14. See Supplementary Figure 221.

Interaction isopropylamine G15 NMR titrations were performed by additions of
aliquots of CB[6] (0.02 M) in a solution of the amine G15 (0.002 M) in D2O/formic
acid-d2 1:1, v/v, to a 0.002 M solution of amine G15 in D2O/formic acid-d2 1:1, v/v. The
binding constant Ka (M−1) of amine G15 to CB[6] in D2O/formic acid-d2 1:1, v/v at
298 K was determined to be Ka = 92.0 ± 0.9 M−1, based on the data of the CH3 peaks
of G15. See Supplementary Figure 222.
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Interaction with (prop-2-yn-1-yl)(propan-2-yl)amine G16 NMR titrations were
performed by additions of aliquots of CB[6] (0.02 M) in a solution of the amine G16 (0.002
M) in D2O/formic acid-d2 1:1, v/v, to a 0.002 M solution of amine G16 in D2O/formic
acid-d2 1:1, v/v. The binding constant Ka (M−1) of amine G16 to CB[6] in D2O/formic
acid-d2 1:1, v/v at 298 K was determined to be Ka = 2.88 ± 0.21 × 102 M−1, based on
the data for the CH3 peaks of G16. See Supplementary Figure 223.
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Supplementary Figure 217: Titration of amine G10 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Stack plot, partial 1H NMR (600 MHz, D2O/formic acid-d2 1:1,
v/v., 298 K). (lower) Fitted curve for the NHCH3 proton at δ = 1.340 ppm (highlighted
in blue on the spectra).
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Supplementary Figure 218: Titration of amine G11 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-d2
1:1, v/v., 298 K). (lower) Fitted curve for the CH3 protons at δ = -0.144 ppm (highlighted
in blue on the spectra).
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Supplementary Figure 219: Titration of amine G12 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-
d2 1:1, v/v., 298 K). (lower) Fitted curve for the CH2CH3 protons at δ = -0.50 ppm
(highlighted in blue on the spectra).
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Supplementary Figure 220: Titration of amine G13 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-
d2 1:1, v/v., 298 K). (lower) Fitted curve for the CH2CH3 protons at δ = -0.50 ppm
(highlighted in blue on the spectra).
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Supplementary Figure 221: Titration of amine G14 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-d2
1:1, v/v., 298 K). (lower) Fitted curve for the CH3 protons at δ = -0.54 ppm (highlighted
in blue on the spectra).
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Supplementary Figure 222: Titration of amine G15 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-d2
1:1, v/v., 298 K). (lower) Fitted curve for the CH3 protons at δ = -0.13 ppm (highlighted
in blue on the spectra).
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Supplementary Figure 223: Titration of amine G16 with CB[6] in D2O/formic acid-d2
1:1, v/v at 298 K. (upper) Titration data, partial 1H NMR (600 MHz, D2O/formic acid-
d2 1:1, v/v., 298 K). (lower) Fitted curve for CH3 protons at δ = -0.09 ppm (highlighted
in blue on the spectra).
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Supplementary Subsection 3.4 Cage [Pd214](BArF )4 guest bind-
ing tritations

3.4.1 Overview and curve-fitting function

The association constant Ka between [Pd214](BArF )4 and various guest molecules was
determined through 1H NMR titration in CD2Cl2. For each titration, a solution of
[Pd214](BArF )4 with the studied guest was titrated into a solution of [Pd214](BArF )4,
thus maintaining the concentration of the cage constant throughout the titration.

In all cage-guest systems, a single set of signals was observed in the 1H NMR spectra
of the host-guest system, indicating that the system is in fast exchange on the NMR
timescale. For each cage-guest systems, the peak position of the proton Ha of the pyridines
rings of the cage in the 1H NMR spectrum was plotted against the concentration of the
guest. A global non-linear curve fitting function was then used to fit the data in Origin
2020 to the 1:1 binding model presented in Section 3.3 [6]. See Supplementary Figure
224.

Supplementary Figure 224: Cage [Pd214](BArF )4. Chemical structure of cage
[Pd214](BArF )4.

3.4.2 Titration data for Cage [Pd214](BArF )4

Interaction with 2-ethynyl-3-methylpyrazine G21 NMR titrations were performed
by additions of aliquots of G21 (44.5 mM) in a solution of the [Pd214](BArF )4 (89 µM)
in CD2Cl2, to a 89 µM solution of [Pd214](BArF )4 in CD2Cl2. The binding constant
Ka (M−1) of G21 to [Pd214](BArF )4 in CD2Cl2 at 298 K was determined to be Ka =
1.01 ± 0.03 × 102 M−1, based on the data of the proton Ha of [Pd214](BArF )4. See
Supplementary Figure 225.

Interaction with 2,5-dimethyl-1H-pyrrole-3-carbonitrile G22 NMR titrations
were performed by additions of aliquots of G22 (31.1 mM) in a solution of the [Pd214]-
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(BArF )4 (89 µM) in CD2Cl2, to a 89 µM solution of [Pd214](BArF )4 in CD2Cl2. The
binding constant Ka (M−1) of G22 to [Pd214](BArF )4 in CD2Cl2 at 298 K was de-
termined to be Ka = 5.29 ± 0.30 × 102 M−1, based on the data of the proton Ha of
[Pd214](BArF )4. See Supplementary Figure 226.

Interaction with 3,4-dimethylcyclopent-2-en-1-one G23 NMR titrations were per-
formed by additions of aliquots of G23 (11.1 mM) in a solution of the [Pd214](BArF )4
(89 µM) in CD2Cl2, to a 89 µM solution of [Pd214](BArF )4 in CD2Cl2. The binding
constant Ka (M−1) of G23 to [Pd214](BArF )4 in CD2Cl2 at 298 K was determined to be
Ka = 2.05 ± 0.07 × 102 M−1, based on the data of the proton Ha of [Pd214](BArF )4.
Above the concentration of 11.1 mM of G23, [Pd214](BArF )4 started to decompose. See
Supplementary Figure 227.

Interaction with m-tolunitrile G24 NMR titrations were performed by additions of
aliquots of G24 (66.7 mM) in a solution of the [Pd214](BArF )4 (89 µM) in CD2Cl2, to a
89 µM solution of [Pd214](BArF )4 in CD2Cl2. The binding constant Ka (M−1) of G24

to [Pd214](BArF )4 in CD2Cl2 at 298 K was determined to be Ka = 4.45 ± 0.12 × 101

M−1, based on the data of the proton Ha of [Pd214](BArF )4. See Supplementary Figure
228.
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Supplementary Figure 225: Titration of [Pd214](BArF )4 with G23 inCD2Cl2 at 298 K.
(upper) Titration data, partial 1H NMR (600 MHz, CD2Cl2, 298 K). (lower) Fitted curve
for proton Ha at δ = 8.78 ppm (highlighted in blue on the spectra).
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Supplementary Figure 226: Titration of [Pd214](BArF )4 with G22 inCD2Cl2 at 298 K.
(upper) Titration data, partial 1H NMR (600 MHz, CD2Cl2, 298 K). (lower) Fitted curve
for proton Ha at δ = 8.78 ppm (highlighted in blue on the spectra).
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Supplementary Figure 227: Titration of [Pd214](BArF )4 with G23 inCD2Cl2 at 298 K.
(upper) Titration data, partial 1H NMR (600 MHz, CD2Cl2, 298 K). (lower) Fitted curve
for proton Ha at δ = 8.78 ppm (highlighted in blue on the spectra).
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Supplementary Figure 228: Titration of [Pd214](BArF )4 with G24 inCD2Cl2 at 298 K.
(upper) Titration data, partial 1H NMR (600 MHz, CD2Cl2, 298 K). (lower) Fitted curve
for proton Ha at δ = 8.60 ppm (highlighted in blue on the spectra).
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Supplementary Section 4 Benchmark

In order to benchmark the quality of the model-generated molecules, four different molecule
sets have been compared. Each set comprises 40,000 random latent vectors generated by
the means of uniform distribution with bounds ranging from 0.5 to 50. These latent vec-
tors were input into the VAE decoder to reconstruct the 3D electron densities as well as
electrostatic potentials thereof. The latter were, subsequently, input into the transformer
mode in order to obtain the corresponding SMILES representations.

Two sets were generated by the means of greedy sampling, while the other two were
generated by the means of probabilistic sampling (check Section 1.10.2 for more informa-
tion):

• ED set only used electron densities. This set was generated using greedy sampling.

• ED ESP set used electron densities decorated with electrostatic potential infor-
mation. This set was generated using greedy sampling.

• ED_proba10 set only used electron densities. This set was generated using proba-
bilistic sampling.

• ED ESP_proba10 set used electron densities decorated with electrostatic potential
information. This set was generated using probabilistic sampling.

The degeneracy that is inherent in the design of the SMILES system was inevitably
reflected in our results in the form of duplicate molecules. While most molecules occurred
once or, sometimes, twice, some small fraction of molecules had as many as several
thousand occurrences each, potentially reducing the size of the sets by a quarter after
removal of the duplicates. The overall quality of the sets was very high, with almost
all SMILES being valid and chemically plausible (i.e., passing structural filters used by
popular generators like MolGen). Around 80% of the molecules were novel compared
to the training set. Similarity measurements, assessing the similarity between molecules
on a scale from zero (different) to one (identical) inside the new set of molecules gen
erated (internal) or against the molecules in the training set (external), indicated that
the molecules generated were internally diverse and divergent from the training molecules.

The following section in the Supplementary Information provides the data as well as
the analysis of the aforementioned results.
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Supplementary Figure 229: Sample outline of analysis of the nine 40,000 SMILES sets
generated by the means of ED ESP search. Each set was generated with a different
random number standard deviation. A) Frequency of occurrence of specific molecules
in the set. Molecules are ranked according to popularity. B) Depictions of 10 most
popular structures from three chosen sets, along with the number of occurrences and
their popularity rank. C) Total counts of valid and invalid unique molecules. Total
height of pink column represents the unique valid SMILES count, where valid molecules
may be chemically plausible and/or novel (as shown by different shades of pink). D)
Diversity study of the molecules from three chosen sets. Internal similarity is where
molecules are compared with each other, while external is where molecules are compared
with the training set. E) Shapes of the molecules according to RDKit NPR calculations.
F) Synthetic accessibility calculated by RDKit. The full analysis is shown later in the
ED ESP chapter.
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Supplementary Figure 230: The numbers of unique molecules remaining after removing
duplicates from the produced data, expressed either as a total count (left axis) or a
fraction of entire set (i.e., uniqueness, right axis). Each data point represents a set of
40,000 generated SMILES, where one SMILES may occur multiple times and multiple
SMILES strings may represent the same molecule. All SMILES were transformed into
their canonical form to detect such cases and properly count the number of unique encoded
molecules.
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Supplementary Figure 231: The numbers of valid SMILES in unique molecule sets (i.e.,
after duplicates were removed). Each data point represents a different number of unique
molecules, which contained within sets that originally counted 40,000 generated SMILES.
Invalid SMILES, which were detected by the means of RDKit, either could not translate
into any structure due to improper grammar or could not pass the sanitization test (e.g.,
because they contained pentavalent carbons). The numbers are expressed A) intensively
(validity), i.e., of the fractions of valid molecules in the unique sets and B) extensively,
i.e., the total counts. As seen in case of ED_ESP_proba10, high total count may not
necessarily mean high fraction, because each set includes a different total number of
unique molecules, as shown in Figure S1.
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Supplementary Figure 232: The numbers of unique molecules that were chemically plausi-
ble enough to pass the structural filters used by MolGen. This represents the geometrical
stability rather than synthetic accessibility. Each data point represents a different number
of unique valid molecules that were contained within sets that originally counted 40,000
generated SMILES. The numbers are expressed A) intensively (chemical plausibility),
i.e., of the fractions of positive passes in the unique sets of valid molecules only and B)
extensively, i.e., the total counts thereof.
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Supplementary Figure 233: The numbers of unique molecules that were novel, i.e., not
present in the training set used in the machine learning processes. Each data point rep-
resents a different number of unique valid molecules that were contained within sets that
originally counted 40,000 generated SMILES. The numbers are expressed A) intensively
(novelty), i.e., of the fractions of novel molecules in the unique sets of valid molecules
only and B) extensively, i.e., the total counts thereof.
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Supplementary Figure 234: The diversity of sets expressed by the means of A) internal
Tanimoto similarities, i.e., where the molecules are compared with each other and B)
external Tanimoto similarities, i.e., where the generated molecules are compared with
the training set molecules. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES. The smaller the similarity, the greater the diversity.
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Supplementary Figure 235: Molecular weights of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES.

Supplementary Figure 236: Spherocity index (1 = perfectly spherical, 0 = perfectly non-
spherical) of the generated molecules. Error bars express the standard deviation. Each
data point represents a different number of unique valid molecules that were contained
within sets that originally counted 40,000 generated SMILES.
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Supplementary Figure 237: Average atom counts of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES, i.e., each unique molecule only counts once regardless of how many times it
appeared in the set.

Supplementary Figure 238: Average carbon atom counts of the generated molecules.
Error bars express the standard deviation. Each data point represents a different number
of unique valid molecules that were contained within sets that originally counted 40,000
generated SMILES, i.e., each unique molecule only counts once regardless of how many
times it appeared in the set.
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Supplementary Figure 239: Average nitrogen atom counts of the generated molecules.
Error bars express the standard deviation. Each data point represents a different number
of unique valid molecules that were contained within sets that originally counted 40,000
generated SMILES, i.e., each unique molecule only counts once regardless of how many
times it appeared in the set.

Supplementary Figure 240: Average oxygen atom counts of the generated molecules.
Error bars express the standard deviation. Each data point represents a different number
of unique valid molecules that were contained within sets that originally counted 40,000
generated SMILES, i.e., each unique molecule only counts once regardless of how many
times it appeared in the set.

264



Supplementary Figure 241: Total bond counts of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES, i.e., each unique molecule only counts once regardless of how many times it
appeared in the set.

Supplementary Figure 242: Single bond counts of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES, i.e., each unique molecule only counts once regardless of how many times it
appeared in the set.
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Supplementary Figure 243: Double bond counts of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES, i.e., each unique molecule only counts once regardless of how many times it
appeared in the set.

Supplementary Figure 244: Double bond counts of the generated molecules. Error bars
express the standard deviation. Each data point represents a different number of unique
valid molecules that were contained within sets that originally counted 40,000 generated
SMILES, i.e., each unique molecule only counts once regardless of how many times it
appeared in the set.
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Supplementary Subsection 4.1 Electron Density (ED)

Here is the analysis of the first individual method, ED. Its results comprise nine datasets
of 40,000 SMILES each, together representing an STD range from 0.5 to 50.0.

ED unique valid
std count fraction count fraction
0.5 262 <0.01 229 <0.01
1.0 1029 0.03 935 0.02
1.5 1897 0.05 1730 0.04
2.0 2492 0.06 2261 0.06
2.5 2598 0.06 2321 0.06
5.0 2293 0.06 2044 0.05
10.0 3006 0.08 2626 0.07
25.0 8502 0.21 7155 0.18
50.0 13910 0.35 11060 0.28

Supplementary Table 1: Number and fraction of unique and unique valid molecules in
datasets generated by the means of ED method. Each dataset corresponds to a different
RNG StD and includes a total of 40,000 non-unique SMILES.

Supplementary Figure 245: Frequency of occurrence of specific valid SMILES in produced
results. The plot ranks SMILES according to the number of times they appear in sets of
40,000 generated SMILES. Invalid SMILES are omitted.
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ED total
passes

MolGen
filters

novel vs
training set

novel vs test
set

commercially
available

std count fraction count fraction count fraction count fraction
0.5 229 226 0.99 146 0.64 216 0.94 68 0.30
1.0 935 886 0.95 528 0.56 876 0.94 240 0.26
1.5 1730 1631 0.94 1014 0.59 1633 0.94 418 0.24
2.0 2261 2174 0.96 1288 0.57 2158 0.95 496 0.22
2.5 2321 2264 0.98 1299 0.56 2208 0.95 493 0.21
5.0 2044 2032 0.99 1062 0.52 1957 0.96 273 0.13
10.0 2626 2592 0.99 1471 0.56 2510 0.96 222 0.08
25.0 7155 7044 0.98 4364 0.61 6857 0.96 235 0.03
50.0 11060 10920 0.99 6649 0.60 10574 0.96 262 0.02

Supplementary Table 2: Number and fraction of chemically possible and novel molecules
in each set of unique valid SMILES corresponding to specific RNG StD used by the ED
method.

Supplementary Figure 246: Total counts of valid and invalid unique molecules. Total
height of pink column represents the unique valid SMILES count, where valid molecules
may be chemically plausible and/or novel (as shown by different shades of pink that
overlap each other from the bottom-up).
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Supplementary Figure 247: Shapes of molecules from the ED sets according to RDKit
NPR calculations. Each dot represents a different unique SMILES and the colors corre-
spond to different RNG StD sets. For clarity purposes, plots have been added to the sides
to show the spatial distributions of colored dots. Only those SMILES which geometry
could be successfully determined by RDKit and/or OpenBabel tools were included in the
plot.
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4.1.1 ED 0.5

Supplementary Figure 248: Diversity study of the molecules from ED 0.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 9858 yes yes 2.19

2. 7994 yes yes 3.04

3. 2375 yes yes 2.06

4. 1924 yes no 2.93

5. 1680 no yes 4.62

6. 1671 yes no 3.29

7. 1422 no no 4.39

8. 1013 yes no 1.42

9. 780 yes yes 2.70

10. 687 no yes 1.57

Supplementary Table 3: Ten most frequently-occurring valid molecules in the ED 0.5 set,
ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.2 ED 1.0

Supplementary Figure 249: Diversity study of the molecules from ED 1.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 4672 yes no 2.93

2. 3023 no yes 1.57

3. 2136 no yes 2.42

4. 1886 yes yes 3.04

5. 1282 yes no 1.42

6. 1277 yes yes 1.00

7. 1110 no yes 2.73

8. 1033 yes yes 2.19

9. 1018 no yes 3.16

10. 877 no no 3.53

Supplementary Table 4: Ten most frequently-occurring valid molecules in the ED 1.0 set,
ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.3 ED 1.5

Supplementary Figure 250: Diversity study of the molecules from ED 1.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2626 yes no 2.93

2. 1669 no no 2.72

3. 1586 no yes 1.68

4. 1507 no yes 2.14

5. 1304 no yes 1.57

6. 1194 no yes 1.70

7. 1171 no no 3.53

8. 1079 no yes 3.16

9. 1058 no yes 2.42

10. 1053 no no 3.22

Supplementary Table 5: Ten most frequently-occurring valid molecules in the ED 1.5 set,
ranked by frequency. availability was calculated by the means of RDKit.
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4.1.4 ED 2.0

Supplementary Figure 251: Diversity study of the molecules from ED 2.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

276



rank molecule occurrences novel commercially
available

synthetic
availability

1. 2221 no yes 3.08

2. 1704 no yes 3.39

3. 1653 no yes 2.14

4. 1523 yes yes 3.22

5. 1382 no yes 3.35

6. 1230 no yes 1.68

7. 1160 no yes 2.95

8. 941 yes no 2.93

9. 923 no yes 1.70

10. 915 no yes 1.89

Supplementary Table 6: Ten most frequently-occurring valid molecules in the ED 2.0 set,
ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.5 ED 2.5

Supplementary Figure 252: Diversity study of the molecules from ED 2.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2672 no yes 3.08

2. 2654 no yes 3.35

3. 2650 no yes 3.39

4. 1787 no yes 2.95

5. 1423 no no 3.92

6. 1305 no no 2.89

7. 1262 no no 3.72

8. 1135 no no 3.22

9. 841 no yes 2.14

10. 709 no yes 1.68

Supplementary Table 7: Ten most frequently-occurring valid molecules in the ED 2.5 set,
ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.6 ED 5.0

Supplementary Figure 253: Diversity study of the molecules from ED 5.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 4089 no no 3.71

2. 2981 no yes 3.84
3. 2752 no no 3.99

4. 2438 no no 3.92

5. 1765 no yes 3.35

6. 1317 no yes 3.39

7. 1081 yes no 3.71

8. 928 no no 3.72

9. 764 no no 4.30

10. 726 no no 4.13

Supplementary Table 8: Ten most frequently-occurring valid molecules in the ED 5.0 set,
ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.7 ED 10.0

Supplementary Figure 254: Diversity study of the molecules from ED 10.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 5769 no no 3.99
2. 3198 no yes 3.84

3. 2464 no no 3.71

4. 1842 no no 4.07
5. 1670 no no 3.88

6. 847 no no 4.13

7. 834 no no 4.16

8. 764 no no 3.92

9. 703 no no 4.25
10. 682 no no 4.20

Supplementary Table 9: Ten most frequently-occurring valid molecules in the ED 10.0
set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.8 ED 25.0

Supplementary Figure 255: Diversity study of the molecules from ED 25.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 2115 no no 3.99
2. 1143 no no 3.88
3. 995 no yes 3.84
4. 734 no no 4.07
5. 670 no no 4.16
6. 604 no no 3.84

7. 600 no no 3.71

8. 599 no no 4.13

9. 490 no no 4.25

10. 364 no no 3.55

Supplementary Table 10: Ten most frequently-occurring valid molecules in the ED 25.0
set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.1.9 ED 50.0

Supplementary Figure 256: Diversity study of the molecules from ED 50.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

284



rank molecule occurrences novel commercially
available

synthetic
availability

1. 395 no no 3.59

2. 301 no no 3.55

3. 253 no no 3.46

4. 234 no no 4.03

5. 202 no no 4.08

6. 199 no no 3.84

7. 196 no no 4.54

8. 188 no no 3.99

9. 184 yes no 4.48

10. 165 no no 4.30

Supplementary Table 11: Ten most frequently-occurring valid molecules in the ED 50.0
set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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Supplementary Subsection 4.2 Electron densities decorated with
Electrostatic Potentials (ED ESP)

Here is the analysis of thr augmented method, ED ESP. Its results comprise nine datasets
of 40,000 SMILES each, together representing an STD range from 0.5 to 50.0.

ED ESP unique valid
std count fraction count fraction
0.5 685 0.02 636 <0.01
1.0 2509 0.06 2357 0.02
1.5 5774 0.14 5459 0.04
2.0 8877 0.22 8412 0.06
2.5 10712 0.27 10220 0.06
5.0 7576 0.19 6996 0.05
10.0 5314 0.13 4679 0.07
25.0 7772 0.19 6977 0.18
50.0 9352 0.23 8607 0.28

Supplementary Table 12: Number and fraction of unique and unique valid molecules in
datasets generated by the means of ED ESP method. Each dataset corresponds to a
different RNG StD and includes a total of non-unique 40,000 SMILES.

Supplementary Figure 257: Frequency of occurrence of specific valid SMILES in produced
results. The plot ranks SMILES according to the number of times they appear in sets of
40,000 generated SMILES. Invalid SMILES are omitted.
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ED ESP total
passes

MolGen
filters

novel vs
training set

novel vs test
set

commercially
available

std count fraction count fraction count fraction count fraction
0.5 636 610 0.96 146 0.64 216 0.94 68 0.30
1.0 2357 2247 0.95 528 0.56 876 0.94 240 0.26
1.5 5459 5200 0.95 1014 0.59 1633 0.94 418 0.24
2.0 8412 8096 0.96 1288 0.57 2158 0.95 496 0.22
2.5 10220 9936 0.97 1299 0.56 2208 0.95 493 0.21
5.0 6996 6954 0.99 1062 0.52 1957 0.96 273 0.13
10.0 4679 4644 0.99 1471 0.56 2510 0.96 222 0.08
25.0 6977 6933 0.99 4364 0.61 6857 0.96 235 0.03
50.0 8607 8558 0.99 6649 0.60 10574 0.96 262 0.02

Supplementary Table 13: Number and fraction of chemically possible and novel molecules
in each set of unique valid SMILES corresponding to specific RNG StD used by the ED
ESP method.

Supplementary Figure 258: Total counts of valid and invalid unique molecules. Total
height of pink column represents the unique valid SMILES count, where valid molecules
may be chemically plausible and/or novel (as shown by different shades of pink that
overlap each other from the bottom-up).
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Supplementary Figure 259: Shapes of molecules from the ED ESP sets according to RD-
Kit NPR calculations. Each dot represents a different unique SMILES and the colors
correspond to different RNG StD sets. For clarity purposes, plots have been added to the
sides to show the spatial distributions of colored dots. Only those SMILES which geom-
etry could be successfully determined by RDKit and/or OpenBabel tools were included
in the plot.
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4.2.1 ED ESP 0.5

Supplementary Figure 260: Diversity study of the molecules from ED ESP 0.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 3394 no yes 2.42

2. 3181 no no 1.90

3. 2378 no no 1.00

4. 2137 no no 3.92

5. 1963 no no 5.69

6. 1933 no yes 2.73

7. 1855 no no 2.80

8. 1450 no no 2.78

9. 1301 yes no 1.42

10. 1156 no yes 1.00

Supplementary Table 14: Ten most frequently-occurring valid molecules in the ED ESP
0.5 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.2 ED ESP 1.0

Supplementary Figure 261: Diversity study of the molecules from ED ESP 1.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2166 yes no 1.42

2. 1369 no yes 2.42

3. 1134 no yes 2.73

4. 861 no no 1.90

5. 848 no no 1.70

6. 814 yes no 1.37

7. 695 no no 1.70

8. 670 no no 3.24

9. 656 no no 3.53

10. 651 no yes 1.57

Supplementary Table 15: Ten most frequently-occurring valid molecules in the ED ESP
1.0 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.3 ED ESP 1.5

Supplementary Figure 262: Diversity study of the molecules from ED ESP 1.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 762 yes yes 2.31

2. 684 no no 3.06

3. 592 no no 1.70

4. 496 yes no 1.37

5. 461 yes no 1.42

6. 388 yes no 2.93

7. 379 no yes 2.73

8. 366 yes yes 2.10

9. 335 no no 3.53

10. 319 no yes 1.70

Supplementary Table 16: Ten most frequently-occurring valid molecules in the ED ESP
1.5 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.4 ED ESP 2.0

Supplementary Figure 263: Diversity study of the molecules from ED ESP 2.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 308 yes yes 2.31

2. 302 yes no 4.32

3. 231 no yes 3.39

4. 216 no no 3.06

5. 205 yes no 4.34

6. 200 yes no 4.42

7. 199 yes yes 2.88
8. 193 yes no 1.37

9. 193 no no 3.05

10. 191 no no 2.99

Supplementary Table 17: Ten most frequently-occurring valid molecules in the ED ESP
2.0 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.5 ED ESP 2.5

Supplementary Figure 264: Diversity study of the molecules from ED ESP 2.5. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 517 yes no 4.10

2. 326 no no 3.92

3. 305 yes no 3.88

4. 286 no yes 3.39

5. 235 no no 3.62

6. 217 no no 3.43

7. 216 yes no 4.32

8. 205 yes no 4.99

9. 198 yes no 4.28

10. 193 no no 2.99

Supplementary Table 18: Ten most frequently-occurring valid molecules in the ED ESP
2.5 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.6 ED ESP 5.0

Supplementary Figure 265: Diversity study of the molecules from ED ESP 5.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 1319 no no 5.73

2. 1208 no no 4.07

3. 1188 no no 3.92

4. 781 no no 3.99

5. 771 yes no 4.10

6. 743 no no 4.20

7. 708 no no 3.73

8. 703 no no 4.27

9. 642 no no 5.49

10. 607 no no 4.46

Supplementary Table 19: Ten most frequently-occurring valid molecules in the ED ESP
5.0 set, ranked by frequency. Synthetic availability was calculated by the means of RDKit.
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4.2.7 ED ESP 10.0

Supplementary Figure 266: Diversity study of the molecules from ED ESP 10.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2645 no no 3.99

2. 2412 no no 5.49

3. 1612 no no 5.73

4. 1441 no no 4.07

5. 980 no no 4.13

6. 889 no no 4.20

7. 871 no no 4.27

8. 867 no no 4.23

9. 683 yes no 4.27

10. 633 no no 3.92

Supplementary Table 20: Ten most frequently-occurring valid molecules in the ED ESP
10.0 set, ranked by frequency. Synthetic availability was calculated by the means of
RDKit.
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4.2.8 ED ESP 25.0

Supplementary Figure 267: Diversity study of the molecules from ED ESP 25.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 3331 no no 5.49

2. 1649 no no 3.99

3. 1129 no no 4.13

4. 1111 no no 4.23

5. 714 no no 5.73

6. 672 no no 4.07

7. 594 yes no 5.64

8. 560 no no 4.27

9. 547 yes no 5.24

10. 539 yes no 5.42

Supplementary Table 21: Ten most frequently-occurring valid molecules in the ED ESP
25.0 set, ranked by frequency. Synthetic availability was calculated by the means of
RDKit.
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4.2.9 ED ESP 50.0

Supplementary Figure 268: Diversity study of the molecules from ED ESP 50.0. Internal
similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2625 no no 3.02

2. 1813 no no 5.49

3. 1773 no no 3.67

4. 607 no no 4.23

5. 461 no no 4.39

6. 444 no yes 2.28

7. 412 no no 4.53

8. 401 no no 5.97

9. 322 no no 4.13

10. 302 yes no 5.64

Supplementary Table 22: Ten most frequently-occurring valid molecules in the ED ESP
50.0 set, ranked by frequency. Synthetic availability was calculated by the means of
RDKit.
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Supplementary Subsection 4.3 Electron densities (ED) Probabilis-
tic Samplig (proba10)

Here is the analysis of ED proba10. Its results comprise eight datasets of 40,000 SMILES
each, together representing an STD range from 0.5 to 25.0.

ED proba10 unique valid
std count fraction count fraction
0.5 250 <0.01 223 <0.01
1.0 1043 0.03 948 0.02
1.5 1888 0.05 1731 0.04
2.0 2464 0.06 2233 0.06
2.5 2704 0.07 2412 0.06
5.0 2255 0.06 2028 0.05
10.0 2997 0.07 2620 0.07
25.0 8579 0.21 7160 0.18
50.0 - - - -

Supplementary Table 23: Number and fraction of unique and unique valid molecules in
datasets generated by the means of ED proba10 method. Each dataset corresponds to a
different RNG StD and includes a total of 40,000 non-unique SMILES.

Supplementary Figure 269: Frequency of occurrence of specific valid SMILES in produced
results. The plot ranks SMILES according to the number of times they appear in sets of
40,000 generated SMILES. Invalid SMILES are omitted.
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ED proba10 total
passes

MolGen
filters

novel vs
training set

novel vs test
set

commercially
available

std count fraction count fraction count fraction count fraction
0.5 223 220 0.99 139 0.62 210 0.94 69 0.31
1.0 948 909 0.96 545 0.57 892 0.94 241 0.25
1.5 1731 1640 0.95 1007 0.58 1627 0.94 408 0.24
2.0 2233 2139 0.96 1282 0.57 2131 0.95 477 0.21
2.5 2412 2343 0.97 1309 0.54 2300 0.95 503 0.21
5.0 2028 2010 0.99 1047 0.52 1953 0.96 286 0.14
10.0 2620 2584 0.99 1470 0.56 2509 0.96 209 0.08
25.0 7160 7059 0.99 4390 0.61 6861 0.96 238 0.03
50.0 - - - - - - - - -

Supplementary Table 24: Number and fraction of chemically possible and novel molecules
in each set of unique valid SMILES corresponding to specific RNG StD used by the ED
proba10 method.

Supplementary Figure 270: Total counts of valid and invalid unique molecules. Total
height of pink column represents the unique valid SMILES count, where valid molecules
may be chemically plausible and/or novel (as shown by different shades of pink that
overlap each other from the bottom-up).
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Supplementary Figure 271: Shapes of molecules from the ED proba10 sets according
to RDKit NPR calculations. Each dot represents a different unique SMILES and the
colors correspond to different RNG StD sets. For clarity purposes, plots have been
added to the sides to show the spatial distributions of colored dots. Only those SMILES
which geometry could be successfully determined by RDKit and/or OpenBabel tools were
included in the plot.
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4.3.1 ED proba10 0.5

Supplementary Figure 272: Diversity study of the molecules from ED proba10 0.5. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 9901 yes yes 2.19

2. 8154 yes yes 3.04

3. 2337 yes yes 2.06

4. 1950 yes no 2.93

5. 1661 no yes 4.62

6. 1634 yes no 3.29

7. 1470 no no 4.39

8. 983 yes no 1.42

9. 790 yes yes 2.70

10. 709 yes no 5.84

Supplementary Table 25: Ten most frequently-occurring valid molecules in the ED
proba10 0.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.2 ED proba10 1.0

Supplementary Figure 273: Diversity study of the molecules from ED proba10 1.0. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.

310



rank molecule occurrences novel commercially
available

synthetic
availability

1. 4667 yes no 2.93

2. 2975 no yes 1.57

3. 2020 no yes 2.42

4. 1945 yes yes 3.04

5. 1381 yes no 1.42

6. 1292 yes yes 1.00

7. 1058 no yes 2.73

8. 1026 no yes 3.16

9. 1015 yes yes 2.19

10. 872 no no 3.53

Supplementary Table 26: Ten most frequently-occurring valid molecules in the ED
proba10 1.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.3 ED proba10 1.5

Supplementary Figure 274: Diversity study of the molecules from ED proba10 1.5. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2583 yes no 2.93

2. 1677 no no 2.72

3. 1573 no yes 2.14

4. 1477 no yes 1.68

5. 1321 no yes 1.57

6. 1218 no no 3.53

7. 1150 no yes 3.16

8. 1136 no yes 1.70

9. 1122 no yes 2.42

10. 1011 no no 3.22

Supplementary Table 27: Ten most frequently-occurring valid molecules in the ED
proba10 1.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.4 ED proba10 2.0

Supplementary Figure 275: Diversity study of the molecules from ED proba10 2.0. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2188 no yes 3.08

2. 1772 no yes 3.39

3. 1652 no yes 2.14

4. 1626 no no 3.22

5. 1403 no yes 3.35

6. 1239 no yes 1.68

7. 1210 no yes 2.95

8. 985 no yes 1.89

9. 940 yes no 2.93

10. 821 no yes 1.70

Supplementary Table 28: Ten most frequently-occurring valid molecules in the ED
proba10 2.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.5 ED proba10 2.5

Supplementary Figure 276: Diversity study of the molecules from ED proba10 2.5. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2764 no yes 3.39

2. 2642 no yes 3.35

3. 2631 no yes 3.08

4. 1822 no yes 2.95

5. 1334 no no 3.92

6. 1326 no no 2.89

7. 1259 no no 3.72

8. 1114 no no 3.22

9. 785 no yes 2.14

10. 652 no yes 1.68

Supplementary Table 29: Ten most frequently-occurring valid molecules in the ED
proba10 2.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.6 ED proba10 5.0

Supplementary Figure 277: Diversity study of the molecules from ED proba10 5.0. Inter-
nal similarity is where molecules are compared with each other, while external is where
molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 4118 no no 3.71

2. 2899 no yes 3.84
3. 2797 no no 3.99

4. 2294 no no 3.92

5. 1763 no yes 3.35

6. 1298 no yes 3.39

7. 1183 yes no 3.71

8. 958 no no 3.72

9. 745 no no 4.30

10. 696 no no 4.07

Supplementary Table 30: Ten most frequently-occurring valid molecules in the ED
proba10 5.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.7 ED proba10 10.0

Supplementary Figure 278: Diversity study of the molecules from ED proba10 10.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 5686 no no 3.99
2. 3216 no yes 3.84

3. 2484 no no 3.71

4. 1818 no no 4.07
5. 1713 no no 3.88

6. 875 no no 4.13

7. 848 no no 4.16

8. 822 no no 3.92

9. 743 no no 4.25
10. 682 no no 4.20

Supplementary Table 31: Ten most frequently-occurring valid molecules in the ED
proba10 10.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.3.8 ED proba10 25.0

Supplementary Figure 279: Diversity study of the molecules from ED proba10 25.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 2081 no no 3.99
2. 1165 no no 3.88
3. 1020 no yes 3.84
4. 720 no no 4.16
5. 686 no no 4.07
6. 609 no no 3.71

7. 609 no no 3.84

8. 600 no no 4.13

9. 496 no no 4.25

10. 376 no no 3.55

Supplementary Table 32: Ten most frequently-occurring valid molecules in the ED
proba10 25.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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Supplementary Subsection 4.4 ED decorated with Electrostatic
Potentials (ED ESP) Probabilis-
tic Sampling (proba10)

Here is the analysis of ED ESP proba10. Its results comprise nine datasets of 40,000
SMILES each, together representing an STD range from 0.5 to 50.0.

ED ESP proba10 unique valid
std count fraction count fraction
0.5 7514 0.19 2978 0.07
1.0 10227 0.26 5091 0.13
1.5 14629 0.37 8126 0.20
2.0 18608 0.47 10958 0.27
2.5 20722 0.52 12380 0.31
5.0 19374 0.48 9176 0.23
10.0 18171 0.45 7082 0.18
25.0 20922 0.52 9548 0.24
50.0 27088 0.68 15305 0.38

Supplementary Table 33: Number and fraction of unique and unique valid molecules in
datasets generated by the means of ED ESP proba10 method. Each dataset corresponds
to a different RNG StD and includes a total of 40,000 non-unique SMILES.

Supplementary Figure 280: Frequency of occurrence of specific valid SMILES in produced
results. The plot ranks SMILES according to the number of times they appear in sets of
40,000 generated SMILES. Invalid SMILES are omitted.
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ED ESP
proba10 total

passes
MolGen
filters

novel vs
training set

novel vs test
set

commercially
available

std count fraction count fraction count fraction count fraction
0.5 2978 2792 0.94 2417 0.81 2912 0.98 242 0.08
1.0 5091 4801 0.94 4126 0.81 4978 0.98 534 0.10
1.5 8126 7700 0.95 6695 0.82 7962 0.98 801 0.10
2.0 10958 10455 0.95 9213 0.84 10775 0.98 876 0.08
2.5 12380 11968 0.97 10473 0.85 12205 0.99 771 0.06
5.0 9176 8984 0.98 7836 0.85 9068 0.99 244 0.03
10.0 7082 6887 0.97 6121 0.86 6981 0.99 137 0.02
25.0 9548 9411 0.99 8054 0.84 9393 0.98 130 0.01
50.0 15305 15053 0.98 10861 0.71 14892 0.97 341 0.02

Supplementary Table 34: Number and fraction of chemically possible and novel molecules
in each set of unique valid SMILES corresponding to specific RNG StD used by the ED
ESP proba10 method.

Supplementary Figure 281: Total counts of valid and invalid unique molecules. Total
height of pink column represents the unique valid SMILES count, where valid molecules
may be chemically plausible and/or novel (as shown by different shades of pink that
overlap each other from the bottom-up).
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Supplementary Figure 282: Shapes of molecules from the ED ESP proba10 sets according
to RDKit NPR calculations. Each dot represents a different unique SMILES and the
colors correspond to different RNG StD sets. For clarity purposes, plots have been
added to the sides to show the spatial distributions of colored dots. Only those SMILES
which geometry could be successfully determined by RDKit and/or OpenBabel tools were
included in the plot.
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4.4.1 ED ESP proba10 0.5

Supplementary Figure 283: Diversity study of the molecules from ED ESP proba10 0.5.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 2418 no yes 2.42

2. 2063 no no 1.90

3. 1739 no no 1.00

4. 1499 no yes 2.73

5. 1236 no no 3.92

6. 1203 no no 2.80

7. 1120 yes no 1.42

8. 1060 no no 5.69

9. 1056 no no 2.78

10. 863 no yes 1.00

Supplementary Table 35: Ten most frequently-occurring valid molecules in the ED ESP
proba10 0.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.2 ED ESP proba10 1.0

Supplementary Figure 284: Diversity study of the molecules from ED ESP proba10 1.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 1549 yes no 1.42

2. 1069 no yes 2.42

3. 833 no yes 2.73

4. 687 no no 1.70

5. 612 yes no 1.37

6. 540 yes yes 2.31

7. 522 no no 1.90

8. 503 no no 3.53

9. 474 no yes 1.57

10. 460 no yes 1.61

Supplementary Table 36: Ten most frequently-occurring valid molecules in the ED ESP
proba10 1.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.3 ED ESP proba10 1.5

Supplementary Figure 285: Diversity study of the molecules from ED ESP proba10 1.5.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 654 yes yes 2.31

2. 522 no no 3.06

3. 450 no no 1.70

4. 371 yes no 1.37

5. 357 yes no 1.42

6. 276 yes yes 2.23

7. 263 yes no 2.93

8. 262 yes yes 2.10

9. 256 no yes 2.73

10. 237 no no 3.53

Supplementary Table 37: Ten most frequently-occurring valid molecules in the ED ESP
proba10 1.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.4 ED ESP proba10 2.0

Supplementary Figure 286: Diversity study of the molecules from ED ESP proba10 2.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.

rank molecule occurrences novel commercially
available

synthetic
availability

1. 309 yes yes 2.31

2. 207 yes no 4.32

3. 174 no no 3.06

4. 172 no yes 3.39

5. 155 yes yes 2.88
6. 152 yes yes 2.14

7. 151 yes no 3.79

8. 146 yes yes 2.23

9. 142 yes no 4.34

10. 131 yes no 3.58

Supplementary Table 38: Ten most frequently-occurring valid molecules in the ED ESP
proba10 2.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.5 ED ESP proba10 2.5

Supplementary Figure 287: Diversity study of the molecules from ED ESP proba10 2.5.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.

331



rank molecule occurrences novel commercially
available

synthetic
availability

1. 301 yes no 4.10

2. 184 no yes 3.39

3. 177 no no 3.92

4. 154 yes no 3.88

5. 151 yes no 4.32

6. 136 yes no 4.99

7. 132 no no 3.62

8. 119 yes no 4.34

9. 119 no no 3.43

10. 115 no no 3.83

Supplementary Table 39: Ten most frequently-occurring valid molecules in the ED ESP
proba10 2.5 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.6 ED ESP proba10 5.0

Supplementary Figure 288: Diversity study of the molecules from ED ESP proba10 5.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 764 no no 4.07

2. 760 no no 3.92

3. 528 yes no 4.10

4. 523 no no 3.99
5. 499 no no 4.20

6. 460 no no 4.27

7. 430 no no 4.46

8. 423 no no 3.73

9. 380 no no 5.73

10. 369 no no 4.20

Supplementary Table 40: Ten most frequently-occurring valid molecules in the ED ESP
proba10 5.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.

334



4.4.7 ED ESP proba10 10.0

Supplementary Figure 289: Diversity study of the molecules from ED ESP proba10 10.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 1472 no no 3.99
2. 912 no no 4.07

3. 726 no no 5.49

4. 580 no no 4.27

5. 577 no no 4.13

6. 569 no no 4.20

7. 504 no no 5.73

8. 490 yes no 4.27

9. 482 no no 4.23

10. 430 no no 4.46

Supplementary Table 41: Ten most frequently-occurring valid molecules in the ED ESP
proba10 10.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.8 ED ESP proba10 25.0

Supplementary Figure 290: Diversity study of the molecules from ED ESP proba10 25.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 978 no no 5.49

2. 905 no no 3.99

3. 618 no no 4.13

4. 551 no no 4.23

5. 373 no no 4.07

6. 341 no no 4.27

7. 302 yes no 4.27

8. 250 no no 5.73

9. 205 yes no 5.64

10. 193 no no 3.72

Supplementary Table 42: Ten most frequently-occurring valid molecules in the ED ESP
proba10 25.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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4.4.9 ED ESP proba10 50.0

Supplementary Figure 291: Diversity study of the molecules from ED ESP proba10 50.0.
Internal similarity is where molecules are compared with each other, while external is
where molecules are compared with the training set.
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rank molecule occurrences novel commercially
available

synthetic
availability

1. 457 no no 5.49

2. 278 no no 4.23

3. 206 no no 4.39

4. 183 no no 4.13

5. 154 no no 4.53

6. 140 no no 4.41

7. 121 no no 4.27

8. 118 no no 4.46

9. 110 no no 5.97

10. 101 yes no 4.27

Supplementary Table 43: Ten most frequently-occurring valid molecules in the ED ESP
proba10 50.0 set, ranked by frequency. Synthetic availability was calculated by the means
of RDKit.
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Supplementary Subsection 4.5 Benchmarking the novelty of the
generated guests against the QM9
dataset

4.5.1 Benchmarking literature known CB[6] guests against the QM9 dataset

The most complete dataset of guests for the CB[6] can be found in the research done
by Mock, et al.[7]. In this paper, the authors describe 53 different guests. Out of these
53 guests, three of them are molecules present in the QM9 dataset. See Supplementary
Tables 44 and 45.

CB[6] guests from [7] Present in the QM9 dataset? (1 yes, 0 no)
NC1CCCCC1 0

NCC1=CC=CS1 0
NCCC1OCC1 0
NCCOCCN 0

OCCCCCCN 0
NCCOCC 0
COCCN 0

NCCSCCN 0
NCCCSCC 0
CSCCCN 0
NCCSCC 0
CSCCN 0

NCC1=CC=C(C)C=C1 0
NCC1=CC=CC=C1 0

NC1=CC=C(C)C=C1 1
NC1=CC=CC=C1 1

NCCCNCCCCNCCCN 0
NCCCCNCCCN 0

CCNCCCCCCNCC 0
CNCCCCCCNC 0

CCCCNCC 0
CCCCNC 0

NCC1CCCC1 0
NCC1CCC1 0
NCC1CC1 0

NC1CCCC1 0

Supplementary Table 44: Benchmarking the CB[6] guests described in [7] against the
QM9 dataset.

4.5.2 Bencharmking literature known [Pd214](BArF )4 Cage guests against the
QM9 dataset

The most complete dataset of guests for the Pd Cage can be found in the research done
by Liao, et al.[4], and August et al.[5]. In these papers, the authors describe a total of 14
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CB[6] guests from [7] Present in the QM9 dataset? (1 yes, 0 no)
NC1CCC1 0
NC1CC1 0

CC(C)(C)CCN 0
NC(C)CCCCCC 0
NC(C)CCCCC 0
NC(C)CCCC 0
CCC(C)CCN 0
CCC(C)CN 0

CC(C)CCCCN 0
CC(C)CCCN 0
CC(C)CCN 0

NCCCCCCCCCCN 0
NCCCCCCCCCN 0
NCCCCCCCCN 0
NCCCCCCCN 0
NCCCCCCN 0
NCCCCCN 0
NCCCCN 0
NCCCN 0

CCCCCCCN 0
CCCCCCN 0
CCCCCN 0
CCCCN 0
CCCN 0
CCN 0
CN 0
N 1

Supplementary Table 45: Benchmarking the CB[6] guests described in [7] against the
QM9 dataset.

guests. Out of these 14 guests, four of them are molecules present in the QM9 dataset.
See Supplementary Table 46.

4.5.3 Bencharmking the molecules generated in this research through AI
against the QM9 dataset

The main manuscript describes a total of 20 guests found using the AI: 16 for CB[6] and
4 for the Pd Cage. Out of the 16 CB[6] guests, one of them is present in the QM9 dataset,
while 15 of them are not. See Supplementary Table 47. Out of the 4 PD Cage guests, all
of them are present in the QM9. See Supplementary Table 48.
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Pd Cage guests from [4],[5] Present in the QM9 dataset?
N#CC1=CC=C(C#N)C=C1 0
N#CC1=CC=C(Cl)C=C1 0

N#CC1=CC=CC=C1 1
CC1=CC=C(C#N)C=C1 1

FC1=CC=C(F)C=C1 1
O=C(C=C1)C=CC1=O 0

[H]C(C(C=CC=C1)=C1[N+]([O-])=O)=O 0
[H]C(C(C=CC=C1)=C1C([H])=O)=O 0

O=C(CN1)NCC1=O 1
O=C(C(C=C(C=CC=C1)C1=C2)=C2C3=O)
C4=C3C=C(C=CC=C5)C5=C4

0

O=C(C(C=C(N)C=C1)=C1C2=O)C3=C2C=CC=C3 0
O=C(C(C=CC=C1)=C1C2=O)C3=C2C=CC=C3 0

O=C(C=CC1=O)C2=C1C=CC=C2 0
O=C(C=C1)C=CC1=O 0

Supplementary Table 46: Benchmarking the Pd Cage guests described in [4] and [5]
against the QM9 dataset. Please note the cell with two rows contains a single molecule.
This molecule was cut into two lines so that it fitted horizontally.

AI-discovered CB[6] guests Present in the QM9 dataset?
Already known in literature

CCCCC(C)N 0
CCC(C)CN 0
NCC1CC1 0
CCCC(C)N 0

CCCCN 0
CCN 0

CCCN 0
NC1=CC=CC=C1 1

NC1CC1 0
New (not in literature)

CCCNC 0
CCNC 0

CCC(N)CC 0
CCC(C)NC 0
CCC(C)N 0
CC(C)N 0

CC(C)NCC#C 0

Supplementary Table 47: Benchmarking the CB[6] guests discovered by our AI models
against the QM9 dataset.
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AI-discovered Pd Cage guests Present in the QM9 dataset?
CC1=CC(C#N)=C(C)N1 1
CC1=NC=CN=C1C#C 1
CC1C(C)=CC(C1)=O 1

CC1=CC=CC(C#N)=C1 1

Supplementary Table 48: Benchmarking the Pd Cage guests discovered by our AI models
against the QM9 dataset.
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