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Supplementary Section A Mechanism of Density Functional Theory

In this section, we introduce details in relevant theory on DFT, including the formulation of OFDFT
under atomic basis, and the mechanism and details to use KSDFT to generate value and gradient data for
learning KEDF. Atomic units are used through out the paper.

Supplementary Section A.1 Basic Formulation of Density Functional Theory

For brevity, the following formulation is for spinless fermions therefore only consider spacial states. For
the restricted Kohn-Sham calculation we adopt for data generation, a pair of electrons of opposite spins
share a common spacial orbital, which amounts to duplicate the orbitals in the following formulation.

The mechanism of DFT may be more intuitively introduced under Levy’s constrained search formula-
tion [1]. The N-electron Schrédinger equation for ground state is equivalent to the following optimization
problem on N-electron wavefunctions (r(?) | .-  r(™)) under the variational principle:

E* = min <¢\T + Vee + Vexd), (D
¥ antisym, (¢ |¢) =

- L 1 N (1)2 . . . > o 1 .
where T":= —5 > 7, V)" is the kinetic operator, Vee 1= 31 ;- j<n ez 18 the electron-electron

Coulomb interaction (internal potential), and Vexl = vazl Vext(r(i)) comes from a one-body external
potential Vi (r) that commonly arises from the electrostatic field of the nuclei specified by the given

molecular structure M = {X, Z} where X := (x(1) ... x)and Z := (21, ... Z(AD):

7(a)
exl Z ||I'—Xa‘)H (2)

Although the optimization problem is exactly defined, directly optimizing the N-electron wavefunction
is very challenging computationally. Specifying the wavefunction v and evaluating the energy already
require an exponential cost in principle, as 1 is a function on R*" whose dimension increases with N.
To make an easier optimization problem, it is then desired to optimize a functional of the one-electron
reduced density,

r) = N/W(IVI‘@),"- e 2dr® . qrY) 3)

which has an intuitive physical interpretation of charge density even under a classical view, and more
importantly, the cost to specify a density is constant (with respect to IV) in principle, as the density is
a function on R3 whose dimension is constant. This is the starting point of density functional theory
(DFT) [2—4], and is first formally verified by Hohenberg and Kohn [5].

In terms of the density, the external potential energy, that is, the last term in Eq. (1), is already an explicit
density functional, since the external potential is one-body:

(Vo) = / ) O)Von(®) dr = Belppyg],  where Foglp] := / pOVeu(r)dr. (4)

For the other energy terms, using the density as an intermediate, the optimization problem in Eq. (1) can
be equivalently (see Lieb [6] for the correspondence between the optimization space of p and of ) to
allow this equivalence) carried out in two levels:

E* = i i T+ V. Eu 5
pr>0,fr;1(lg dr=N (¢:anti$g[w1:p<w - ee|1/)>)  Bealp) ©)

- i Elp] :== Ulp] 4+ Eexlp] b 6
- { [p] o] + Ee t[p]} (6)

Here, the result of the first-level optimization problem carrying out a constrained search in Eq. (5) defines
a density functional,

Ulpl == min (@[T + Vee|), )
P antisym, py)=p

called the universal functional, as it is independent of system specification (that is, M or V). It is
composed of the kinetic and internal potential energy of the electrons. The optimization objective is then
formally converted to a density functional E[p] as shown in Eq. (6).



Supplementary Table 1: Main notations. These notations are used consistently throughout the main
text and the supplementary text.

Basic concepts

reR3 Electron coordinate
N Number of electrons in a molecular system
Y™ . V) N-electron wavefunction
(flg) == [ f(r)g(r)dr The standard inner product in function space
(fIOlg) == [ f r),(OAg)(r) dr Function-space inner product with operator
(flg) =< If:)fr(,r”) drdr’ Coulomb integral
Molecular system
x € R? Atom coordinates
a,be{l,2 --- A} Indices for atoms in a molecule
X = {x@}4 | Molecular conformation/geometry
Z .= {znA Molecular composition
M ={X,Z} Molecular structure
{MD 2 Molecular structures in a dataset

Density functional theory

O = {¢i(r)}N, Orbitals
i,j7€{1,2,---,N} Indices for orbitals or electrons
Yray(r®, -+ r™)) = det[p;(r))];;  Slater determinant from orbitals ® = {¢;(r)}}¥,
{Ma(r)}B_, Orbital basis
Subscripts «, 8, v, 6 € {1, 2, --- , B} Indices for orbital basis
Cai Orbital coefficients
Tup = Zfil CaiCgsi Density matrix
Sap = (Nalns) Overlap matrix of orbital basis
Dag~s = (Nanp|nyns) Overlap matrix of paired orbital basis
Dag.~s = (Nanplnyms) 4-center-2-electron Coulomb integral of orbital basis
p(r) (One-electron reduced) density (function)
{wu (o)L, Density basis
Subscripts p,v € {1, 2, --- , M} Indices for density basis
Subscript p = (a, 7) Atom assignment decomposition of basis index
Pu Density coefficient
w, = [w,(r)dr Density basis normalization vector
v = (W lwy) Overlap matrix of density basis
W, = (wy|wy) 2-center-2-electron Coulomb integral of density basis
L, .as = (Wu|nans) Overlap matrix between density basis and orbital basis
Fock matrix in KSDFT
k Step index for SCF iteration or density optimization process
( for the converged step)
(Vett)as = (Na|Vertna) Effective potential matrix under orbital basis
(Vefr) = (wp| Verr) Effective potential vector under density basis
peR Chemical potential
¢ := Diagle, -+ ,en] The diagonal N x N matrix of orbital energies
Ulp] Universal functional
Exclp] Exchange-correlation (XC) functional
Ts[p] Kinetic energy density functional (KEDF)
Ts(p, M) KEDF under atomic basis of density
Ts,9(p, M) KEDF model/approximation
TAPBE The APBE kinetic functional as the base functional T pyse
T res Residual KEDF on top of the base functional T pase
FErxc Kinetic and XC functional
f Hellmann-Feynman force




To carry out practical computation, variants of the kinetic and internal potential energy that allow explicit
calculation or have known properties are introduced, to cover the major part of the corresponding energies
in U[p]. The internal potential energy is covered by its classical version, that is assuming no correlation,
called the Hartree energy:

Eulp) = 1/Lp(l;/)drdr'. (8)
2) e =]

The kinetic energy is covered by the kinetic energy density functional (KEDF), which is defined in a
similar way as the universal functional:

Tslp] = min  (@[T[y). 9)

o P antisym, p)=p
The remainder in the universal functional is called the exchange-correlation (XC) functional:

Exclp] :=Ulp| — Ts[p] — Enlp],

which is by definition also a density functional. Under this decomposition, the density optimization
problem in Eq. (6) becomes:

E:ﬂwﬁgmwﬁwzﬂw+mw+&¢ww@m} (10)

=:Eeit[p]

Here Ecp] is defined for future convenience and denoted after the effective-potential interpretation of
its variation detailed later. Using carefully designed explicit expressions or machine-learning models
to approximate the Ts[p] and Exc[p] functionals, practical computation can be conducted. This is the
formulation of orbital-free density functional theory (OFDFT). Indeed, the object to be optimized is the
electron density, which is one function on the constant-dimensional space of R3, hence greatly reduces
computation complexity over the original variational problem Eq. (1). Under properly designed Ts[p] and
Exc|p] approximations, the complexity is favorably O(/N?) under atomic basis.

Considering the KEDF Tg|p] is more challenging to approximate than the XC functional Exc[p], Kohn
and Sham [7] leverage an equivalent formulation of KEDF to allow its accurate calculation, at the cost of
increasing the complexity. The alternative formulation optimizes determinantal wavefunctions. A deter-
minantal wavefunction for IV electrons is specified by N one-electron wavefunctions ® := {¢;(r)}¥ ;,

a.k.a orbitals, following the form:
1
1/)[q>](1“(1),"' ’r(N)) —

i det[p;(r)];;,  given orbitals ® := {¢;(r)} Y.

The equivalent optimization problem in parallel with Eq. (9) is:
N

Tslpl =  min T = min b)Y, 11
S[p] {¢i}£\[:1:p[q)]:p<w[q>]| |’¢)[¢]> {¢i}f\]:1:0rthonormal7 ;<¢ | |¢ > ( )
Ple]=pP
N
2 . . N
where  pjg)(r) := Z|¢)z(r)| , given orthonormal orbitals ® := {¢;(r)};2;. (12)
i=1

Note that the equivalence on defining Ts[p] by Eq. (9) and Eq. (11) is currently only known to be guaran-
teed if the density p comes from the ground state of a non-interacting system which is non-degenerate [6,
Thm. 4.6]. Even there exists a density p that makes the determinantally-defined T5[p] by Eq. (11) dif-
ferent [0, Thm. 4.8], the determinantally-defined T5[p] still gives the right ground-state energy in density
optimization (up to a closure) [0, Thm. 4.9].

In Eq. (11), the second equality holds since the density normalizes to N, and a set of (non-collinear)
functions can always be orthogonalized, for example, using the Gram-Schmidt process ([8, Sec. 3.1.4]; [9,
Sec. 14.3]). This equivalence can be understood from the interpretation of Ts[p] as the non-interacting
portion of kinetic energy. Indeed, for a non-interacting system, there are only kinetic energy and external

potential energy (that is, taking Vee = 0), so the two-level optimization in parallel with Eq. (5) becomes:

Er = min T+V.
w:antisym7<w|¢>:1<w| ext‘lp)

min min T ) + Feyx
waWNﬁNQmmeﬁgwww o]

- i T Eedlpl, 13
ez, f o8 aeeny SV Eele 4



from which we see that Ts[p] is the ground-state kinetic energy of the non-interacting system whose
ground-state density is p. On the other hand, it is known that the ground-state wavefunction of a non-
interacting system is commonly determinantal (at least when the ground state is non-degenerate [0,
Thm. 4.6]). Hence the optimization can be rewritten as:

ET = {;T_l}i}vl (@10 T + Ve 1))

= min HllIl T ) ) + E.,
p:20,[ p(r) dr=N ({¢ 3 p< a)| T [va) el

N

= min min y T i) | + Fext|pl, 14
p:=0, [ p(r)dr=N ({¢i}£vlz([))nhonormal, z:zl<¢ ‘ |¢ >) ¢ t[p] (14
[@1=p

which indicates Eq. (11).

Back to the main problem, leveraging this knowledge about Ts[p] in the variational problem Eq. (10)
gives:

N
E* = min min JAT6:) ) + E + FE + Eexi|pl,
p:20, [ p(r)dr= ({q&l}ﬁvlzzrthonoprmal, 1:21<¢ | ‘(b >> H[p] XC[p] ¢ l[p]
[®]=

which can be converted into directly optimizing the orbitals in a single-level optimization:

N
B — min {E[@] =Y (i|T|¢:) + Eulpa)] + Exclpe)] + Fealpja)] } (15)

{¢:}X_, :orthonormal Py

Eett[p1a)]

This is the formulation of Kohn-Sham density functional theory (KSDFT). With decades of develop-
ment of XC functional approximations, KSDFT has achieved remarkable success and becomes among
the most popular quantum chemistry method. In its formulation, the object to be optimized is a set of
orbitals {¢;(r)}¥ ,, which are N functions on R3. This is still substantially cheaper than optimizing an
N-electron wavefunction on R3V, but has a complexity at least O(N) times more than OFDFT, due to
N times more R? functions to optimize. Under atomic basis, KSDFT has a complexity at least O(N?)
(using density fitting) without further approximations. In this triumphant era of deep machine learning,
approximating a complicated functional is not as challenging as before. Powerful deep-learning mod-
els create the opportunity to approximate KEDF accurately enough to match successful XC functional
approximations. This would enable accurate and practical OFDFT calculation, unleashing its power of
lower complexity to push the accuracy-efficiency trade-off in quantum chemistry.

Supplementary Section A.2 KSDFT Calculation Produces Labels of KEDF

We now explain why a KSDFT calculation procedure could provide value and gradient labels of KEDF.
Computation details under atomic basis are postponed in Supplementary Section A.4. We start by de-
scribing the typical algorithm to solve the optimization problem in KSDFT. To determine the optimal
solution of orbitals ® := {¢;(r)} ¥, the variation of the energy functional E[®] in Eq. (15) with respect
to each orbital ¢; is required:

SE[@], 830, (—1/2)(6;|V?|6;) SEeitlpa)l ,_, 80 (') .,
o — s [ ar
=2T@<>+2vamﬂ(>¢x) (16)
where mmmuﬂu—éﬂﬂp /}h 7r”d 42 gﬂ](>+mm@) (17)
=:Vhpp) (r) =:Vxcpp (1)

The term Veff[p[q,]] arises as a variation with respect to the density p since the orbitals affect the energy

component Eeﬂ» apart from Tg (defined in Eq. (10)) only through the density p(g) they define. By Eq. (12)
5§¢” ©) = 2¢;(r)d(r — r’), which then gives Eq. (16). Combining Eq. (16) with the variation
of the orthonormal constraint yields the optimality equation for the problem Eq. (15):

Floo)®i = Ti + Vegtipo @i = i, Vi=1,---N. (18)

we have



In the derivation, only the Lagrange multipliers ¢; for the normalization constraints (¢;|¢;) = 1 are
imposed, since from the resulting equations (18), {#; } Y, are eigenstates of an Hermitian operator F[p[(b]]
called the Fock operator, hence are naturally orthogonal in the general case of non-degeneracy. These
equations resemble the Schrodinger equation for N non-interacting fermions, where V;ff[p[q,]](r), as a

function on R3, acts as an effective one-body external potential, hence the name.

Note that Veff[p[ a1] is unknown beforehand, as itself depends on the solution of orbitals. Hence a fixed-

point iteration is employed: starting from a set of initial orbitals ®(*) := {¢§0) }N |, construct the Fock
operator using results in previous iterations,

F® =74y 8 (19)
where Ve(ff ) is taken as Veff[p[(?(kfl)]} following this derivation, that is, P = F[p[q> (o and solve the
corresponding eigenvalue problem for the orbitals in the current iteration:

FWg®M = W™y =1 .. N, (20)
The iteration stops until “self-consistency” is achieved, that is, the eigenstate solution ®(¥) := {¢,L(-k)}i
in the current step coincides (up to an acceptable error) with the orbitals ®*—1) .= {gbz(-k'_l) MY | in the

previous step that define F®)_ This is the self-consistent field (SCF) method [10].

An important fact of SCF is that, in each iteration k, the solution {(bl(-k)}f\;l exactly defines the ground-
state of a non-interacting system of N fermions moving in the effective one-body potential V;(ff ) as the
external potential V. Indeed, the variational problem Eq. (14) that describes the non-interacting system
can be reformulated into a single-level optimization as:

N

E* = min Z<¢1|T|¢Z> + /pm (r)Ve(ff) (r)dr, 21

{¢:}X_, :orthonormal Py

whose variation coincides with Eq. (20) thus solved by {qbl(-k) N . This reveals the relation of SCF

solution to the KEDF: this solution of orbitals {qbgk)}ﬁvzl achieves the minimum non-interacting kinetic

energy Zfil (V19 |T|’IZ)[¢.]> among all orthonormal orbitals that lead to the same density pq )| (otherwise
Eq. (21) can be further minimized; can also be seen from the equivalence to Eq. (14)); by the alternative
form of KEDF Eq. (11) as non-interacting ground-state kinetic energy, we thus have:

N
- ) | o (k
Ts[powi] = Wamwn|T Y pm)) = ZWE |11, (22)
i=1
This indicates that every SCF iteration produces a label for Ts. Moreover, as the non-interacting variation
problem Eq. (21) is equivalent to its two-level optimization form Eq. (14), which is in turn equivalent to
the density optimization form using KEDF Eq. (13) (which explains the alternative KEDF form Eq. (11)),

the density pig ) from the solution k) .= {qSEk) N | of each SCF iteration minimizes Eq. (13). There-

fore, it satisfies the variation equation (Euler equation) of Eq. (13) (taking V. as Vegc)) subject to the
normalization constraint with Lagrange multiplier (chemical potential) (%)

8Ts[p(a0)]
—p Ve =u, (23)

The variation of KEDF %5 is related to the gradient with respect to density coefficients when the density

p is expanded on a basis (see Supplementary Section A.4.3). Hence, every SCF iteration also produces a
label for the gradient of Ts, up to a projection.
It is worth noting that these arguments still hold when the effective potential Ve(ff ) in SCF iteration k is not

V;ff[p[q) (o))’ since the deductions from Eq. (21) to Eq. (23) only require Ve(ff ) to be a one-body potential.

This allows more flexible data generation process since in common DFT calculation settings, Ve(; ) indeed
deviates from Veff[p[b k-] for more stable and faster convergence, for example when using the “direct

inversion in the iterative subspace” (DIIS) method [11, 12]. This also indicates that even when the XC
functional used in data generation is not accurate, the generated value and gradient labels for Ts[p] are
still exact, since the XC functional still gives an effective one-body potential to define the non-interacting
system Eq. (20) or Eq. (21), as long as it is pure (that is, only depends on density features). In this sense,
data generation for KEDF is easier than that for the XC functional.



Supplementary Section A.3 Formulation under Atomic Basis

For practical calculation, KSDFT typically uses an atomic basis {1, (r)}2_, to expand the orbitals for
conducting the SCF iteration in Eq. (20) for molecular systems. The expansion gives:

¢l(r) = Z Caina (I‘), (24)

which converts solving for eigenfunctions into the common problem of solving for eigenvectors of a
matrix. On the other hand, as emphasized in Introduction 1 and Results 2.1, we also hope to represent the
density on an atomic basis {w,,(r)} L, for efficient OFDFT implementation,

pr) = puw,l(r). (25)

The left-hand-sides of Eq. (24) and Eq. (25) may also be denoted as ¢; ¢ or ®¢ and py, to highlight the
dependency on the coefficients. Note that both the orbital basis {7, (r)}5_, and density basis {w,,(r)} )L,
depend on the molecular structure M, as the location and type of each basis function is determined by
the coordinates x(*) and atomic number Z(* of the corresponding atom. Nevertheless, the development
in this subsection is for one given molecular system M, so we omit its appearance for density or orbital
representation. Typically, the numbers of basis B and M increase linearly with the number of electrons
N, thatis, O(B) = O(M) = O(N).

Supplementary Section A.3.1 KSDFT under Atomic Basis

For the SCF iteration in Eq. (20), using the expansion of orbitals in Eq. (24), it becomes:
PP C(Blj)ﬁ'(k)ng(r) = agk) PP ngi)nﬁ(r), Vi = 1,---,N. Integrating each function equation with
) el E®|ng) = ) s C(ﬁkz—) {Na|np), which can then be formu-

basis function 7, (r) gives: >, Céi
lated as a generalized eigenvalue problem in matrix form:

FE k) — SC(k)s(k), (26)
k - Eq. (19) A k
where  FU) = (ny| 9 [ng) L (10l T115) + alViPlne), @D
—— ——
:7% f Na(r)V2ng(r) dr=:Tag ::(Ve(f);))aﬁ
e
S(x,@ = <7la‘776>7 E(k) = .
e

Here, F(*) is called the Fock matrix, and S is the overlap matrix of the orbital basis.

To show the expression of the Fock matrix, we first give the expression of the density defined by the
orbital coefficients from Eq. (12) and Eq. (24):

N 2 N
pc(r) = pag)(t) = D 1> Caina(r)| =Y CaiCpina(r)ns(r)
i=1" « i=1 aff
= > Tapna(r)ns(r), (28)
ap
where we have defined the density matrix corresponding to the orbital coefficients:
N
[:=CC'", T.5:= Z CaiCpi. (29)
i=1

Note that Eq. (12) requires orthonormal orbitals, hence Eq. (28) requires C to satisfy the corresponding
orthonormality constraint shown in Eq. (39) below. Orbital coefficient solutions C*) in SCF iterations
satisfy this constraint as explained later.

In the derivation of SCF iteration, Ve(ff) is taken as ‘/eff[p[cp(kil)]], that is, P = ﬁ'[p[¢<k71)]]. This allows

explicit calculation of Véff) as Vegrcx—1) based on Eq. (17) and F*) as F (x-1), for which we introduce



the following series of definitions:
Fc = [(na|Flpe)18)]as = T + Vere (T defined in Eq. (27)),

Vettc := [(NalVesijpe] 118)]as = Vic + Vxce + Vext, (30)
Egs. (17, 28) > 5 Tosmy (v/)ms (')
where - (Visc)os 1= (alVapalne) ™ £ [ ey =2 E aras
= Z]jaﬁ,'yérwé = (Df)aﬁu (31)
~é
where D s 16 := (a73]1,75), T is the vector of flattened T, (32)

(chc)aﬁ = <77a\VXC[pc]|77/3> = /ch[pc](r)na(r)ﬁﬁ(r) dr,

(VCXt)@B = <77a|‘/exl|775 Z Z(a ||(:‘ (a( ﬁ dr.

In defining D, we have used the notation of Coulomb integral for brevity:

f
(o) i= [ FE2E ) drar. @)
In practice, integrals in S, T, V, and the Coulomb integral D can be calculated analytically under
Gaussian-Type Orbitals (GTO) as the basis {1, } 2_,. The integral in Vxc is conducted numerically on
a quadrature grid, as typically used in a DFT calculation. After convergence, the electronic energy can be
calculated from the orbital coefficients C by:

Eq. (15
E(C) := E[@c] " T(C) + Eu(C) + Exc(C) + Eey(C), (34)
=:E(C)
N — —
where  T5(C) := Y (¢ic|T|¢ic) =D TapTas =TT, (35)
=1 af
Eu(C) := Eulpc] = Z TosDagyoTys = 2FTDF (36)
aﬁ76
Pxc(C) = Exclpc] = Bxc| Y Tagnans) (37)
afB
Eexl(C) ‘= Liext pC Zra,@ exl)aﬁ =T’ Vexta (38)
ap

where T', T, V. are the vectors of flattened T, T, Vey, respectively. The term Fxc[pc] is again calcu-
lated by numerically integrating the defined density by C on a quadrature grid.

Computational Complexity Note that the construction of Vg from Eq. (31) and the evaluation of
Eu(C) from Eq. (36) require O(B*) = O(N*) complexity. Even when using density fitting which
decreases the complexity to O(IN?), the complexity in each SCF iteration of KSDFT is O(N?3) since the
complexity of density fitting itself is O(N?) (see Supplementary Section A.4.1).

Orbital Orthonormality Under the atomic basis, orbital orthonormality (¢;|¢;) = J;; becomes
>-ap CaiCpj(nalng) = dij, or in matrix form,
c'sc=1 (39)

As mentioned after Eq. (18), only the normalization constraints need to be taken care of, as the orbitals
are eigenstates of an Hermitian operator hence are already orthogonal if non-degenerate. This property
transmits to the matrix form of the problem:

c!sc,=1, Vi=1,---,N. (40)
(This can also be directly verified in the matrix form: for i # j, (C'SC);; = C]SC,; Fa._ o
ClLFC, M L(FC,)TC, Fa B0 &, £(SC)TCy SN £ (CTSC)y, which indicates
(1- g—j)(CTSC)” = O thus (CTSC);; = O assuming non-degeneracy e; # €;.) Fulfilling the or-
thonormality constraint then only needs to normalize each eigenvector C(Zk ) of the problem in Eq. (26) to

T~
form C*); explicitly, C .(k) (Zk)/ C:(ik) SC:(ik).



Relation to Direct Gradient Derivation The matrix form of the optimality equation under basis hence
the SCF iteration problem Eq. (26) can also be derived directly from Eq. (15) by taking the gradient of
the energy function of coefficients: E(C) := E[®c] = E[{}, Caina}L,]. Its gradient is related to
the variation of the functional of orbitals by integral with the basis:

(VCE(C))M. = /%(r)(vc%c(r))m dr = /5220](1_)77&(1‘) dr. 41)

The variation is given by Eq. (16), which is 2F L)%ic(r) =234 CgiF[pq)c]’f]g(I'), which turns the
gradient into matrix form:

VcE(C) =2F¢cC. (42)
For the orbital orthonormality constraint, as mentioned, only the normalization constraints require explicit
treatment. By introducing Lagrange multiplier ¢; for each constraint in Eq. (40) and taking the gradient for

the corresponding Lagrange term gives V¢ ZZ\; € (CISC:i — 1) = 2SCe. This leads to the optimality
equation in matrix form:

FcC = SCe. (43)
By constructing the corresponding fixed-point iteration, Eq. (26) is derived.

Accelerating and Stabilizing SCF Iteration As mentioned, F(*) and fof) may be taken differently
from Fx-1) and Vg e-1) for more stable and faster convergence. The direct inversion in the iterative
subspace (DIIS) method [11, 12] is a popular choice for this. In DIIS, the Fock matrix F(*) in the
eigenvalue problem Eq. (20) for each SCF iteration k is taken as a weighted mixing of the vanilla Fock
matrices F ), k' < k in previous steps:

k—1
k
F(k) = Z ﬂ-l(c’)FC(k")?
k'=0
where {Tl'](j)}ﬁ,_:lo are the weights that are positive and normalized Z 0 ,(j) 1. Due to the nor-

malization, the kinetic part T of the matrix remains the same, so it agrees with the form in Eq. (27) (or
Eq. (19) in operator form), where:

eff : Z Wk/ effc(k’ 44)

Supplementary Section A.3.2 OFDFT under Atomic Basis

To solve the optimization problem of OFDFT in Eq. (10), it is unnatural to construct a fixed-point SCF
iteration process from its variation in Eq. (23). Hence, direct gradient-based density optimization is
conducted. For this, the energy functional of density function in Eq. (10) needs to be converted into a
function of density coefficients using the basis expansion of density function in Eq. (25):

E(p) := [Z Pu| = To(p) + Bu(p) + Bxc(p) + Feulp),  @45)
=Eer(p):=Eeit[pp)

where Ts(p) := Ts[pp] = Ts [Zpuwu} (46)

E(p) = Eulpp) = / 2 p”w’“]r _Zr,p”w”( ") grar’ = %pTan 47)

Exc(p) = Exclpp] = Bxc [Zp#w#} (48)

Eext(p) = Eexl[pp] = /Zpuwu(r)‘/ext(r) dr = pTVexh (49)

where VVW = (wplwy),  (Vext)p = {(wp|Vext)-

The Coulomb integral notation (w,, |w, ) is defined in Eq. (33). Recall that we have omitted the dependency
of density basis {w, }, hence of the functions for example Ts(p) on the molecular structure M in this



subsection. Integrals for W and vy can be calculated directly [13, 14] under Gaussian-Type Orbitals
(GTO) as the basis {w,, },,, using software libraries for example 1libcint [15] in PySCF [16]. The term
Exc[pp] is calculated by numerically integrating the defined density p, on a quadrature grid as typically
used in a DFT calculation. In our M-OFDFT, T5(p) is calculated directly from the coefficient p using the
deep-learning model T ¢ (p, M).

To carry out direct optimization using a learned KEDF model T ¢(p), the gradient of the electronic
energy in Eq. (45) is required, which is given by:
Vo Eo(p) = VpTs.0(p) + WP + Vi Exc(p) + Vex: (50)
Vo Eert(P)

This gradient is then used to update the density coefficient after projected onto the linear subspace of
normalized densities, following Eq. (2).

Relation to Derivation as Integral of the Variation with Basis The gradient V,E(p) can also be
derived by the relation between gradient and variation that we have already seen in Eq. (41):

SE|pp)] SE|pp]

(VoE(P)), = (VpElpp]), = / oy 0 (Vorp(r)), e = / oo el dr. 6D
Integrating the variations given in Eq. (17) with the basis functions {w, },, recovers the Hartree energy
gradient Wp and external energy gradient vy in Eq. (50). The formula also applies to the gradient of
the kinetic energy VTs(p) and the gradient of the XC energy V Exc(p).

Automatic Differentiation Implementation for Calculating the Gradient In the implementation of
M-OFDFT, the gradient of the KEDF model V75 ¢(p, M) is evaluated directly using automatic differ-
entiation [17], which can be conveniently done if implementing the model using common deep-learning
programming frameworks, for example, PyTorch [18]. To calculate V,Exc(p) conveniently, we also
re-implemented the PBE XC functional [19] in PySCF using PyTorch and evaluate its gradient also by
automatic differentiation. For material systems, automatic differentiation implementation of OFDFT is
also developed recently [20]. When using the residual version T s ¢ of KEDF model, which is detailed
in Eq. (78) in Supplementary Section B.4 later, the base KEDF (taken as the APBE KEDF [21]) is also
implemented in this way.

Computational Complexity As will be detailed in Supplementary Section B, the Transformer-
based [22] KEDF model for our M-OFDFT has a quadratic complexity O(A4%) = O(N?). The PBE
functional [19] for Exc and the APBE functional [21] for the base KEDF are at the GGA level (general-
ized gradient approximation), so evaluating the energies amounts to calculating the density features with
O(M) cost on each grid point, in total with O (M Nriq) cost where Ngiq is the number of grid points, and
then conducting the quadrature with O(Ngiq) cost. The complexity for these energies is thus O (M Ngriq)
which is also quadratic O(N?) since Ngig = O(N) (though with a large prefactor). Evaluating the
gradient using automatic differentiation is in the same order of evaluating the function, hence also has
O(N?) complexity. Evaluating Fy(p) and Eey (p) using Eq. (47) and Eq. (49) and their gradients using
Eq. (50) require O(M?) = O(N?) complexity. Therefore, the complexity in M-OFDFT has a quadratic
complexity O(N?), which is indeed lower than that of KSDFT (detailed in Supplementary Section A.3.1
above).

Besides the advantage in asymptotic complexity, the fact that M-OFDFT is implemented in PyTorch(see
Supplementary Section B.1.6) enables it to leverage GPUs efficiently. These factors jointly facilitate the
much higher throughput of M-OFDFT than KSDFT.

Supplementary Section A.4 Label Calculation under Atomic Basis

This subsection details the calculation of the data tuple (p(’“), T. S(k), VpTS(k)) for learning a KEDF model

from the orbital coefficients C(*) of the orbital solution ®(*) := {gbgk)}il\il in each SCF iteration k.
Following the previous subsection, we omit the appearance of M for density or orbital representation
(for example, in T5(p, M)) and omit the index d for different molecular systems. We insist keeping the
k index to reflect that the deduction is based on the solution in an SCF iteration but does not apply to
arbitrary orbital coefficients C.

Supplementary Section A.4.1 Density Fitting

We start with calculating the density coefficient p(*) under the density basis {w,, (r) }fyzl for representing
the density defined by the orbital coefficient solution C*). This process is called density fitting [23],
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which is also used in KSDFT for acceleration, in which context the atomic basis for the density is also
called auxiliary basis. The density coefficient p(*) needs to fit represented density pp by Eq. (25)
to the density pc» defined by Eq. (28). Noting that Eq. (28) essentially expands the density onto the
paired basis {7, (r)ns(r)}as With coefficient as the vector T'®) of flattened T'(*), this is the classical
coordinate transformation problem from the paired basis to the density basis. The classical approach is
by minimizing the standard L2-norm of the residual density:

T T, - T -
/ |op (1) = pon ()| dr = p®) - Wp*) — 2p®) "LE®) 4 T®) DT®),

where W, := (wy|wy), Ly ag = (wunang), and Dag s == (nang|nyns) are the overlap matrices
of the density basis, between the density basis and the paired basis, and of the paired basis, respectively.
Noting that this is an quadratic form of p(*), we know the solution is p(*) = W—ILT'(*),

However, the standard L2-metric on the density function may not be the most favorable metric for density
fitting. Instead, energy is the directly concerned quantity. The kinetic energy is the most desired metric,

since this would minimize the mismatch of the fitted density p(*) to the kinetic energy label Ts(k). But
there is no explicit expression to calculate the kinetic energy from density coefficient. We hence turn to
using the Hartree energy and the external energy as the metric. (Using the XC energy requires an arbitrary
choice of a functional approximation, and the calculation is more costly.)

For the Hartree energy as defined in Eq. (8), noting that it is quadratic in density, we fit p by minimizing
the (2x) Hartree energy arising from the residual density:

Pot () — pcmw (1)) (ppm (r') — pow (7
2Eu[ppt) — pcw ] // P c (|r>—(13|| ') = o ) drdr’

— p(k) WpF) — oplk )" LTC® 4+ [‘(k) DI,

where symbols with tilde are the corresponding overlap matrices under integral kernel =] r/H , which,

using the symbol of Coulomb integral defined in Eq. (33), are W, o= (wulw)s Lyas = (Wulnans),
and Dos 6 := (1a75|1,75) as already defined in Eq. (32). As a quadratic form, the solution is p(*) =

W LLT®)_ This result can be understood as if the Hartree energy (Coulomb integral) defines a metric
on the space of density functions.

For the external energy as defined in Eq. (4), as it is linear in density, we fit p by directly minimizing the
difference between the defined external energies:

(Eext[pp(k)] - Eext[pc<k)])2 = ( ext(p(k)) Eext(C(k)))

2 e (4:9’ * (p(k)—rvext - f‘(k)—rvext)2'

To combine the two metrics, the final optimization problem is a combined least squares problem:

p® = argminp ' Wp — 2p LT + f‘(k)Tf)f‘(k) + (P Vext — e )TVexl) ,
p

which corresponds to the over-determined linear equations in matrix form:
5 Lr®
Wp*) =b®  where W := <V¥> e .
VCX[ F(k) Vext

This is directly solved using least-squares solvers. In this conversion, we did not explicitly consider the

normalization constraint, p*) w = N, since it is already satisfied with a high accuracy, due to the close
fit to the original density.

Supplementary Section A.4.2 Value Label Calculation

The label for the value of KEDF can be calculated from Eq. (22) by leveraging the expression Eq. (35)
under atomic basis:

() = S =0
ap

where T'(*) = C(]“)C(’“)—r from Eq. (29), and T'(*) is the vector by flattening. The corresponding density
coefficient p(*) is calculated from C*) using density fitting as detailed above. A subtlety arises since
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the fitted density p(*) may differ a little from the original density defined by C*) due to finite-basis
incompleteness, so Ts(C(*)) may not be the best kinetic energy label for p(*). Indeed, as mentioned,
in density fitting, we do not have a way to directly find the density coefficient p(*) that achieves the
kinetic energy closest to TS(C(k)). Instead, p(*) is fitted to match the Hartree and external energy. We
hence assume that the electronic energy is less affected by density-fitting error than the kinetic energy,
and instead of taking T5(p®)) ~ Ts(C), we take E(p®)) ~ E(C™®), which means Ts(p*)) +
Eeit(p™) = Ts(C®) 4+ E(C™®). Hence the KEDF value label for p(*) is taken as:

Ts(k) = Ts(c(k)) + Eeff(c(k)) - Eeff(p(k))7

where Eer(C*)) = §I‘(’“)TDI‘<") +Exc(CW) 4 T 'V,
———
Fa () Ee (C))

1 T~ T
Eei(p®) = ip(k) WpH 4+ Exc(p®) + p*) vex,

(k)
Eu(p®)) Bea(pt)

following definitions and expressions of Eqgs. (34-38) and Eqgs. (45-49). Labels for the two variants of
functional models detailed in Supplementary Section B.4 can be calculated accordingly. For the residual
version of KEDF T ., the label is correspondingly modified using values at p#):

TH = Ts(k) — Tappe(P™).

S.res

For the version Erxc that learns the sum of KEDF and the XC energy, the corresponding label is: Ts(k) +
Exc(p) = Ts(C™M)+(Eu(C™)+ Exc(C™)+ Ben(CM)) = (Bu(P™)+ Bxc (™) + Eext (p™)) ) +
Exc(p) = Ts(CW) + Exc(CW) + (Bu(C™)) — By (p™)) + Eex (C*)) — Eew(p1")), where the last
term can be omitted since the Hartree energy difference and the external energy difference are minimized
by p'*) in density fitting. We therefore take the label as:

Efje = T5(CM) + Exc(C®).

Supplementary Section A.4.3 Gradient Label Calculation

Under an atomic basis, the kinetic energy functional of density is converted into a function of density
coefficient Ts(p) := Ts[pp] following Eq. (46). For its gradient V,T5(p), following the fact in Eq. (51),
it is related to the variation of the functional T5[p] by integral with the basis:

Ts[pp] 8Ts(pp)
(Vots(p), = [ 122 ) (Vo) dr = [ S5 0 o).
The variation corresponding to a known density is given by Eq. (23) above, which comes from the so-
lution of orbitals in a KSDFT SCF iteration. If omitting the error in density fitting and approximating
%TS [ppm] with %TS [pcm] = 5%Ts [pio], then the gradient can be accessed by integrating both

sides of Eq. (23) with the density basis:
VpTs(p™) + vy = nPw,

where (Vi) i= (Vi) = [V e, woim [wman 6

In practice, the chemical potential 1(*) is not needed, since the gradient matters in its projection on the
tangent space of normalized densities in order to keep the density normalized in density optimization
(see Eq. (2)). The space of normalized densities is a linear space {p | p'w = N} since [ pp(r)dr =
> 1 Pu J wu(r)dr = N, so it coincides with its tangent space. The projection onto the tangent space is

achieved by applying I — x‘%"; which gives:
WWT k WW—r (k)
(1= ) Ve Ts ™) = = (1= JZ0 vy (53)

Due to the same reason, the gradient loss function Eq. (4) also only matches the projected gradient of the
model to the projected gradient label.
The remaining task is to evaluate véff) in Eq. (52). Considering the complication that Ve(ff ) (r) may not be

taken as the explicit-form effective potential Veff[p[q) (-1y)) (r) = Veff[pc ] (Eq. (17) and Eq. (28)), such
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as when DIIS (Eq. (44)) is used in SCF iteration, evaluating vé? can be done by leveraging the orbital-

basis representation Vgcf) already available in the SCF problem (Eq. (26)), which is defined in Eq. (27)
as the integral with paired orbital basis: (Véfkf))ag = [ Ve(ff)(r)na(r)n@(r) dr. Using the expansion
coefficients K of the density basis onto the paired orbital basis, that is w,,(r) = >_ 5 Ky ap7a(r)ns(r),

we can conduct the conversion by (vgcf))H = 0 Kpap (Vé?)ag.

However, solving for K is unaffordable: using least squares, this amounts to solving DK = L (or solving
DK = L). Since D (or D) has shape B? x B2, the complexity is O(M B*) = O(N?). Even it is only
called once for one molecular structure, the cost is still intractable even for medium-sized molecules.
Moreover, the approximation 6%TS [Ppi] ~ 6%TS [pcr] does not guarantee the optimality of density
optimization using the learned KEDF model on the same molecular structure as explained later.

We hence turn to another approximation, and use a more direct way to calculate the gradient. The approx-
imation is that Eq. (23) also holds for the fitted density pp):

0Ty [pp(k)]
bp
where Vogopiny,, _, 1s the Ve(fﬁ ) constructed from fitted density coefficients in previous SCF iterations,

+V = M/(k)7 (54)

AP}y

instead of orbital coefficient solutions in previous SCF iterations that the Ve(éc ) in Eq. (23) uses. The

chemical potential p’ (k) may be different, but due to the above argument for Eq. (53), it is not used. The
approximation holds if density fitting error can be omitted, for example when using a large basis set.
Following the procedure above, the corresponding kinetic-energy gradient after projection is given by:

T T

_ww )y — _(1_W"W_
(1= S5 ) Vo Ts(p™) = = (1= S5 Voo, (55)
where (veff{p(kl)}k/<k)ﬂ = <w”|‘/;ff{P<k/)}k/<k> - /Veff{P(kl)}kkk(r)w“(r) dI‘, (56)

correspondingly. Calculating Vett(p*)} requires a direct approach. This can be done following the

relation between the known functions V;ff[p[@ @] and the constructed Ve(;) in the SCF iteration. In DIIS,
this relation can be drawn from the construction in Eq. (44) by noting the definitions Eq. (27) and Eq. (30)
of the matrices, which is a weighted average: Ve(ﬁl?) = Z:/_:lo W,Ef)‘/;ff[ . Following this pattern, the

required effective potential in Eq. (54) is constructed as: Vogypeny,, , = Z,_:lo W](C’f)‘/e;ff[p (]~ The
J p

Pc(k')]

weights {77,&@}’220 are taken as the same as those computed in the SCF iteration. Its vector form under
the density basis is given by:
k-1
k
Vet {p() ), = Z ﬂ-](g/)veffp(k’)a where (Veffp)u = (Wil Vettfpp)) = /Veff[pp] (r)w,(r)dr. (57)
k=0
Calculation of each vefr,x) can be carried out directly following Eq. (17) that gives Vg, ) explicitly. In
our implementation, each veg,x) is conveniently calculated using our automatic differentiation imple-
mentation mentioned in Supplementary Section A.3.2, since we notice the fact that:

Veffp - vaeff(p)» (58)
where Ee(p) = Eefi[pp] is defined in Eq. (45) and its gradient V E(p) is given by Eq. (50). This
fact is again due to the relation between gradient and variation revealed in Eq. (51) and noting that Vg,
is defined as the variation %f‘[”] of the effective energy functional in Eq. (17). As analyzed at the end of

Supplementary Section A.3.2, evaluating the gradient has the same complexity as evaluating the energy
Eeit(p), which is O(M?) + O(M Ngiq) = O(N?), which is much lower than the O(N®) complexity
above.

To sum up, {Veffp(k') }1 are first calculated using automatic differentiation following Eq. (58), which are
used to construct Veg,ny,,_, following Eq. (57), then the gradient VoTs(p'¥) is given by Eq. (55)
up to a projection. Since the loss function Eq. (4) for gradient supervision explicitly projects the gradient

error, the gradient label itself does not have to be projected before evaluating the loss (that is, the loss
is the same whether the gradient label is projected; since projection is idempotent). We hence take the

gradient label VpTS(k) directly as the density-constructed DIIS effective potential vector:

k
VPTS( ) = Vet {p(
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For the residual version of KEDF T s and the version Erxc that also includes XC energy as detailed in
Supplementary Section B.4, the labels are produced accordingly:
VoTun, = VoI = VpTapee(pV), VBl i= VpTd" + Vi Exc(p™),

S.res
where V1, ApBE(p(k)) and VpExc(p(k)) are also calculated using automatic differentiation.

Apart from the convenient and efficient calculation using automatic differentiation, this choice of gra-
dient label could also train a KEDF model that leads to the correct optimal density, since the label-
ing approach is compatible with the density optimization procedure of M-OFDFT shown in Eq. (2) and
Eq. (50). More specifically, upon the convergence of SCF iteration for which we mark quantities with “x”
the DIIS effective potential V_j; is converged to the single-step, explicit-form effective potential Vg, c*]
(Eq. (17) and Eq. (28)) by design. Correspondingly, the density-constructed DIIS effective potential vec-
tor Vert{p(:) ), (Eq. (56)) at convergence coincides with vegp« (Eq. (57)), which is VpEett(p*) by
Eq. (58). This gives a gradient label to the KEDF model through Eq. (55), which enforces the model to
satisfy:
ww o\ Ed. (50) ww )
(1= 352 ) (Voo (P®) + VpEurp™) “L (1= X)W, Ey(p%) = 0,

which in turn enforces the density optimization process Eq. (2) to converge to p*, the true ground-state
density coefficient. The optimality of density optimization using the learned KEDF model can then be
expected.

Supplementary Section A.5 Force Calculation

The force experienced by atoms in a molecular structure is an important quantity as it is directly required
for geometry optimization and molecular dynamics simulation. It is also used as a metric to evaluate the
results of M-OFDFT (Results 2.2, Supplementary Section D.2.1). There are different ways to calculate
the force in both KSDFT and OFDFT, and the results may differ. Here we describe two common ways
for force calculation, which are the Hellmann-Feynman (HF) force [24, 25] and the analytical force [26].
Evaluation protocol using force for M-OFDFT and M-NNP/M-NNP-Den against KSDFT is detailed at
the end.

Hellmann-Feynman Force Force is the negative gradient of the total energy of a molecule as a function
FEioi(X) of atom coordinates X = {x(®)14_ (molecular conformation). We omit the dependency on the
molecular composition Z for brevity. The total energy Ei(X) := E% + Enc(X) comprises both the
electronic energy E% in electronic ground state (including interaction with the nuclei), and also the energy
from inter-nuclear interaction:

1 7(a) 7(b)
Ee(X) = B b_lz: ) @ — <O’ (59)
T

which gives the inter-nuclear part of the force,

®) _ x(a)
X — X
Ve BaeX)==2@ N z0)_— = __ (60)

The electronic energy E% is the minimum after a variational optimization process for solving the elec-
tronic ground state of the molecule in conformation X. In the most fundamental form, E is determined
by the variational problem on N-electron wavefunctions as shown in Eq. (1). The Hamiltonian opera-

tor therein Hx =T+ Vee + V;x[ x depends on the conformation X through Vex,x, which is given in

Eq. (2). The ground-state wavefunction )% and energy £y = (1/)X|Hx|wx> hence also depend on X.
The gradient of E5 can then be reformed as: Vx E% =

Vx (U Hx V%) = (Vx vk Hx [95) + (0 [Vx Hx[vk) + (0 [Hx[Vxuk)
2 B (Vxwklvk) + (k| Vx Hx|vk) + B (0| Vx k)
= (Wk|VxHx k) + Ex Vx (Vk|v%)
2 (k| VxHx|uk). (61)
where the equality (*) is due to that ¢% is an eigenstate of the Hermitian operator Hx with real eigen-

value E%, and the equality (#) is due to that the wavefunction is normalized (% |¢%) = 1 for all X.

14



Eq. (61) is the Hellmann-Feynman (HF) theorem [24, 25]. To continue the calculation, the gradient of
the Hamiltonian operator in the expression can be derived as V() Hx = V(a) Vext, x, and by noting that

x(a
Vm,x is multiplicative and one-body as shown in Eq. (2), we have V() Vex x (1) = —Z(“)ﬁ,
and subsequently, the electronic force can be calculated as:
* * ' * (a) * r —x(® (a)
—Vi Ex = = (0% | Vi Hx V%) = Z Px(r)m dr =: fy ", (62)

where p% (r) := pjyy)(r) defined in Eq. (3). This is the Hellmann-Feynman (HF) force fx. This ex-
pression coincides with the electrostatic force under a classical view, indicating “there are no ‘mysterious
quantum-mechanical forces’ acting in molecules” [9]. From the expression, evaluating the HF force only
requires a good approximation to the ground-state elec