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Dear Dr Liu,

Your manuscript "M-OFDFT: Overcoming the Barrier of Orbital-Free Density
Functional Theory for Molecular Systems Using Deep Learning" has now been seen by
3 referees, whose comments are appended below. You will see that while they find
your work of interest, they have raised points that need to be addressed before we
can make a decision on publication.

The referees’ reports seem to be quite clear. Naturally, we will need you to address
*all* of the points raised.

While we ask you to address all of the points raised, the following points need to be
substantially worked on:

- Please be sure to provide additional discussions, citations, and quantitative
demonstrations (where possible) to demonstrate the novelty of your approach, in
order to address concerns raised by Referee #2.

Please use the following link to submit your revised manuscript and a point-by-point
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response to the referees’ comments (which should be in a separate document to any
cover letter):

[REDACTED]

** This url links to your confidential homepage and associated information about
manuscripts you may have submitted or be reviewing for us. If you wish to forward
this e-mail to co-authors, please delete this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy
of your manuscript files that indicates your revisions by making use of Track Changes
or similar mark-up tools. Please also ensure that all correspondence is marked with
your Nature Computational Science reference number in the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your
text, to assist us in the editorial stage.

To improve transparency in authorship, we request that all authors identified as
‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System
(MTS), prior to acceptance. ORCID helps the scientific community achieve
unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature
account’. For more information please visit please

visit www.springernature.com/orcid.

We hope to receive your revised paper within three weeks. If you cannot send it
within this time, please let us know.

We look forward to hearing from you soon.
Best regards,

Kaitlin McCardle, PhD
Senior Editor
Nature Computational Science

Reviewers comments:
Reviewer #1 (Remarks to the Author):

The authors claim to have solved a fundamental problem regarding the applicability of
density functional theory to molecular systems, namely the lack of a suitable
functional for the kinetic energy. In contrast to most of the current, highly successful
implementations of DFT, which reintroduce molecular orbitals in order to arrive at a
reasonable approximation to the kinetic energy of an N-electron system, orbital-free
DFT stays true to the original attempt of finding a formulation involving only the
electron density and its derivatives, but has seen only moderate success in molecular
systems so far.
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Recent years have seeen numerous untertakings of physicists and computational
chemists involving machine learning techniques, an obvious pairing of an old problem
and a new paradigm at first sight, but still without a real breaktrough in terms of
applicability to real world systems and computational accuracy. A driving force is the
wish to realize a substantial improvement in scaling with system size, making DFT
applicable to very large molecular structures eventually.

In this manuscript, an outstanding performance is shown for a method named M-
OFDFT in tests on common datasets such as MD17, QM9 and QMugs, and a
meaningful demonstration of the improvement is achieved by a comparison of the
mean absolute errors in energies to results obtained with common OF-DFT
approaches based on the Thomas-Fermi ansatz and its first few correction terms.
Also, cuts through the electron density of ethanol are shown for a spatially resolved
comparison of density distributions obtained with various methods, and scaling
capabilities are tested up to extremely large molecular systems of protein dimensions.
In the latter case, kinetic and exchange-correlation contributions are learned together
in order to avoid calculations on a grid. As a common reference and a starting point
for the underlying deep-learning neural network model featuring a Graphormer
architecture, the APBE functional has been used throughout the manuscript. Training
data, i.e. the molecular structures used, but also program code has been made
available to allow an implementation of the proposed model in principle. The trained
network model itself has also been made available to the reviewers.

Given the outstanding performance of the proposed method, paired with a detailed
description of the many (!) detailed and clever improvements that led to this
breakthrough (but had to go into the Supplementary partially), a publication in
Nature Computational Science can be recommended after responding accordingly to
the following comments and questions.

Questions and comments

1) It is not clear to me how the principle of attention mechanisms, understood as a
selective emphasis of certain features of the input vector, is linked to the problem of
nonlocality. Please elaborate and extend this comment given on page 2.

2) How universal is the M-OFDFT method in terms of unseen molecular structures?
Does it need to have seen all elements that appear in the structure to be calculated
beforehand, or can it construct a suitable density and corresponding energy based
only on the atomic number alone, i.e. extrapolate also to elements that did not
appear in the training set?

3) On page 3 the authors mention that their coefficient vector p is a numerical
representation given a set of "atomic orbital basis functions". Within the context of
KS-DFT, this choice of nomenclature has a special meaning - it refers to a set of
functions, typically of Gaussian shape in the radial dimension, and spherical
harmonics with regards to angle. These functions can become negative-valued since
they are supposed to represent molecular orbitals. How is a non-negative density
derived from such as set?

4) How sensitive is M-ODFT to the actual choice of basis functions? Why is a an even-
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tempered basis set family of Bardo and Ruedenberg used for density representation
in the model, while the KS-DFT data production is performed with a different
(standard Pople double zeta) basis set?

5) Since the KEDF is learned by the neural network, an obvious question is how this
universal functional does actually look like. How does it compare to e.g. the von
Weizsacker KEDF or known, higher order extrapolations in terms of an analytical
description?

6) The authors further indicate that the incorporation of exact features into the
functional is not necessarily improving the generalization or the prediction
capabilities. As an example, it is mentioned that the inclusion of the von Weizsacker
extension as a basis to learn the residual leads to an explosion of gradients. It is hard
to understand how a hard-wiring of physical knowledge is actually reducing the
performance. Is this only due to a shifted, less-than-optimal use of the data provided
in case of a more complicated model?

7) In the light of point 6, have the authors thought of an iterative generation of new
training data whenever needed in the process of learning a general KEDF applicable
to any molecular system?

Andreas W. Hauser

Reviewer #2 (Remarks to the Author):

Review Comments

The authors developed a deep learning scheme for orbital-free density functional
theory (OFDFT), called M-OFDFT. The M-OFDFT learns kinetic energy density
functional (KEDF) based on a given atomic coordinate, atomic number, and
coefficients of atomic basis representing electron density. The machine-learned KEDF
includes non-ground-state information to optimize the coefficients through the
gradient descent method. The prediction accuracy of energy, electron density,
Hellmann-Feynman force, extrapolative ability, and computational time were
examined. Although the results of M-OFDFT show good performance, I cannot
recommend the publication of the present study unless the authors thoroughly and
honestly respond to the following pointsn.

Comments on the justification of the present study

The attempts to apply the machine learning technique to the development of KEF has
been performed before the present study. The authors did not cite such important
contributions and mention the difference from such pioneering studies. The authors
should honestly refer to such studies and make clear the present contributions.

Comments on the advantages of M-OFDFT

M-OFDFT utilizes atomic coordinates and atomic numbers in addition to electron
density. It differs from pure KEDF, which is based on the original spirit of DFT that
uses only electron density. Neural network potentials (NNP), which have been
significantly advanced in recent years, similarly use atomic coordinates, atomic
numbers, and implicit or explicit basis functions representing atomic environments.
The NNP might predict energy and force (and partial atomic charge) for large
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molecular systems and a wide range of elements faster than OFDFT with high
extrapolative ability. However, The NNP includes limitations on the representation of
electron density and electronic states.

(1) From the above perspective, the authors should mention the NNP in the
manuscript and comment on how M-OFDFT fundamentally differs fromm NNP. The
statement in the conclusion section, “This work has demonstrated the improved
extrapolation by choosing an appropriate formulation of quantum chemistry: learning
a density functional extrapolates qualitatively better than direct energy prediction”, is
derived from applying the M-OFDFT architecture to direct energy prediction. It is
unclear whether this statement is valid considering NNP's performance in recent
years.

(2) The authors should discuss the significance of handling OFDFT, whether it can
describe electronic structures such as charged or open-shell systems, or excited
states.

(3) The electron density obtained by M-OFDFT (Figure 2(b)) is an excellent result in
terms of the OFDFT performance. However, the discussion regarding electron density
is limited to this figure in this article. I strongly recommend that the authors show
numerical results about molecular properties related to electron density. Atomic
charge, dipole, and quadrupole moments are obtained from grid-based electron
density analysis. It might be possible to discuss the partial atomic charge or bond
order using the atomic (density) basis by analogy with the analysis based on the
atomic orbital basis.

Comments on computational time discussion

The calculation cost evaluation (Section 2.4) seems dishonest.

(4) Hardware information about CPU and GPU machines should be included not only
in the Supplementary information but also in the main text.

(5) Supplementary information notes that “For large QMugs molecules, we apply the
learned TXC functional model ETXC,8"”. Which molecules are the large QMugs
molecules? How computationally expensive is the grid-based calculation for obtaining
EXC? The authors should give details of the computational time to obtain initial
density, machine learning prediction, analytical energy terms, grid-based EXC,
coefficients derivatives, and Hellmann-Feynman force when using the ET,0 and ETXC,
0 models.

Reviewer #3 (Remarks to the Author):

The authors presented a new machine learning scheme, termed M-OFDFT, for
computing the kinetic energy density functional. The novelty of the method is that it
includes the coordinates of neighbor atoms in the features, in addition to the
projection coefficients of electron density onto atomic basis functions. This gives a
complete description of the local electron density distribution, making this method
promising to obtain a good fitting for the kinetic energy. Despite of the good
performance demonstrated in the manuscript, I have some concerns about the
quality of M-OFDFT. I am not able to recommend its publication in Nature
Computational Science at this point. My decision will be based on the next revision.
My comments are listed below.
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1) Throughout the paper, the discussions are mainly based on energy errors.
However, it is very important for the method to obtain a smooth potential energy
surface (PES). The authors did not show any examples of this aspect. I would suggest
some calculations of PESs, such as the bond stretching energy curves, torsion energy
curves, and the minimum energy pathways for some chemical reactions, and then
compare these PESs with KS-DFT. One major goal is to examine if the PESs from M-
OFDFT are smooth.

2) Geometries are also important and are not discussed in the manuscript. The
authors demonstrated the forces, which are surely important; however, I suggest
that the authors perform the relaxation of several molecules and compare the
structures, such as bond angles and bond lengths, to the KS-DFT results.

3) Another interesting and important thing to demonstrate is the dipole moments.
One major advantage of OF-DFT against ML force fields is that electron density is
considered by OF-DFT, and therefore dipole can be computed. Dipoles are very
important properties of proteins. The authors need to calculate dipoles for some
systems, ranging from small to large dipoles, such as a CO molecule, peptide, and
acceptor-donor complexes to examine the accuracy of the dipoles predicted by M-
OFDFT. I understand this could be a demanding test since it is not very easy to
reproduce dipoles. But based on the good prediction of electron density in Figure
2(b), this seems promising.

Reviewer #3 (Remarks on code availability):

I did not really look into the codes. Since OF-DFT is not difficult to program and the
results in the manuscript seems reasonable. I believe the code is fine.

‘ Author Rebuttal to Initial comments
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Response to Review Comments of:
M-OFDFT: Overcoming the Barrier of Orbital-Free
Density Functional Theory for Molecular Systems Using
Deep Learning

Anonymous Authors

We thank the editor and the reviewers for their valuable efforts devoted to our manuscript and the infor-
mative comments and genuine suggestions. We appreciate the recognition of the novelty and significance
of our work, clear and detailed presentation, and the advancement of orbital-free DFT to work on ever
larger mole cules.

We have carefully addressed all your comments as detailed below. We have also revised our paper accord-
ingly, which is provided in a marked-up form showing the changes we have made. Specifically, contents
that appear after the revision are marked in blue in a different font, and “contenrs in this file thar are
quosed from the paper” are enclosed in quotation marks and are formatted in italic and a smaller font size.
Please be noted that in this file, reference numbers of cited papers follow the bibliography in the revised
paper (numbers in quoted contents from the Supplementary Information follow the bibliography in Sup-
plementary Information). We hope that our revised manuscript meets the high standards of the journal
and is suitable for publication,

1 Response to Reviewer 1

Q1: It is not clear to me how the principle of attention mechanisms, understood as a
selective emphasis of certain features of the input vector, is linked to the problem of
nonlocality. Please elaborate and extend this comment given on page 2.

Response: Thank you for pointing out this potential unclarity. Although the attention mechanism can
be “understood as a selective emphasis of certain features of the input vector” where the “input vector”
is understood as the concatenation of feature vectors on all the atoms, the point of highlight is that the
“selective emphasis™ is queried and generated by features on one atom a to determine the “selection
strengths” or “weights of contribution™ to interact with features on other atoms for updating the features
on this atom a. As the features on an atom initially represent the electron density around the atom (since
the basis functions on the atom concentrate around that atom), the “selective emphasis™ on features on
other atoms, including on distant atoms, covers the interaction of electron density around one location
with density around a distant location, hence nonlocal effects can be captured.

The nonlocal calculation is also indicated by the “Nonlocal KEDF Moedel” component in Fig. 1(b), where

the update of the feature vector on each atom (say, hm) takes into account of the interaction with the
feature vector on every other atom. From another perspective, the attention mechanism has been proven
a universal approximator [44]', which is of course capable of learning a nonlocal mapping.

More concretely, the “selective emphasis” queried by the feature vector h'@) & RP on atom a €
{1,---, A} for the interaction strength with the feature vector h® e R” on atom b € {1,--- A} is
constructed by the inner product QIK;, between the “query™ feature vector Q, := qu“""")l:l1Cl for h,
and the “key” feature vector Ks := U®¥/hy for by, where U™ and U gre leamable weight
matrix parameters of shape D' x D (D' is another hyperparameter). The inner product is treated as the un-
normalized log-probability for the contribution from atom b. The corresponding normalized probability or

T ]
weight is ecovered by the softmax function: Bofmu(%'ﬂlf)b,wlele K:=[K,,--- . K4] € RO =4

is the stacked “key” feature vectors of all the atoms, and softmax (£} = ﬁ.a—,. These weights are

'In the original conclusion of the cited paper, the function 1o ba approximated is any *{ pamutational-)equivariant
saquence-to-sequence” function. The connection to approximating any density functional under our formulation is
that the point cloud input of a set of atom-hosted density coefficients is a parmutable sequence inpuat, and the: invariant
energy scalar output can be taken as the sum of the output sequence elements (which is naturally permutational-
invariant).
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used to combine the features from all atoms for the update of features on atom a:

g softmax( C\)/“;I’( )be,

where V 1= UL, ¢ RY with learnable weight matrix parameter U(2k) ¢ RP'*D Thjs
combined feature vector for atom a covers the interaction with features on all other atoms (note the
summation over atom index b), even distant atoms, hence nonlocal interaction is covered. This vector is
subsequently processed as the updated feature vector on atom a by other neural network modules (i.e.,
layer-normalization and multi-layer perceptron modules; see Supplementary B.1.4).

Supplementary B.1, including Supplementary Fig. S6 and Alg. 1, presents details of the structure of
the KEDF model we build, and particularly Supplementary B.1.4 (B.1.3 in the original version) for the
attention mechanism, as well as details on the modification by Graphormer (which introduces pairwise
distance features to be added before applying softmax). We have made a substantial revision to the entire
Supplementary B.1, which is supposed to be in great fine detail now.

We have also revised the corresponding paragraphs on page 2 as well as the caption of Fig. 1(b) to expand
the explanation on how the attention mechanism captures nonlocal effects, which we attach below for
your reference.

Page 2:

“... To account for the nonlocal nature of KEDF with affordable cosi, we take the expansion coefficienss of the density
on an atomic basis set as the model input (Fig. 1(b)), which constitute a much more concise representation than a
grid-based representation. Each coefficient represents a density component around an atom, and can be treated as
a feature associated to that atom. To process such input, we build a deep-learning model based on the Graphormer
architecture [41,42], a variant of the Transformer model [43] for processing molecular data. The model iteratively
processes features on each atom, based on the interaction calculation with features on other atoms (Fig. 1(b)) through
the astention mechanism. Specifically, the attention mechanism computes a weight for each atom o to attend
to each of the other atoms b based on the features on the two atoms a and b as well as their distance, and
uses these attention weights as the strengths to incorporate features on the corresponding other atoms b
to update features on the atom a. Since the features on an atom represent the electron density near the
atom, and its updated features incorporate features from all other atoms, even distant ones, the attention
mechanism hence captures nonlocal effects within the electron density over the space. From another
perspective, such structured models are proven to be universal approximators [44], hence are capable to
learn a nonlocal function. Supplementary B detalls the model architecture. We note that learning a functional
model faces unconventional challenges, for which we propose method to generate multiple density datapoirus with
gradient labels per molecular structure, and techniques to handle geometric invariance and vast gradient range.
After the KEDF model is learned, M-OFDFT solves a given molecular system by optimizing the density coefficients,
where the KEDF model is used to construct the energy objective (Fig. 1(c)). "

Caption of Fig, 1(b):

“(b) The proposed M-OFDFT uses a deep-learning model to approximate KEDF, which is learned from data. The
model incorporates nonlocal interaction of density over the space, which is made affordable by inputting the concise
density representation of expansion coefficients p on an atomic basis {wq r (r)}a,r. Each basis function concentrates
around an atom, and they altogether span a similar pastern as the density, making the representation concise. Non-
locality is modeled by the attention from density coefficient features (e.g., p1,:) on one atom to features on
other atoms (e.g., pa,:,-++ ,Pa,: ), even distant ones. With such attention, density features at distance are
incorporated for the update of features on each atom (e.g., h'*?), hence the updated features can capture
nonfocal effects. ™
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Q2: How universal is the M-OFDFT method in terms of unseen molecular structures?
Does it need to have seen all elements that appear in the structure to be calculated be-
forehand, or can it construct a suitable density and corresponding energy based only
on the atomic number alone, i.e. extrapolate also to elements that did not appear in the
training set?

Response: Regarding the universality to unseen molecular structures, we would like to emphasize that
all the presented empirical results are on unseen molecule structures:

+ In Results 2.2, the test molecular structures are from a random test split of a dataset, which is disjoint
from the training split. Hence the test molecular structures are unseen during training. We considered
two datasets. The ethanol dataset comprises conformations of ethanol from the MD17 dataset [51,52],
and the QM9 dataset [53,54] comprises various species of molecules, each with its relaxed conforma-
tion. Results presented in the second paragraph of Results 2.2 show chemical accuracy on both test
splits of the respective datasets. Fig. 2(a) shows the significant improvement over classical OFDFT
methods, where results for the ethanol dataset are evaluated on the same test split, and results for
the QM9 dataset are evaluated on a subset of the QM9 test split, which also only contains unseen
molecular structures. Fig. 2(b) is also evaluated on an unseen ethanol structure.

Results 2.3 conduct a more challenging universality test, where the test sets comprise molecules larger
than those seen in training, Hence, these test molecular structures are surely unseen. In the QMugs
setting, M-OFDFT is trained on molecular structures that contain no more than 15 heavy atoms, while
the test sets only contain molecules larger than 15 heavy atoms. Results in Fig. 3(a-b) indicate that
M-OFDFT shows a limited error increase to these unseen molecular structures and is much more
universal than other machine-leaming methods. In the Chignolin setting (Fig. 3(c-d)), M-OFDFT is
trained on polypeptide structures with no more than 5 residues, while is evaluated on a set of con-
formations of Chignolin, a polypeptide with 10 residues, hence is unseen during training. In the
“finetuning” setting (Fig. 3(e)), M-OFDFT is further trained on a different set of Chignolin confor-
mations which is disjoint from the test set. Again, the results indicate significantly better accuracy
than conventional OFDFT and other machine-learning methods, indicating better universality.

Regarding the universality to molecules that contain unseen chemical elements, they can be handled by
M-OFDFT at least formally. Note that in the input to the kinetic energy density functional (KEDF) model,
the atomic numbers Z of atoms in the target molecule are only required for specifying the types of atomic
basis (typical atomic basis sets assign different sets of basis functions to atoms of different elements; see
Results 2.1, third paragraph), but not for capturing the physics of the actual nucleus or its interaction with
electrons (which are covered by other energy terms but irrelevant to KEDF; the KEDF only accounts for
electron density). Therefore, for an atom of an unseen element, we can assign the atomic number of a
seen element to it for the input to the KEDF model, and use the set of basis functions of the seen element
for that atom to expand electron density around it into coefficient features.

That being said, since the electron density pattern around an atom of an unseen element is unseen in
training, even though we can assign a seen basis set to an atom of the unseen element, the corresponding
density coefficient pattern is unseen, so the model still faces an extrapolation challenge. Nevertheless,
this challenge can be addressed by involving more elements in the training set, which could help with the
extrapolation challenge. We will explore these extensions as future work.

We have revised the paper in the second paragraph of Supplementary B.1 to include the above discussion,
which we attach below for your reference:

“... As for the generalization to molecules with unseen elements, since the atom type Z here as perceived
by the model only represents the type of basis functions that is used to hold the electron density near
the atom but does not represent the physics of the actual nucleus or its interaction with electrons, we can
assign the atom of unseen element with a seen atom type, and use the basis funcions of the seen element
to hold the efectron density around that atom. Nevertheless, due to a different electron siructure, the model
has not seen the pattern of densily coefficients for the unseen element, so there exists a generalization
challenge. This could potentially be mitigated by using a common basis set for all elements or including
more elements in training, which will be investigated in future work.”
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Q3: On page 3 the authors mention that their coefficient vector p is a numerical represen-
tation given a set of “atomic orbital basis functions”. Within the context of KS-DFT, this
choice of nomenclature has a special meaning - it refers to a set of functions, typically
of Gaussian shape in the radial dimension, and spherical harmonics with regards to an-
gle. These functions can become negative-valued since they are supposed to represent
molecular orbitals. How is a non-negative density derived from such as set?

Response: Thank you for raising this point that readers may be interested. Taking a set of atomic orbital
basis functions for vectorizing the electron density function follows the conventional choice in density
fitting. Density fitting (see Supplementary A.4.1 for technical details) is a well-established component in
KSDFT to reduce complexity. It also expands electron density onto a set of basis. Due to the requirement
to efficiently evaluate energy terms such as the Hartree energy and external energy, the basis functions
are still chosen in the form of Gaussian-shaped radial function multiplied by spherical harmonics for the
angular function, which allow analytical evaluation of the energy terms. M-OFDFT also needs expanding
the density and efficiently evaluating the energy terms, so we follow the well-established choice.

We did implement a guarantee to enforce the non-negativity of density in density optimization, by adding
the following artificial energy penalty term to the minimization objective (the unnumbered equation above
Eq. (1))

N
Enonneg(p: M) := ) max{—pp(r(#),0},

where pp(r) := 37, Puwu(r) (Results 2.1, second paragraph) is the electron density function represented

by coefficient vector p, and {r@)}:’:; is a set of grid points for the molecular structure M. But in
our experiments, we found that the additional term is seldom activated during density optimization, and
density optimization without this term already leads to an electron density that is non-negative on almost
all grid points. The number of exceptional grid points is even smaller than the number of grid points with
negative density in density fitting, a standard and widely-adopted technique in KSDFT. Considering the
cost of evaluating density values on grid points, we hence omitted this step.

We also considered representing the density as the square of linear combination of the atomic orbital
basis functions, as adopted in many existing OFDFT methods. But this would revert the computational
complexity to quartic (O(N*)) due to the Hartree term, and sacrifice the advantage over KSDFT. Future
explorations could be expanding the density onto a set of positive-valued basis functions.

We have revised the paper and included this discussion in Supplementary B.5.1, which we attach here for
your reference:

“A subtlety in the density optimization process is the non-negativity of the density value everywhere in
space. As the basis functions follow the form of the multiplication of a Gaussian radial function which
is always non-negative, and a spherical harmonic function or a monomial (as is the case of the even-
tempered basis in Eq. (S62)) that accounts for the angular anisotropicity which can take negative values.
The coefficients hence need to be within a certain region to guarantee that the represented density function
is non-negative everywhere. Due to the complexity of the basis functions, an explicit expression for such a
constraint is not obvious. We hence implemented a numerical guarantee that enforces the non-negativity
of density value on each grid point, by adding the following artificial energy penalty term to the minimization
objective Eq. (S45) of density optimization:

Nygia
Enonneg (P, M) := Z m{_PP(r[g))so}s
g=1

where pp(r) := 3, Puwu(r) s the electron density function represented by coefficient vector p (see

Eq. (S25)), and {r'? };vf;‘ is a set of grid points for the molecular structure M. Nevertheless, in our
empirical trials, we found that this additional term is seldom activated during density optimization, and
density optimization without this term already leads to an electron densily that is non-negative on almost
all grid points. The number of exceptional grid points is even smaller than that due to densily fitting error.
Considering the cost of evaluating density values on grid points, we hence omitted this step

For ensuring density non-negativity, it is possible to represent the density as the square of inear combina-
tion of the atomic orbital basis functions, as adopted in many existing OF DFT implementations (e.g., [28,
47-49]). But this would revert the computational complexity to quartic (O(N*)) due to the Hartree term,
and sacrifice the advantage over KSDFT. Future explorations could be expanding the density onto a set of
non-negative-valued basis functions. ™
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Q4: How sensitive is M-OFDFT to the actual choice of basis functions? Why is a an
even-tempered basis set family of Bardo and Ruedenberg used for density representation
in the model, while the KS-DFT data production is performed with a different (standard
Pople double zeta) basis set?

Response: Thank you for pointing out this potential unclarity. The standard Pople double zeta
basis (denoted as {n.(r)}Z_, in the supplementary information) is for orbitals in KSDFT calcu-
lations, while the even-tempered basis set {w, (r)}}, is for the electron density. Typically, rep-
resenting the density requires a finer basis set than for orbitals, hence requiring a different basis
set. This is because the density corresponding to a certain orbital state C, as shown by Eq. (S28)
pc(r) = 8, 2§=1(CCT)°‘; Na(r)ns(r), is effectively expanded onto the paired orbital basis
{Na(r)ns(r)}a=1..B 8=1...8, which contains B? basis functions. Hence the number of density basis
functions M should be larger than B, and a different basis set is required. Using a different basis set for
density is also the common practice in density fitting (see Supplementary A.4.1), a commonly utilized
technique to accelerate KSDFT calculation, where the density basis set is referred to as an auxiliary basis.

The even-tempered basis set is a common choice in density fitting to represent the density. It is of a
finer type than other density basis choices, and achieves a lower density fitting error in our trials (in
terms of the recovery of Hartree and external energy, ie., the objective in the second-last equation of
Supplementary A .4.1). If another density basis is used or desired, the corresponding coefficient vector
can be projected onto this finer basis, which would not introduce significant projection error due to the
larger basis size.

We have revised the paper to include these explanations at the end of Methods 4.1, which we attach below
for your reference:

“In our implemensation of M-OFDFT, the atomic basis for representing density is taken as the even-tempered basis
set [86] with tempering ratio 3 = 2.5 For generating data, restricted-spin KSDFT is conducted at the PBE/6-
31G(2dfp) level, which is sufficient for the considered systems which are uncharged, in near-equilibrium conforma-
tion, and only involve light atoms (up to fluorine). Here, the basis sets for expanding electron density and
orbitals are different, since the density corresponding to an orbital state is effectively expanded on the
paired orbital basis whose number of basis functions is squared (see Eq. (528)), so the basis set to ex-
pand density needs to be larger than the orbital basis set. Using a different basis set for density is also
the common practice in density fitting, in which context the basis is called an auxiiary basis. The even-
tempered basis set is a common choice in density fitting, which is finer than other auxiliary basis choices.
It achieves a lower density fitting error in our trials, and could facllitate calculation under other basis by
projection onto this finer basis.”



natureresearch

Q5: Since the KEDF is learned by the neural network, an obvious question is how this uni-
versal functional does actually look like. How does it compare to e.g. the von Weizsécker
KEDF or known, higher order extrapolations in terms of an analytical description?

Response: Thank you for this question regarding a deeper understanding of our KEDE

Regarding “*how this universal functional does actually look like”, as the KEDF model is a neural
network, it is impractically cumbersome to unwind the analytical expression of the whole computational
process. Following the common way to present a neural network, we schematically listed and plotted the
steps of the calculation process in Alg. 1 and Fig. S1 in Supplementary B.1, where the expressions of
the steps are detailed in the subsections. We have made a substantial revision to Supplementary B.1 by
adding more details, explicitly displaying the expression of computation components, and making clear
connections among the components. Please refer to the revised Supplementary B.1 for greater fine details.
Here, to address your question, we excerpt a succinct description that tries to provide an expression of the
KEDF based on Alg. 1:

“

Algorithm 1 Evaluation of the KEDF model Ts ¢ (D, M) (or the kinetic residual model T zes ¢ (D, M) or the TXC
model Erxce(p,M); see also Fig. SI)

Require: Input molecular structure M = {X,Z} comprising positions X := {x'®}A_, and atomic numbers
Z := {Z}A_ ofall atoms in the molecule, input density coefficients p (See Supplementary B.1.1)

I: Construat pairwise distance features € — CBF(X) and € «— MLP(€) (Eq. (S63), Eq. (S67), Eq. (S64)):

2: Process coefficient features: (P, p') + CoefficientAdapter({p) (Alg. 2);

3: Construat initial atomic representations: h + NodeEmbedding(Z, €, D) (EQ. (S65));

4: foriinl...Ldo

o ) Updare atomic representations using the i-th G3D module: h + ¢3D'(h,€) (Eq. (S69), Eq. (S68),
Eq. (S68));

6. end for

7: Compute the output of the atomic reference module: T' «— Tatomref(P'. M) (EQ. (7));

8: Compute the kinetic energy: Ts Y a_; MLP(ha) +T' (Eq. (S70));

9: return Ts

B.1.1 Density Basis and Coefficient Specification

... Each atom type Z (i.e., atomic number) has its own set of basis functions and the size of each set Tz varies
from diferent atom types. ... To make the coefficient vector homogeneous over all the atoms, the basis function
sets on different atom types are joined together, and this united basis set is broadca.v to all atoms, making a unified
T -dimensional density coefficient vector p, on any atom a, where T := " , Tz is the sum of the number of basis
funcrions over all considered atom types. The final density coefficient vector for the eniire system is thus the
concatenation of these T -dimensional vectors: p := concat({Pa}an1). -

B.1.2 Gaussian Basis Function (GBF) Module
. The GBF module first converts atom coordinates X = {x(‘"},_l into pairwise distances, and then
expand each distance value ||x. — xs|| into a feature vector...
1 (Ik-—!bg-m‘l
define € := GBAX): &%, := L (S63)
V2r ﬂk

where p,, anda,c are learnable scalar parameters representing the center and scale of the k-th Gaussian
basis function. ..

B.1.3 NodeEmbedding Module

.. (i) for the atom type Z'*), an AtomEmbedding module assigns a learnable feature vector ¢ to the
atom according to its type z‘®). (ii) For positional features encoding the spacial relation of the atom a w.r.t
other atoms, distance features w.r.t all other atoms are summed: 3", £as. (Iii) For the density coefficient
P. 0N the atom a, itis first processed by the CoefficientAdapter module detalled later in Supplementary B.2
and B.3. ... the scale of p, Is still large for a neural network to process according to our trials. Therefore,
we introduce a ShrinkGate module:

ShrinkCat e(;’i.) = Aw tanh(Amul bn)'
where A, and A, are learnable scalar parameters. The tanh function is applied element-wise ...
Before aggregating features from the three sources, positional features and density coefficient features are
processed by multiHayer perceptron (MLP) modues. ... follow the general expression:
MLP(x) := U@ gelu(UMx + b)) 4 b?), (S64)
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where x here represents a general feature vector of a unit (node or atom pair), UY) and U® are learnable
weight matrix parameters, b‘*) and b‘® are learnable bias vector parameters, and gelu(z) := z®(z) for
any scalar input = € R is the Gaussian error linear unit activation function [39] that introduces nonfinearity
to the module, where ®(x) is the cumulative distribution function of the standard Gaussian distribution.
When applied to a feature vector, gelu operates element-wise: gelu(x) := gelu(xy).

To sum up, the whole NodeEmbedding module can be formulated as:

define h := NodeEmbedding(Z,€.D) :
A
ha = ” + MLP®) (3 £as) + MLPP (ShrinkCate(pa), 865
b1

where MLP'S) and MLP'®) are two MLP instances with independent parameters.
B.1.4 Graphormer-3D (G3D) Module

... Each G3D module contains two layer normalization (LayerNorm) modules, a SelfAttention module, and
an MLP module.

LayerNorm The Layer Normalization module [40] ... facllitates stable and faster training and a better fit
to data. It normalizes the node feature vector on each node independently:
LayerNorm{h,) := s ® .hf—;_—’i?- +b,

1 Dhia % 1 Dpia
where p, := m ; hg, o5:= m g(hg - Ha)?, (S66)

Dy;a Is the dimension of the input feature vector h, for node a, s € RP%id and b € RPwid are Jearnable
vector parameters, and @ denotes element-wise multiplication.

SelfAttention ... To inform the attention mechanism of this characteristic, Graphormer-3D (G3D) [35]
introduce pairwise distance features into the attention mechanism. To accommodate for the different usage
of pairwise distance features from that in the NodeEmbedding module, a learnable MLP layer is applied to
the original pairwise distance features, pair by par... :

& = MLP() e RV A*Phend . E . := MLP(Eas) € RPba (S67)
where the MLP in the latter expression follows the general formulation in Eq (S64)... For an explicit expres-

sion, let £'¥ .= [£'¥],, denote the A x A matrix combining the d-th distance feature for all the pairs. The
expression for the ttention module is:

define b’ = [h,.- ,hfy] := Selfdttention(h,&) € R™%4*4 for h:= [hy,. .. ,ha] € RP¥4 .

b = concntenate({h',(,l), cee ,h"(,D"“"]}) € ROhanaDlia=Drid g =1... A,
@TgdH T (S68)
where [0’ ,... n'{P) .= v@ softmz(u f e“’) € RPhia*A i —1... Dposa,

hid
Q¥ .= ylmedly K@ ey @) glaied

and Ulaeeryd) yteyd) ang ytied) arg Jearnable weight matrix parameters in RPhia*Dwid for each
d€ {1,-++ ,Dygaq} (the dimensions are chosen such that Dygag Dfig = Dhia)-

Assembly The third component in the G3D module is an MLP module, which follows the same form as
given in Eq. (S64), and is applied fo the feature vector of each node independently. These modules are
combined to make the G3D module following... :

definen' := ¢aD(h, &) :
h' := MLP(LayerWorm(h")) + h", (S69)
h' := SelfAttention(Layerorm(h),€) + h.

We also append Eq. (7) in Methods 4.3 for the AtomRef module:
TatemRet(Py M) = Epp + g, )

where g4 and Ty are constructed for the given molecular structure M from pre-computed statistics on
the training dataset (see Methods 4.3 and Supplementary B.3.3).

The Alg 2 invoked in Step 2 of the computation pipeline is attached below, with referred equations listed:
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Algorithm 2 Evaluation of the CoefficientAdapter module

Require: Input density coefficients p.

Require: Pre-computed dmonslonwlse rescaling factors {Az.}z. (see Eq. (4) and Supplemen-
tary B.3.1); pre-computed quantities for the target molecular' structure M: Wigner-D matrices
{{D } tmax}a_y for transforming coefficients on each atom onto the local frame of the atom, and the
square-root matrix M of the density-basis overlap matrix W (see Eq. (S72)).

I: forainl...Ado

2 forlin 0 Imax do

3 Transform density coefficients using the Wigner-D marrix: pl, + DLpl (Eq. (S71));

4. end for

5: end for

6: Conduct natural reparamererization: p' — M p (Eq. (6)):

7: forainl...Ado

8. forrinl...T do

9: Rescale density coefficients dimension-wise: Pa,r ¢ Az(a) » Par (EG (5)):

10:  end for

11: end for

12: return (p, p')

The local frame module (for Steps 1-5; see Methods 4.2 and Supplementary B.2): ifor each atom a located at Xa,
determine its local frame by choosing the % axis pointing to its nearest atom x5, the  axis lies in the line of

the cross-product of X with the direction to the second-nearest not-on-X atom x& ), and the ¥ axis is then given
by ¥ = 2 x & Construa Wigner-D matrices {D f:a‘ that transforms tensors of various orders  (azimuthal
quantum number) from the original coordinate system to this local frame, and transform the coefficients into this
local frame using the matrix of the corresponding order:

pi =Diph, ... (S71)
Since both the local frame and electron density rotate with the molecule, the transformed coefficients p' are
rotational invariant.
The natural reparameterization module (for Step 6; see Methods 4.3 and Supplementary B.3.2): Coefficients
over all dimensions on all the atoms p are linearly transformed to balance the sensitivity to the owput energy:

p=Mp, (6)

where M is a square matrix satisfying MM ' = W, where W, := [ wu(r)wy (r) dr is the overlap matrix of
the density basis. Specifically, M is taken as:

M =QVA, (872)

where \/A denotes elemens-wise square-root opemnaw. and the diagonal matrix A and orthogonal matrix Q
come from the eigenvalue decomposition of W = QAQT.

The dimension-wise rescaling module (for Steps 7-11; see Methods 4.3 and Supplementary B.3.1): Coefficient at
each dimension on each atom is scaled according to pre-computed rescaling facrors:

Par = Az(a)’, Pﬁ,r, (5)

and the scaling factors are determined as statistics on the training dataset:

max_grad
mm{ = z’f, Jesk }, if max grady . > sgnd,
Azr = :
1,

Sgrad std_coeffz - (4)

otherwise,

where sgnd and sceii Gre chosen rtarget scales for the gradient and coefficiens, and the statistics
for the gradient scale and coeﬁcmu scale over the dataset are taken as the maximum of gradient
max grady . = umx{Vp_l,Ts ]},:z(.)_z’ &, a and standard derivation of coefficient std coeffzr =
std{piH}.. zle) =z, k,4 ON the dataset.

Regarding the comparison with the von Weizsicker (vW) KEDF or others with known expressions,
due to the complicated analytical expression of our KEDF as a neural network shown above, it is unclear
how to compare their analytical descriptions. But in terms of numerical behavior, we provide a scatter plot
in Supplementary Fig. S12 attached here to compare the kinetic energy values given by our learned KEDF
model and the corresponding values by the vW KEDF. We present both the residual version and the TXC
version (i.e, the sum of the KEDF and XC functional) for our KEDF model, where the residual KEDF
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takes the APBE as the base KEDF (Supplementary B.4.1), and the TXC version (Supplementary B.4.2)
evaluates the kinetic energy value by subtracting its output value with the PBE XC functional value.
Densities for this evaluation are taken as the ground-state densities optimized by our KEDF models on
unseen molecular structures in the test set of either the ethanol dataset or the QM9 dataset. From the
figure, we see that all the predicted kinetic energy values by our KEDF model in all cases are larger than
the corresponding values by the vW KEDE This verifies that the learned KEDF models satisfy the viW
lower bound. We have revised the paper to include these results and discussions in Supplementary D.1.1
together with the figure, and referred to these results in *3  Conclusion and Discussion”. We attach the
revision below for your reference:

“Comparison with vW as a lower bound  As mentioned in Supplementary B.4.1, since the von
Weizsadker (vW) KEDF [44] is a lower bound of the true KEDF [6, Thm. 1.1], taking it as the base KEDF
could inform the Ts.. model to be non-negative, but unfortunately introduces more training challenges.
Hence it remains to be explored to leverage the lower-bound property of the vW KEDF. Nevertheless, we
can empirically verify that our learned KEDF models already satisfy this lower bound. For this, we present
a scatter plot in Supplementary Fig. S12, where each point represents the viW KEDF value (x-axis coordi-
nate) and the kinetic energy value by our learned KEDF model (y-axis coordinate) of each electron density.
The densities for this evaluation are taken as the ground-state densities optimized by our KEDF model on
unseen ethanol test structures (Supplementary Fig. S12(a-b)) or unseen QM test structures (Supplemen-
tary Fig. S12(c-d)), following the setting in Results 2.2. Our KEDF model takes either the residual KEDF
version (Supplementary B.4.1) with APBE base KEDF (Supplementary Fig. S12(a,c)), or the TXC func-
tional version (Supplementary B.4.2) which gives the kinetic energy value by subtracting the Exc value
from the model-predicted value Exxc (Supplementary Fig. S12(bd)). The figure clearly shows thatin all
cases, the kinetic energy values by our KEDF model are larger than the corresponding vW values, hence
our learned KEDF models satisfy this lower bound property. ™
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Figure S12: Kinetic energy value comparison between M-OFDFT and the vW KEDF. Each point rep-
resents the vW KEDF value (x-axis coordinate) and the kinetic energy value by our learned KEDF model
(v-axis coordinate) of each electron density. Two versions of our learned KEDF model are considered, in-
cluding the residual KEDF version (a,c) and the TXC functional version (b,d). The densities for evaluation
come from ground-state densities optimized by our KEDF model on unseen ethanol test structures (a-b)
or unseen QM9 test structures (c-d).
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Q6: The authors further indicate that the incorporation of exact features into the func-
tional is not necessarily improving the generalization or the prediction capabilities. As
an example, it is mentioned that the inclusion of the von Weizsacker extension as a basis
to learn the residual leads to an explosion of gradients. It is hard to understand how a
hard-wiring of physical knowledge is actually reducing the performance. Is this only due
to a shifted, less-than-optimal use of the data provided in case of a more complicated
model?

Response: Thank you for continuing the discussion on this point. We did spend considerable effort trying
to stabilize the training of the version using the von Weizsiicker (vW) functional as the base functional,
in hope to leverage the lower bound property of the vW functional for better generalizability. We used
all the data on par with the presented version, and applied all the mentioned techniques in Methods 4.2
(local frame) and 4.3 (natural reparameterization, atomic reference model, and dimension-wise rescaling)
to reduce the difficulty of learning large-scale gradients. But we found that training on these data is still
hard: even after the processing of local frame, natural reparameterization, atomic reference model, and
dimension-wise rescaling, the processed gradient scale, in terms of the maximum absolute value across
all dimensions and all datapoints, is 2.08 x 107 on the QM9 dataset (Supplementary Fig. S8(a)), which
is orders larger than the scale 2.74 when using the APBE as the base KEDF (Supplementary Fig. S6(b)),
and the scake 4.82 for the TXC version (ie.. learning the sum of the KEDF and XC functional), even
allowing a larger processed density coefficient scale of 1113.87 (Supplementary Fig. S8(b)) vs. 507.44
for APBE base KEDF (Supplementary Fig. S6(c)) and 451.59 for the TXC version. Detailed visualization
of the scale of processed gradient and density coefficient in each dimension is shown in Fig. S8, which is
attached here. This large gradient scale impedes any effective training of the neural network model. We
even tried dropping out datapoints with particularly large gradient labels that exceed a chosen threshold
for training, but observed a performance degradation, duve to reduced information on a broader range of
densities.

As such, we suppose that this challenge is less likely caused by insufficient data or improper use of
data. We suspect that this may be due to the divergence between learning an easier rule and leaming a
numerically more friendly target. The vW functional leaves the neural network model to leamn a non-
negative residual, which can be regarded as an easier rule. But since the vW functional is a lower bound,
it may not approximate the KEDF closely, hence could leave the residual and its gradient in a large scale.
Indeed, the mentioned reduced gradient scale 2.08 x 107 of vW residual is 7.6 x 10® times larger than
that of the APBE residual. We will investigate more suitable neural network model architectures to learn
such a steep functional in hope to leverage the lower-bound property of the vW functional in the future.

We have revised the paper to include this discussion in Supplementary B.4. 1, together with Fig, S8. We
also referred to this discussion in the corresponding sentence in “3  Conclusion and Discussion”. We
attach the revision in Supplementary B.4.1 below for your reference:

“Although the von Weizsacker (W) KEDF [44] provides a lower bound of the true KEDF [6, Thm. 1.1]
hence could inform the residual model to be non-negative, using it as the base KEDF renders the residual
gradient in vast range, which is hard for the model to learn. Specifically, according to the visualization of
processed gradient and coefficient scales presented in Supplementary Fig. S8, even after the processing
of local frame, natural reparameterization, atomic reference model, and dimension-wise rescaling, the pro-
cessed gradient scale, in terms of the maximum absolute value across all dimensions and all datapoints, is
2.08 x 10" on the QM9 dataset (Supplementary Fig. S8(a)), which is orders larger than the scale 2.74 when
using the APBE as the base KEDF (Supplementary Fig. S6(b)), and the scale 4.82 for the TXC version
below (ie., learning the sum of the KEDF and XC functional), even allowing a larger processed density
coefficient scale of 1113.87 (Supplementary Fig. S8(b)) vs. 507.44 for APBE base KEDF (Supplementary
Fig. S6(c)) and 451.59 for the TXC version. This large gradient scale impedes any effective training of
the neural network model. We even tried dropping out datapoints with particularly large gradient labels
that exceed a chosen threshold for training, but observed a performance degradation, due to reduced in-
formation on a broader range of densiies. We suspect that this difficulty may be due to the divergence
between learning an easier rufe and learning a numerically more friendly target. The vW functional leaves
the neural network model to learn a non-negative residual, which can be regarded as an easier rule. But
since the vW functional is a lower bound, it may not approximate the KEDF closely, hence could leave the
residual and its gradient in alarge scale. "
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Figure S8: Gradient and density coefficient scales over dimensions on the QM9 dataset in the
setting of learning residual KEDF with the vW base KEDF. The maximum absolute value is used to
measure the maximum scale of data. (a) and (b) respectively present the gradient scales and density co-
efficient scales after processed by local frame and all enhancement modules (natural reparameterization,
atomic reference model, and dimension-wise rescaling), in parallel with Supplementary Fig. S6(b) and (c)
for APBE base KEDF respectively. Although these techniques have reduced the original gradient scale
under a reasonable density scale, the processed gradient scale is still exceedingly large ~ 107 for a neural
network to learn.
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Q7: In the light of point 6, have the authors thought of an iterative generation of new
training data whenever needed in the process of learning a general KEDF applicable to
any molecular system?

Response: Thank you for mentioning this powerful technique. We indeed have thought of using active
learning to query and generate data more informatively, which gives a better chance to effectively cover
the problem space to supervise the model. More specifically, possible approaches to find the most infor-
mative query of molecular structures could be monitoring the divergence of predictions among an ensem-
ble of models trained in parallel [83], or introducing a variance estimation mechanism for the prediction
from a single model (e.g., by following a Bayesian paradigm and evaluate the variance of the posterior
distribution given the data) [B4]. We are also targeting the ultimate goal of leaming a truly universal
KEDF that can solve any molecular system. But before carrying out this resource-extensive exploration,
this work presents the results of the first-step endeavor to verify the effectiveness of technical design,
including model formulation and architecture design, training strategy (leverage both energy value and
gradient labels for multiple densities per molecular structure), techniques to enable fitting large gradient,
and density optimization design. We are excited about the results, and will hand on this exploration in the
next steps.

Regarding this point, we have revised the second-last paragraph of Conclusion, which we attach here for
your eference:

“For better extrapolation, another possibiliry is using more dara amd larger model with proper architecture. Recent
progress in large language model [80, 81] has shown the capacity of Transformer to solve seemingly all language
tasks given large enough dara and model. A similar wrend in the Graphormer architecture is hinced by a recen
stucly [82] suggesting opportunity o further improve the universaliey of the KEDF model Considering the more
significant cost for obtaining data than in conventional Al tasks, active learning can be Jeveraged fo query
more informative data, which can be identified by e.g., a large disagreement among an ensemble of
models [83], or a large (relative) variance estimation for the model prediction [84].”
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2 Response to Reviewer 2

Q1: Comments on the justification of the present study. The attempts to apply the
machine learning technique to the development of KEF has been performed before the
present study. The authors did not cite such important contributions and mention the dif-
ference from such pioneering studies. The authors should honestly refer to such studies
and make clear the present contributions.

Response: Thank you for pointing out this potential unclarity. We surely tried our best to survey as many
as possible machine learning methods for learning the kinetic energy density functional (KEDF) and for
performing OFDFT before conducting our work. We cited quite a number of related works, and made
discussions on these works along with comparison of differences and unique contributions of our work in
the submitted paper (note that the citation numbers below are those in the revised paper):

In “1  Introduction”, we introduced quite a few important and pioneering works, based on whether
they implemented a nonlocal or a (semi-)local functional. Aiming at further advancing the research
direction, we note that these works are applied to molecules of only up to dozen atoms, and extrapolation
to molecules larger than those used in training has not been explored yet:

“For approximating a complicated functional, recent triumphant progress in deep machine learning creates new
opportunities. Yer, existing explorations for OFDFT are still in an early stage. These methods use a regular grid
1o represent density as the model inpws, which is not efficient enough to represent the uneven density in molecular
systems. Even an irregular grid requires unaffordably many poirus for a nonlocal calculation, while the nonlocality
has been found indispensable to approximate KEDF [39, 13, 8, 40] As a result, these works only studied molecules
of up to a dozen atoms, either due to the unaffordable cost of a nonlocal calculation [21-24,35] or limited accuracy
of a (semi-)local approximation [27,33,37,34] Moreover, few work showed the accuracy on molecules muckh larger
than those in training, but such an extrapolation smdy is imperative as it is on molecules larger than other methods
could afford to generate abundan: data that an OFDFT method could demonstrate the dominating value of its scaling
€.

The following paragraph then highlighted the difference that our KEDF model is nonlocal (hence could be
more accurate) while can still afford large molecules, with the description of the ideological contribution
of using expansion coefficients on atomic basis as the input density representation:

“In this work, we develop an OFDFT method called M-OFDFT that can handle Molecules using a deep-learning
KEDF model. To account for the nonlocal nature of KEDF with affordable coss, we take the expansion coefficients of
the density on an atomic basis set as the model input (Fig. 1(b)), which constitute a much more concise representation
than a grid-based representation. Each coefficient represents a density component around an atom, and can be treated
as a feature associated to that atom. To process such input, we build a deep-learning model ... iteratively processes
features on each atom, with the interaction with features on other atoms through the atention mechanism, which
covers the nonlocal effea. ..."

The last paragraph in “Introduction” summarizes the empirical achievements into three points, where the
first two, i.e. chemical accuracy for molecules of common sizes and good extrapolation accuracy, are not
presented before, hence account for a difference and unique contribution:

“.. (1) M-OFDFT achieves chemical accuracy compared to KSDFT on a range of molecular systems in similar
scales as those in training. This is hundreds times more accurate than classical OFDFT. The optimized density
shows a clear shell structure, which is regarded challenging for an orbital-free approach. (2) M-OFDFT achieves
an antractive extrapolation capability that its per-atom error stays constant or even decreases on increasingly larger
molecudes all the way to 10 times beyond those in training. The absolute error is still nuch smaller than classical
OFDFT. In contrast, the per-atom error keeps increasing by end-to-end energy prediction counterparts. M-OFDFT
also shows a more efficient wilization of a few large-scale data afier trained on abundant affordable-scale data. ... ™

In “3  Conclusion and Discussion”, we cited a few more related works in the context of highlighting
technological differences and our unique methodological contributions:

“This work introduces a few technical improvemenus for learning a functional model. Instead of a grid-based rep-
resentation, we used coefficients on atomic basis as input density feature, whose much lower dimensionality allows
a nonlocal architecure for accuracy and extrapolation. Some works [67, 68] on learning XC functional also adopt
the coefficient inpus, but withowt the molecular structure input, hence cannot properly capture inter-atomic density
feature interacrion. Regarding the additional challenge for learning an objective, we generated multiple data points
each also with a gradient label for each molecular structure. Although the possibility has been noted by previous
works [21, 22] none has fully leveraged such abundant data for training (some only incorporated gradient [27,
33-35]). There are other ways to regularize the optimization behavior of a functional model [69-71, 68] but our
trials in Supplemersary D.4.4 show that they are not as effective. To express intrinsically large gradient, we introduce
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enhancement modules in addition to a conventional neural network. For stable density optimization using a learned
model, prior works [21,22,24,27] used projection onto the training-data manifold in each step, while M-OFDFT
only needs the initialization be on the ifold (Methods 44).

Nevertheless, we appreciate that your feedback informs us that it could make the discussion on related
work clearer and more noticeable if we expand the description of related work. We hence revised the
paper accordingly, and attach the revised contents below for your reference.

Firstly, we have expanded the introduction to related work in “Introduction™, where we have cited
more works: [25,26,28,29,30,31,32,36,38]. We would be more than glad if you could point out any
pioneering or important previous work that is still missing or specify if more discussions are still desired.

“For approximating a complicated functional, recent triumphant progress in deep machine learning creates new
opportunities. By leveraging labeled data, the theoretical mismaich can be compensated. Kernel ridge
regression is employed in pioneering works [21-26], including the extension that leverages kernel gradi
ents [27]. These works have proven the success of the idea of machine-learning OFDFT. Such models
can be seen nonlocal, but the costly calculation on grid restricts the applications to 1-dimensional systems.
Some other works fit a inear combination of classical KEDF approximations with explicit expression [28],
including nonlocal ones [29], but the demonstrated systems are still effectively 1-dimensional. Deep neural
networks have also been explored recently, including mult-layer perceptrons (ak.a feed-forward neural
networks) [30-35] and convolutional neural networks [36,27,37,38]. Many of them learn the kinetic energy
density at each grid point from semi-focal density features on that point [34], and to compensate for non-
local effects, third-order [30,31,33] and fourth-order [32] density derivative features are leveraged. Others
consider interaction of densily features at differentlocations hence are nonlocal [36,27,37,35,38]. Many of
such works enable calculation on 3-dimensional systems [36,30-32, 34,37,38], and the lower computational
complexity than KSDFT has been shown empirically [34]. Nevertheless, the demonstrated systems are
still limited to tiny molecules of dozen atoms, with exceptions of [36] with about 30 atoms but restricted to
akanes, and [34] with a few thousands atoms but without accuracy evaluation. Moreover, few work showed
the accuracy on molecules much larger than those in training but such an extrapolation study is imperative as it
is on molecules larger than other methods could afford to generate abundant data that an OFDFT method could
demonstrate the dominating value of its scaling advantage. ™

We have revised the description on our propesed method in “Introduction™, to better contrast with
previous works:

“In this work, we develop an OFDFT method called M-OFDFT that can handle common Molecules using a deep-
learning KEDF model. We attribute the limited applicability of previous works for general molecular systems
to the grid-based representation of density as the model input, which is not efficient enough to repre-
sent the uneven density in molecular systems. Even an irregular grid requires unaffordably many points
(~ 10*N) for a nonlocal calculation, while the nonlocality has been found indispensable to approximate
KEDF [39,13,8,40], hence a stringent accuracy-efficiency trade-off is raised. To account for the nonlocal
nature of KEDF with affordable cost, we take the expansion coefficients of the density on an atomic basis set as the
model input (Fig. 1(b)), which constitute a much more concise representation with thousands times fewer dimen-
sions than a grid-based representation. Each coefficient represents a density component around an atom, and can
be treated as a feature associated to that atom. To process such inpus, we build a deep-learning model ... iteratively
processes features on each atom, with the interaction with features on other atoms through the attention mechanism

We have also revised the last paragraph in “Introduction™ to better highlight the difference and
unique contributions in comparison to previous machine-leaming OFDFT methods:

“We demonstrate the practical wtility and advantage in the following aspeas. (1) M-OFDFT achieves chemical ac-
curacy compared to KSDFT on a range of molecular systems in similar scales as those in training. This is hundreds
times more accurate than classical OFDFT. The optimized density shows a clear shell structure, which is regarded
challenging for an orbital-free approach. Up to our knowledge, the size of these systems are already larger
than those studied in previous machine-learning OFDF T works. (2) M-OFDFT achieves an attractive extrapo-
lation capability that its per-atom error stays constant or even decreases on increasingly larger molecules all the way
to 10times (224 atoms) beyond those in training. The absolute error is still much smaller than classical OFDFT. In
contrast, the per-atom error keeps increasing by end-to-end energy prediction counterparts. Up to our knowledge,
this is the first extrapolation study for machine-learning OFDFT methods. M-OFDFT also shows a more ef-
ficient wilization of a few large-scale data afier trained on abundant affordable-scale data. (3) With the accuracy
and extrapolation capability, M-OF DFT unleashes the scaling advantage of OFDFT to large-scale molecular sys-
tems. We find its empirical time complexity is O(N**®), indeed lower by order-N over O(N**°) of KSDFT. The
absolute time is always shorter, achieving a 27.4-fold speedup on the protein B system (2,750 elearons). M-OFDFT
also introduces a few technical contributions, which are summarized after presenting the results. In all,
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M-OFDFT pushes the accuracy-efficiency trade-off frontier in quantum chemistry, and provides a powerful tool for
solving large-scale molecular science problems. ™

Detailed technical comparisons and contributions are kept in “3  Conclusion and Discussion”. We have
also revised the paragraph to better highlight technical differences from existing works and our
contributions:

“This work introduces a few technical improvemerus for learning a functional model. Instead of a grid-based repre-
sentation, we used coefficients on atomic basis as input density feature, whose much lower dimensionality allows a
nonlocal architecture for accuracy and extrapolation. Some works [67,68] on learning the XC functional also adopt
the coefficient inpus, but withowt the molecular structure input, hence cannot properly capture inter-atomic density
feature interaction. Regarding the additional challenge for learning an objective, we generated multiple dasapoints
each also with a gradient label for each molecular structure. Although the possibility has been noted by previous
works [21,22] none has fully leveraged such abundant data for training (some only incorporated gradiens [27,33-
35]; Remme et al. [38] also produced multiple datapoints but by perturbing the external potential). There
are other ways to regularize the optimization behavior of a functional model [69-71,68] but our trials in Supple-
mentary D.4.4 show that they are not as effective. To express inrinsically large gradiens, we introduce enkancement
modules in addition to a conventional neural neswork. With these techniques, M-OFDFT well handles the noto-
rious challenge of unstable density optimization using a learned KEDF model. Due to this challenge, some
prior machine-fearning KEDFs [36,30,31] do not support density optimization, and some others require
projection onto the training-data manifold in each step [21,22,24,27]. In contrast, M-OFDFT only needs the
initialization step be on the manifold (Methods 4.4). "

We hope that these revisions could make the the paper better present previous pioneering works and
clarify our differences and contributions.
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Q2: Comments on the advantages of M-OFDFT. M-OFDFT utilize s atomic coordinates and
atomic numbers in addition to electron density. It differs from pure KEDF, which is based
on the original spirit of DFT that uses only electron density. Neural network potentials
(NNP), which have been significantly advanced in recent years, similarly use atomic co-
ordinates, atomic numbers, and implicit or explicit basis functions representing atomic
environments. The NNP might predict energy and force (and partial atomic charge) for
large molecular systems and a wide range of elements faster than OFDFT with high ex-
trapolative ability. However, The NNP includes limitations on the representation of elec-
tron density and electronic states.

Q2.1: From the above perspective, the authors should mention the NNP in the manuscript
and comment on how M-OFDFT fundamentally differs from NNP. The statement in the
conclusion section, “This work has demonstrated the improved extrapolation by choos-
ing an appropriate formulation of quantum chemistry: learning a density functional ex-
trapolates qualitatively better than direct energy prediction”, is derived from applying the
M-OFDFT architecture to direct energy prediction. It is unclear whether this statement is
valid considering NNP’s performance in recent years.

Response: Thank you for continuing the discussion on neural network potentials (NNP).

Regarding ““the authors should mention the NNP in the manuscript’™: In fact, we mentioned NNP
in the beginning of Results 2.3 as “M-PES”, following “potential energy surface”, which uses the same
model architecture as M-OFDFT but for direct energy prediction. To reduce possible confusion, we have
revised the introduction of this method and have renamed “M-PES” as “M-NNP":

“To evaluate the significance of the extrapolation performance, we compare M-OFDFT with a natural variant of
deep machine learning method that direaly predicts the ground-state energy from the molecular structure M in
an end-to-end manner, which we call M-NNP (following " potential-energy-surfaceneural network potentials”).
We also consider a variant named M-NNP-Den that additionally takes the MINAO initialized density into input for
investigating the effect of density feature on extrapolation. Both variants use the same nonlocal model architecture
and training sestings as M-OFDFT for fair comparison (Supplementary C4). Comparisons with more recent NNP
architectures, including ET [49] and Equiformer [50], are shown in Supplementary D.2.1, which suggest
the same conclusion. ™

To better address your question, we also revised the paper to introduce and comment NNPs in Results 2.1
right after the description of the model formulation:

“.. A remark on this formulation of KEDF is that it resembles the formulation of neural network potentials
(NNPs) [46-48], which directly predicts the ground-state energy from the given the molecular structure
M. By bypassing the process to solve electronic state, they can handle large molecules faster, and
remarkable progress has been made inrecent years (e.q., [49, 50]). Nevertheless, NNPs do not describe
electronic state by design, which limits their applicabliity to more detafled molecular properties. The M-
OFDFT formulation also shows better extrapolation performance as will be demonstrated in Results 2.3.”

Regarding “comment on how M-OFDFT fundamentally differs from NNP*:

In the above revision, we have pointed out the differences from NNP, including the limitation of NNP
on describing electronic state, as you mentioned, and also the better extrapolation of the M-OFDFT
formulation. Regarding the latter argument, we made a detailed discussion after presenting the empirical
results in the extrapolation study on QMugs in Results 2.3:

“The resut is shown in Fig. 3(a). We see that the per-atom MAE of M-OFDFT is always orders smaller than M-
NNP and M-NNP-Den in absolute value, even though M-NNP and M-NNP-Den achieve a lower validation error
(Supplementary Table S6). More atractively, the error of M-OF DFT keeps constant and even decreases (note the
negative exponent) when the molecule scale increases, while the errors of M-NNP and M-NN P-Den keep increasing,
even though they use the same nonlocal architecure capable of capturing long-range effects, and M-NNP-Den also
has a density inpws. We attribute the qualitatively bester extrapolation to appropriately formulating the machine-
learning task. The ground-state energy of @ molecular structure is the result of an intricate, many-body interaction
among electrons and nuclei, leading to a highly challenging function to extrapolate from one region to another. M-
OFDFT converts the task into learning the objective function for the targer output. The objective only needs to capture
the mechanism that the particles interaat, which has a reduced level of complexity, while transferring a large portion
ofcomplexity to the optimization process, for which optimization tools can handle effectively without an extrapolation
issue. Similar phenomena have also been observed recently in machine learning that learning an objective shows
bester extrapolation than learning an end-to-end map [61, 62]".
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This is the explanation behind the statement “This work has demonstrated the improved extrapolation by choos-
ing an appropriate formulation of quantum chemistry: learning a density funcrional extrapolates qualitatively better
than direct energy prediction” that you have noticed. The rest of Results 2.3 shows more empirical compar-
isons with NNP, which deliver the same conclusion.

Regarding *... whether this statement is valid considering NNP’s performance in recent years™:
Thank you for motivating this further investigation. Indeed, in the original submission, we only showed
better extrapolation performance of M-OFDFT compared with the NNP counterpart using the same model
architecture as M-OFDFT. This is under the consideration for a fair comparison, where we eliminated the
influence from model architecture when comparing the two machine learning formulations,

During the revision, we have further tested the extrapolation performance of more recent and advanced
NNP model architectures to further consolidate the conclusion. For this study, we choose Equivariant
Transformer (ET) [49] and Equiformer [50] (their citation numbers are [86] and [87] in the Supplementary
Information), which are recently proposed NNP architectures with remarkable performance and impact:
ET is one of state-of-the-art NNP architectures using vector features, and Equiformer is a well-recognized
representative for NNP architectures using high-order tensor features. The results suggest that the state-
ment “This work has demonstrated the improved extrapolation by choosing an appropriate formulation
of quantum chemistry: learning a density functional extrapolates qualitatively better than direct energy
prediction™ remains valid when using these more recent and advanced NNP architectures. Please refer to
the newly added contents in Supplementary D.2.1 of the revised paper for detailed experiment settings
and results. We attach the contents here for your reference:

“Extrapolation comparison to NNP with other architectwwes Results 2.3 have demonstrated the
qualitatively better extrapolation performance of M-OFDFT than direct energy prediction, ie., the neural
network potential (NNP) formulation, using the same model architecture as M-OFDFT, denoted as M-
NNP. We further verify that this conclusion stifl holds even using more advanced and recent architectures
for NNF. We consider Equivariant Transformer (ET) [86] and Equiformer [87], which are recently proposed
NNP architectures that have shown remarkable performance and competitiveness in the field. Notably,
ET is one of state-of-the-art equivariant NNP architectures that use Cartesian vector features to maintain
SE(3)-equivariance, and Equiformer is a cutting-edge approach amongst NNP architectures that leverage
high-order spherical harmonics tensors to encode molecular features.

Following the setting of Fig. 3(a) introduced in Results 2.3, we train the NNP models on QM9 and QMugs
molecules with no more than 15 heavy atoms, and test them on increasingly larger molecules from the
QMugs dataset. Results in Supplementary Fig. S16 demonstrate that although using the more advanced
architectures improves the performance over M-NNP, the error in the extrapolation cases is still larger
than that of M-OFDFT, and the error still increases with molecule size, while the error of M-OFDFT keeps
constant or even decreasing.
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Figure S16: Extrapolation performance of M-OFDFT compared to other advanced deep-learning
architectures. Each line denotes the mean absolute error (MAE) in per-atom energy on increasingly
larger molecules from the QMugs dataset, using a mode! rained on molecules with no more than 15
heavy atoms from QM9 and QMugs datasets. The bars show 95% confidence Intervals. The setting is in
parallel with Fig. 3(a). Beyond M-NNP, i.e., the NNP using the same model architecture as M-OFDFT and
already presented in Fig. 3(a), two more architectures for NNP are investigated: Equivariant Transformer
(ET) [86] and Equiformer [87].
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Q2.2: The authors should discuss the significance of handling OFDFT, whether it can
describe electronic structures such as charged or open-shell systems, or excited states.

Response: Thank you for suggesting this point to further demonstrate the unique capabilities of our M-
OFDFT over NNPs. As the input of atomic charges and positions to the KEDF model is only used to
represent the types and positions of basis functions, but not for the specific physics of the atoms, the
formulation of M-OFDFT can surely describe electronic structures of charged or open-shell systems or
of excited states, just by using the expansion coefficients of the corresponding electron density onto the
atomic basis functions whose types and positions are specified by the atomic charges and positions.

We conducted a preliminary investigation on the efficacy of M-OFDFT to solve charged mokcules, by
evaluation on five ionized carboxy lic acid molecules. Even though M-OFDFT is trained on data only from
neutral molecules, M-OFDFT still works on these charged molecules, with an ionization energy MAE of
3.80 keal /mol. We have revised the paper to include this result and discussion in Supplementary D.2.2,
which we attach here for your reference:

“Results on charged molecules As clarified in Supplementary B.1, the input atom types Z and positions
X are only used to inform the KEDF model of the types and centers of the atomic basis functions under
which the expansion coefficient input is defined, but notfor the physics of the actual atoms. This formulation
makes M-OFDFT inherently general for handling input densities from either neutral or charged molecular
systems, just by feeding the KEDF mode! with expansion coefficients of the corresponding electron density
onto the atomic basis functions whose types and positions are specified by Z and X, even if the KEDF
model Is trained on data only from neutral molecules.

Here, we demonstrate the efficacy of M-OFDFT in handling charged molecules. To construct an evaluation
benchmark, we randomly select five unseen carboxylic acid molecules from the QM9 test set, and depro-
tonate the hydrogen cation from the carboxyl group (—C(O)OH) of each molecule, thereby generating five
carboxylate anions (—C(0)0"). We employ the TXC functional model Erxc,e trained on the QM9 training
set, which comprises neutral molecules only, to solve these charged systems. We initialize the electron
density using ProjMINAO (Methods 4.4), which projects the electron density from the MINAQ initialization
onto the training-data manifold by a deep-learning model. Since MINAO gives the initial electron density
by trealing the system as neutral, we rescale the density coefficients produced by ProfMINAQ to normalize
to the correct number of electrons of the charged system. Note that in the density optimization process
(Eq. (1)), the number of electrons is kept throughout, so the ground-state density solution also respects the
carrect charge of the system. We evaluate the performance of M-OFDFT in terms of the mean absolute
error (MAE) from KSDFT results over the five systems in the energy difference between the neutral and
the corresponding charged system.

The result is that M-OFDFT achieves a 3.80kcal/mol MAE of energy difference. In comparison, the result
of the classical OFDFT using the TF+5vW KEDF is 30692.16 kcal/mol, an error of five orders larger. This
result indicates that M-OFDF T trained on neutral systems is still effective in handfing charged molecules,
an extrapolation capability of a new kind. The capability for charged molecules can be further improved if
data from charged molecules are included. ™

This capability to handle arbitrarily charged systems further highlights the uniqueness of M-OFDFT over
NNPs. The accuracy on charged molecules, as well as open-shell systems, can be further improved by
including data from such systems in training the KEDF model. We leave elaborated study on this topic as
future work, as mentioned in “Conclusion and Discussion™:

“In the main results, we train and test the functional model on newral molecules withowt spin polarization. A
preliminary demonstration of the capability of M-OF DFT to handle charged molecules is shown in Sup-
plementary D.2.2. Generalizations to more charged and open-shefl systems are possible by including data
beyond such restrictions. ™

19



natureresearch

Q2.3: The electron density obtained by M-OFDFT (Figure 2(b)) is an excellent result in
terms of the OFDFT performance. However, the discussion regarding electron density is
limited to this figure in this article. | strongly recommend that the authors show numerical
results about molecular properties related to electron density. Atomic charge, dipole, and
quadrupole moments are obtained from grid-based electron density analysis. It might be
possible to discuss the partial atomic charge or bond order using the atomic (density)
basis by analogy with the analysis based on the atomic orbital basis.

Response: Thank you for the suggestion to enrich the demonstration of the quality of solved electron
density. In the revised paper, we have included numerical results of partial charges and dipole moments®
in Results 2.2 to quantitatively evaluate the optimized density on ethanols by M-OFDFT, in parallel with
the visualization result in Fig, 2(b):

“For numerical evaluations of the optimized density, we consider two density-related molecular properties,
Hirshfeld partial charges [59] (Supplementary D.1.2 presents a visualization) and dipole moment. The cor-
responding MAEs from KSDFT results over test ethanol structures are 1.92x10~* e and 0.0180D, which
are significantly better than the results 0.155e and 0.985D of the classical OFDFT using the TF+5vW
KEDF."

The mentioned visualization of partial charges in Supplementary D. 1.2 is attached below:

“Partial charge visualization As reportedin Results 2.2, the optimized density of M-OFDFT can accu-
rately reproduce Hirshfeld partial charges [85] and dipole moments of molecules. To further ilustrate the
results, we provide a representative example in Supplementary Fig. S14 of atomic partial charge on each
atom in an unseen test ethanol structure based on the optimized density by M-OF DFT. The results show
that the Hirshfeld partial charges from M-OFDFT are in close agreement with those obtained from KSDFT
for each atom in the ethanol molecule.
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Figure S14: Visualization of Hirshfeld atomic partial charge on each atom in an ethanol structure.
The atomic partial charges derived from the solved electron density by M-OFDFT align closely with those
solved by KSDFT.

These numerical results further demonstrate the high accuracy of optimized density solved by M-OFDFT.
This further consolidates the uniqueness of M-OFDFT over NNPs for handling electron structures.

2As for a bond order analysis, up to our knowledge, it requires molecular orbital solutions, which are not directly
available in our orbital-free method.
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Q3: Comments on computational time discussion. The calculation cost evaluation (Sec-
tion 2.4) seems dishonest.

Q3.1: Hardware information about CPU and GPU machines should be included not only
in the Supplementary information but also in the main text.

Response: Thank you for confirming with the need to present hardware information also in the main text.
We have revised the main text (Results 2.4) to include this information:

“Afer validating the accuracy and extrapolation capability, we now demonstrate the scaling advantage of M-OFDFT
empirically. The time cost for running both methods on increasingly larger molecules from the QMugs dasaser [60]
is plotted in Fig. 4. M-OFDFT calculations are run on a 32-core CPU server with 216 GIB memory and
one Nvidia A100 GPU with 80 GIB memory, and KSDFT calculations are carried out on a cluster of 700
capable CPU servers, with each server possessing 256 GIB memory and 32 Intel Xeon Platinum 8272CL
cores with hyperthreading disabled. ...

We would like to remark that it is not easy to make the hardware settings for M-OFDFT and KSDFT
to be the same, since M-OFDFT requires GPU for running deep learning model while KSDFT is not
straightforward to leverage GPU (we are aware of such software but would require careful effort to set up).
This difference may affect the comparison of absolute time, but does not suppose to affect the comparison
of scaling order (ie., the fitted exponent of N to the curve), under which M-OFDFT (O(N!4¢)) has
shown a clear advantage over KSDFT (O(N?49)) (see Fig. 4).
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Q3.2: Supplementary information notes that “For large QMugs molecules, we apply
the learned TXC functional model ETXC,6”. Which molecules are the large QMugs
molecules? How computationally expensive is the grid-based calculation for obtaining
EXC? The authors should give details of the computational time to obtain initial den-
sity, machine learning prediction, analytical energy terms, grid-based EXC, coefficients
derivatives, and Hellmann-Feynman force when using the ET,# and ETXC,§ models.

Response: Regarding “Which molecules are the large QMugs molecules?””: We apologize for the
confusion in language. The word “large” was meant to be a non-restrictive/descriptive modifier instead
of a restrictive modifier: in other words, we meant “For QMugs molecules, which are large (compared to
ethanols and QM9 molecules for which the residual KEDF T g ¢ formulation (which you referred to as
ET.f) is affordable), ...”". We have revised the sentence accordingly:

“For farge QMugs molecules, since they are generally much larger than ethanols and QM9 molecules to the
extent that the residual KEDF Ts ¢ formulation becomes significantly costly due to grid-based computa-
tion for Tspas @nd Exc, we apply the learned TXC functional model Etxc .."

Regarding “How computationally expensive is the grid-based calculation for obtaining EXC? The
authors should give details of the computational time to obtain initial density, machine learning pre-
diction, analytical energy terms, grid-based EXC, coefficients derivatives, and Hellmann-Feynman
force when using the ET# and ETXC,# models™:

For the computational cost on grid, we made an analysis in Supplementary B.4.2:

“The residual KEDF version has achieved a simpler learning target with a tractable gradient range, bt it has a
computational bosleneck of evaluating the value and gradient of the APBE base KEDF as well as the PBE XC
funcrional from the density coefficient, which is conducted on a grid. As discussed in Supplementary A.3.2, the time
complexity of calculating the value is O(M Ngria) (recall M is the number of basis functions). Evaluating the gradient
by automatic differentiation requires the same time complexity as evaluating the value, and moreover, it also requires
O(M Ngrig) memory occupation to store intermediate values for back-propagation. Considering the large prefacor
of Ngria (commonly ~ 10°N ), the computational cost for residual KEDF to conduct density optimization becomes
unaffordable for large-scale systems. Such cost was observed on the QMugs dataset, for which Supplementary D.3
presents more detalled results

To empirically show that the grid-based computation is expensive, as well as to address your query of
the time cost of each computational component, we further present such an analysis for both the residual
KEDF T g ¢ formulation (which you referred to as ET#) and the TXC functional Erxc ¢ formulation
of M-OFDFT. We have revised the paper to include these results in Supplementary D.3, which we attach
below for your reference. The analysis verifies that the computational cost on grid indeed becomes dom-
inant for increasingly larger systems, and that the TXC functional Etxc g formulation indeed accelerates
the computation.

“Time cost of each computational component To better understand the siructure of the time cost in
the density optimization process (ie., the process to use M-OFDFT to solve a queried molecular system),
we split the ime cost into various computational components in M-OFDFT. Both the residual KEDF T, o
formulation (Supplementary B.4.1) and the TXC functional Exxc,e formulation (Supplementary B.4.2) of
M-OFDFT are considered. As shown in Supplementary Fig. S17(a), in the Tsxs e formulation, the three
major parts of the time cost are the evaluation of the XC functional (denoted as “EXC"), the evaluation of
the base KEDF (denoted as “Ts-Base"), and the evaluation of the Tsxs¢ model (denoted as “ML-Pred").
Noting that the first two oonﬂonents are evaluated on grid, we conclude that grid-based computation is the
main restriction to running M-OFDFT on large molecules, conforming to Supplementary B 4.2, hence the
TXC functional E1xc,¢ formulation is motivated, which does not require any grid-based computation. We
also note that gric-based computation also occupies a significant amount of GPU memory (Supplemen-
tary B.4.2). Using the hardware specified above, we can only afford systems of up to 230 electrons under
the Tsxs,0 formulaion, which is where the plot ends. To compare the component-wise time cost of the
Ts 5,0 formulation and the Exc,e formulation, we conduct the same analysis with the Etxc e KEDF model.
As shown in Supplementary Fig. S17(b), due to the removal of grid-based computations, the total running
time is significantly reduced.
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Figure S17: Empirical time cost of various computational components in the density opimization process
of M-OFDFT, under (a) the residual KEDF Ts,. s formulation and (b) the TXC functional Erxc e formula-
tion. Computational components are defined in the following. “Init-Den": initiakzation of density (including
density fiting); *Init-Grid” (only for the T .. « formulation): generation of grid points and evaluation of basis
function values on them; “ML-Pred": evaluation of the deep-learning model, Tsese OF Emxcpe, including
the local frame module (Supplementary B.2) and enhancement modules (Supplementary B.3); “Coeff-
Deriv": automatic differentiation to compute the gradient of the deep-learning model w.r.t input density
coefficients; “Ana-Eng": computation of the values and gradients w.r.t density coefficients of energy terms
that have analytical expressions, 1.e., the Hartree energy Eun (Eq. (S47)) and the external potential energy
Ex: (EQ. (S49)); "HF-Force"™: Hellmann-Feynman force computation (Supplementary C.5) conducted after
density optimization; “Ts-Base" (only for the T... o formulation): evaluation of the value and gradients w.r.t
density coefficients of the base KEDF on the grid; "EXC" (only for the Ts ., » formulation): evaluation of the
value and gradients w.r.t density coefficients of the XC functional on the grid.
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3 Response to Reviewer 3

Q1: Throughout the paper, the discussions are mainly based on energy errors. However,
itis very important for the method to obtain a smooth potential energy surface (PES). The
authors did not show any examples of this aspect. | would suggest some calculations
of PESs, such as the bond stretching energy curves, torsion energy curves, and the
minimum energy pathways for some chemical reactions, and then compare these PESs
with KS-DFT. One major goal is to examine if the PESs from M-OFDFT are smooth.

Response: Thank you for the suggestion to further examine the method. During the revision, we have
conducted a PES investigation of M-OFDFT in the setting of the ethanol experiment, and plotted the bond
stretching energy curve and torsion energy curve for M-OFDFT as well as for KSDFT. The resulting
curves of M-OFDFT are very close (within chemical accuracy) to the corresponding KSDFT curves. The
curves also indicate a smooth PES of M-OFDFT. These results are added to Results 2.2 in the revised
paper, which we attach here for your reference:

“To further demonstrate the utility of M-OFDFT, we investigate the potential energy surface (PES) pro-
duced by M-OFDFT. Fig. 2(c) shows the PES on ethanol over two coordinates: the torsion angle along the
H—C—C—0 bond and the O—H bond length. We see that both the torsion energy curve and the bond-
strefching energy curve of M-OFDFT are sufficiently smooth, and stay closely (within chemical accuracy)
with the correspondln? KSDFT curves. For a comparison, the classical OFDFT using the APBE KEDF
fafls to maintain chemical accuracy, and even does not produce the correct energy barrier or equifibrium
bond length. Note that the shown curves are evaluated on densities optimized by M-OFDFT itseff, but not
on densities solved by KSDFT [36,31]. Supplementary D.1.1 presents more details.
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Figure 2: (c) Potentid energy surface (PES) study on ethanal. The left panel shows the PES over various
torsion angles (along the H—C—C—0 bond), and the right panel shows the PES over various O—H bond
lengths. Shaded region denotes the range within chemical accuracy (1 kecal /mol) w.r.t KSDFT.

The detailed settings are described in Supplementary D.1.1:

“Details on the potential energy surface (PES) study As shown in Fig. 2(c) of Results 2.2, M-OFDFT
can accurately reproduce the PESs of ethanol. Here we provide more implementation specifics of the
evaluation process. To benchmark the PES, we generate a series of ethanol structures by varying either
the H—C—C—O torsion angle or the O—H bond length, starting from the equilibrium ethanol conforma-
tion (opiimized by dlassical mofecular dynamics simulation). The torsion angles are taken uniformly on
[—180°,180°) with 15° increment, where the (° angle is defined when the four atoms are on the same
plane and H and O are on the same side. The bond lengths are taken uniformly on [0.856 A, 0.144 A with
0.015A increment. The interval is taken as the range of the O—H bond length in the training dataset.
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Q2: Geometries are also important and are not discussed in the manuscript. The authors
demonstrated the forces, which are surely important; however, | suggest that the authors
perform the relaxation of several molecules and compare the structures, such as bond
angles and bond lengths, to the KS-DFT results.

Response: Thank you for the suggestion to further demonstrate the utility of M-OFDFT. During the
revision, we have conducted a geometry optimization study in the setting of the ethanol experiment. We
compare the optimized structures by M-OFDFT against those by KSDFT, and the evaluation either in
the rooted mean square deviation of the structures or in bond angles and bond lengths suggests high
accuracy, demonstrating the efficacy of M-OFDFT for structure relaxation. We have added these results
in Supplementary D.1.1 of the revised paper, which we also attach here for your reference:

“Geometry optimization study To investigate the utility of M-OFDFT for geometry optimization, we
integrate the M-OFDFT implementation with the geometry optimization framework in PySCF [16], wherein
the HF force (Supplementary C.5) by M-OFDFT is used. We generate a set of initial ethanol structures
by varying the H—C—C—0 torsion angle from the equilibrium ethanol conformation. The torsion angles
are taken uniformly on [—180°,60°] with 30° increment. For each initial structure, we relax the structure
using both KSDFT and M-OFDFT for at most 100 steps. For M-OFDFT, the residual KEDF Ts s, Version
(Supplementary B.4.1) with ProfMINAO density initialization Is used, which is consistent with other results
shown in Resuits 2.2.

To evaluate the optimized structures by M-OFDFT, we first calculate the rooted mean square deviation
(RMSD) between the optimized structure by M-OFDFT and the optimized structure by KSDFT for each
initial ethanal structure. The mean RMSD value across all the initial structures is 0.07 A, indicating a good
consistency of M-OFDFT with KSDFT. To further evaluate the opimized structures by M-OFDFT, we com-
pare the bond lengths and angles against those of optimized structures by KSDFT. For a reference to
assess the error, for each bond or angle type, we plot the distribution in the form of violin plot of the bond
length or angle value in the ethanol training dataset. As the dataset is from the MD17 dataset [51,52), the
plot represents the distribution in thermodynamic equilibrium. As depicted in Supplementary Fig. S11, the
majority of the bond lengths and angles of the optimized structures by M-OFDFT exhibit good agreement
with the results of KSDFT, and align closely with the high-density region of the comresponading thermody-
namic equilibrium distributions. The difference from KSDFT results is also significantly smafler than the
span of the comresponding thermodynamic equilibrium distribuion. This result underscores the practical
efficacy of M-OFDFT for geometry opimization.
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Figure S11: Bond lengths and bond angles of ethanol structures by geometry optimization with
M-OFDFT and KSDFT. Different points represent the optimizes results from different iniial structures.
The viofin plots in the background depict the distribuions of the corresponding bond lengths or angles
under thermodynamic equilibrium. The mean RMSD between the optimized structure by M-OFDFT and
by KSDFT over the initial structures is 0.07A.
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Q3: Another interesting and important thing to demonstrate is the dipole moments. One
major advantage of OF-DFT against ML force fields is that electron density is considered
by OF-DFT, and therefore dipole can be computed. Dipoles are very important properties
of proteins. The authors need to calculate dipoles for some systems, ranging from small
to large dipoles, such as a CO molecule, peptide, and acceptor-donor complexes to ex-
amine the accuracy of the dipoles predicted by M-OFDFT. | understand this could be a
demanding test since it is not very easy to reproduce dipoles. But based on the good
prediction of electron density in Figure 2(b), this seems promising.

Response: Thank you for suggesting this important evaluation of the optimized electron density by M-
OFDFT. During the revision, we have conducted dipole moment evaluation on ethanol structures, the CO
molecule, and peptides of various lengths, and the results stay in high accuracy with KSDFT results.

For the dipole moment evaluation on ethanol structures, we have included the results (along with the
partial charge evaluation) in Results 2.2 of the revised paper, which we attach below for your reference:

“For numerical evaluations of the optimized density, we consider two density-related molecular properties,

Hirshfeld partial charges [59] (Supplementary D.1.2 presents a visualization) and dipole moment. The cor-

responding MAEs from KSDFT results over test ethanol structures are 1.92x10~* e and 0.0180D, which
are significantly better than the results 0.155e and 0.985D of the classical OFDFT using the TF+5vW
KEDF™

For the CO molecule, since its bond type is unseen from any training data (including QM9), we treat it
as a kind of extrapolation test. We have added the dipole moment results on CO (along with the partial
charge results) in Supplementary D.2.2 of the revised paper, which we attach below for your reference:

“Results on unseen chemical environments Extrapolating a trained machine-learning model to unseen
chemical environments, e.g., bond types not present in training data, is another challenging extrapolation
evaluation. To investigate this type of extrapolation capabflity of M-OFDFT, we apply M-OFDFT to the
carbon monoxide molecule CO, which contains a triple bond C=0 that is not encountered in training the
KEDF model. The initial CO structure is generated using the RDKit software [88] which gives the bond
length of 1.118A. We then augment four addional CO structures by adjusting bond lengths to 1.102A,
1.112A, 1.122A and 1.132A, containing both squeezed and stretched bond lengths. The residual KEDF
Ts, model trained on QM9 training set is used to solve these systems. The Hlckel method is chosen
for density initialization, which exhibits better robustness to various bond lengths than the ProjMINAO
initialization in our trials.

We evaluate the results in mean absolute error (MAE) w.r.t KSDFT resuits. The Hirshfeld partial charge
MAE and dipole moment MAE of optimized densities by M-OFDFT over the five CO structures are 0.102e
and 0.150D, respectively. As a reference, these MAE numbers are 0.296e and 0.496D when using the
classical OFDFT with the TF+%vW KEDF. Hence M-OFDFT still achieves a significant improvement over
classical OFDFT even in this extrapolation scenario.

It should be noted that neither charged molecular systems nor the triple bond C= 0 has been encountered
in our training data, thus they are indeed chaflenging extrapolation tasks. While the formulation of M-
OFDFT is designed to be universally applicable to all densities and molecular systems, its performance as
a neural network model is hard to completely avoid extrapolation error. ... Despite this, the extrapolation
performance of M-OFDFT s stifl reasonable, and is still significantly better than classical OFDFT methods,
showcasing the potential of M-OFDFT in these more challenging scenarios. The performance of M-OFDFT
on these systems can be further improved by enriching the train data with charged molecules and new bond
patterns such as triple bond C+ O, which will be investigated in future work.

For the evaluation on peptides, we have included the dipole moment results (along with partial charge
results) on peptides of lengths 2-5 as well as on Chignolin (of length 10) in Supplementary D.2.1 of the
revised paper, which we attach below for your reference. The results again suggest that M-OFDFT can
produce accurate dipole moments on these large molecules.

“Evaluation of electron density in the dgnolin experiment  For a thorough assessment of the
extrapolation capabifity of M-OFDFT, we evaluate the eleciron density solved by M-OFDFT on peptide
structures in various lengths. As peptides are relatively large molecules, it is inconvenient to directly
visualize the densities. We hence calculate the Hirshfeld partial charge [85] and dipole moment from the
solved density.

This evaluation is conducted in parallel with the setting in Results 23. To construct the evaluation bench-
mark, we prepare a test set encompassing a range of short-peptide structures, from dpepﬂdes to pen-
tapepldes as well as Chignolin structures (of length 10). We sample 50 structures for each category of
peptides. More detalls about the peptide structures are described in Supplementary C.1.4. For solving
test peptide structures of lengths 2 to 5, we apply the total energy functional model E, , trained on all
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training peptide structures (of lengths 2-5), folowing the same setting as Fig. 3(c). For solving test Chigno-
lin structures, we further finetune the model on 800 training Chignolin structures. We take KSDFT results
to evaluate error, and compare the results with the classical OFDFT using the TF+3vW KEDF. Results in
Supplementary Table S7 demonstrate that M-OFDF T consistently outperforms the classical OFDFT over

of all lengths, in terms of the accuracy on these dem%'-related quaniities. The partial charge
MAE of M-OFDFT is significantly lower, by two orders of magnitude. This substantial improvement further
underscores the power of M-OF DFT.

Table S7: Hirshfeld partial charge and dipole moment results in mean absolute error (MAE) from KSDFT.
The units for partial charge and dipole moment are e and D, respectively.

Test dataset Quantity M-OFDFT _ TF+5vW
Dipeptide gfprglnel ;::;:::t 263.;%‘;]-5 (2);";3
Tepepide [k e 0383 355
o DERICES 20000 02
Pentapeptide gfp‘g;‘ ;?:nrf:t zsg_;{g-s g};‘l‘
Chignolin ll;?;g:: fnl:?n!ie nSt 3-312.:;;?-3 102103429
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: Kaitlin McCardle

: kaitlin.mccardle@us.nature.com
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19th January 2024
Dear Dr. Liu,

Thank you for submitting your revised manuscript "M-OFDFT: Overcoming the Barrier
of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning"
(NATCOMPUTSCI-23-1283B). It has now been seen by the original referees and their
comments are below. The reviewers find that the paper has improved in revision, and
therefore we'll be happy in principle to publish it in Nature Computational Science,
pending minor revisions to satisfy the referees' final requests and to comply with our
editorial and formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist
detailing our editorial and formatting requirements in about a week. Please do not
upload the final materials and make any revisions until you receive this additional
information from us.

TRANSPARENT PEER REVIEW

Nature Computational Science offers a transparent peer review option for original
research manuscripts. We encourage increased transparency in peer review by
publishing the reviewer comments, author rebuttal letters and editorial decision
letters if the authors agree. Such peer review material is made available as a
supplementary peer review file. Please remember to choose, using the
manuscript system, whether or not you want to participate in transparent
peer review.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the
interest of confidentiality. If you are concerned about the release of confidential data,
please let us know specifically what information you would like to have removed.
Please note that we cannot incorporate redactions for any other reasons. Reviewer
names will be published in the peer review files if the reviewer signed the comments
to authors, or if reviewers explicitly agree to release their name. For more
information, please refer to our FAQ page.
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Thank you again for your interest in Nature Computational Science. Please do not
hesitate to contact me if you have any questions.

Sincerely,

Kaitlin McCardle, PhD
Senior Editor
Nature Computational Science

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are
encouraged to do so. Please note that it will not be possible to add/modify ORCIDs at
proof. Thus, please let your co-authors know that if they wish to have their ORCID
added to the paper they must follow the procedure described in the following link
prior to acceptance: https://www.springernature.com/gp/researchers/orcid/orcid-for-
nature-research

Reviewer #1 (Remarks to the Author):

The authors have improved their manuscript significantly and answered all questions
raised in great detail. Several extensions have been added to the Supporting
Information. I have a much better understanding of some of the crucial steps that led
to this large improvement of OF-DFT performance. Yet, there are issues left which
need to be considered before publication.

Several of the paragraphs added in the latest version have been edited with haste
and suffer from a lower quality of English, with articles or other words missing (e.g.
"can be seen AS nonlocal", "consider THE interaction", "enable THE calculation", etc.).
Please correct these issues in the interest of keeping the original quality of the

manuscript.

Page 2: The caption of figure 1 might benefit from explaining the meaning and the
scope of indices a and tau. Also, mentioning already at this point that theta
represents all learnable parameters might be helpful to the readers.

Page 2: The added text on page 2 regarding the meaning and principle of the
"attention" mechanism is entirely non-understandable to me, as it uses words of
common english which I can not interpret in this context. What does it mean for an
atom to "attend" to another atom, and what does it mean to "use these weights as
strenghts to incorporate features on other atoms". I am completely lost in this new
paragraph. This is a crucial feature and needs to be explained in a way that can be
followed by the readers. The response letter on this subject, on the other hand, is
excellently written and easy to follow, so I suggest to transfer parts from the
response into the actual manuscript.

Page 3: At the end of the introduction, I suggest to mention that the authors have
indeed taken the effort to compare OF-DFT to standard KS-DFT and other ML-variants
on the very same physical computing system. On one hand, this adds well-deserved
weight to the actual outcome, on the other one, the presented scalings with electron
number are not interpreted by readers as estimates or literature values but have a
clear reference to the current, state-of-the-art supercomputing setup.
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Regarding Questions 2 and 3 of the first round, I am fine with the answers provided
by the authors in the extended version of the SI. Question 4, the difference between
choice of basis set for DFT data generation and density fitting, is sufficicently
answered by the manuscript extension suggested by the authors. Regarding
questions 5 and 6, I appreciate the effort taken by the authors to link algorithm and
formula in a compressed, human-readable way, as well as the effort of providing a
substantial extension of the Supplementary Information, in particular on the attempt
to introduce the von Weizaecker functional as a physics-informed lower limit to the
KEDF.

Reviewer #2 (Remarks to the Author):

According to my previous comments, the authors have made appropriate revisions to
the manuscript. The revised manuscript and supporting materials now include
justification for the study through references to pioneering research, a discussion on
the advantages of the proposed method, i.e., M-OFDFT, compared to neural network
potential, analysis using the electron density optimized by M-OFDFT, and details on
computational time. The overall quality of this paper has seen significant
improvement.

However, I feel that the revision looks like over-emphasizing the advantage of M-
OFDFT. For example, the following discussion give the impression that M-OFDFT is
only and first OFDFT to optimize the electron density, which is not correct. Some
previous studies reported SCF scheme for the OFDFT.

“With these techniques, M-OFDFT well handles the notorious challenge of unstable
density optimization using a learned KEDF model. Due to this challenge, some prior
machine-learning KEDFs [36, 30, 31] do not support density optimization, and some
others require projection onto the training-data manifold in each step [21, 22, 24,
27]. In contrast, M-OFDFT only needs the initialization step be on the manifold
(Methods 4.4).”

I have one comment. The calculation time for computational components (Figure
S17) reveals that machine learning prediction has the highest computational cost in
the ETXC,0 formulation. While the advantage of OFDFT is its compatibility with linear
scaling methods using distance cutoffs based on the locality of the electron-density
contribution to molecular properties, the authors have noted the theoretical
computational complexity of the transformer architecture as O(N2). It would be
valuable for the authors to share their perspectives on whether M-OFDFT can achieve
linear scaling, which could enhance the value of this study.

Reviewer #3 (Remarks to the Author):

The authors addressed all my previous suggestions. I am impressed by the smooth
PESs. For the dipole tests, the table S7 is somehow confusing. The authors can just
list dipoles from KS-DFT and M-OFDFT calculations, rather than showing MAEs. The
performance of M-OFDFT seems very good, even though it does not really provide a
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genuine kinetic energy density functional, but relies on local bonding information. I
am glad to recommend the publication of this work in nature computational science.

‘ Author Rebuttal, first revision:
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Response to Further Review Comments of:
Overcoming the Barrier of Orbital-Free Density
Functional Theory for Molecular Systems Using Deep
Learning

Anonymous Authors

We thank the editor and the reviewers for their precious efforts devoted to our revised manuscript, the
prompt feedback, and the genuine suggestions. Your constructive comments have largely improved the
overall quality of our paper. We are glad that the revised manuscript has addressed your concerns and
questions. We appreciate the recognition of the efforts we made to improve the quality of the manuscript
in the last revision, and are glad that the revision has roughly met your high standard.

We have further addressed all your additional comments as detailed below. We show the revised para-
graphs relevant to your comments in a marked-up form highlighting the changes we have made. Specif-
ically, contents that appear after the second revision are marked in crimson in a different font, and
“contents in this file that are quoted from the paper” are enclosed in quotation marks and are formatted in
italic and a smaller font size. Please note that in the latest submitted “.tex’ file, all the revised content has
been formatted as normal text to facilitate the production process. In this file, reference numbers of cited
papers follow the bibliography in the revised paper. We also mention that some of the modifications to
the paper are required by editorial guidelines.

1 Response to Reviewer 1

Q1: The authors have improved their manuscript significantly and answered all ques-
tions raised in great detail. Several extensions have been added to the Supporting Infor-
mation. | have a much better understanding of some of the crucial steps that led to this
large improvement of OF-DFT performance. Yet, there are issues left which need to be
considered before publication.

Response: We sincerely thank you for the dedicated efforts in reviewing our paper and for the construc-
tive suggestions. Your input has made our clarification of methodology clearer and largely enhanced the
overall quality of the manuscript. Your suggestions about comparison with the von Weizsicker KEDF
and iterative generation of new training data are insightful and inspire us a lot for future research. We
also appreciate the recognition of our revision and are glad that it has addressed your questions. We have
carefully addressed each of the further issues as detailed below and have revised our paper accordingly.
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Q2: Several of the paragraphs added in the late st version have been edited with haste and
suffer from a lower quality of English, with articles or other words missing (e.g. “can be
seen AS nonlocal”, “consider THE interaction”, “enable THE calculation™, etc.). Please
correct these issues in the interest of keeping the original quality of the manuscript.

Response:  Thank you for your careful read and for pointing out these writing issues. We appreci-
ate your meticulous review of our manuscript. We have devoted effort to enhance the quality of newly
edited contents in the revised manuscript. Particularly for the paragraph you mentioned, we append the
revised version here for your reference. Please note that the mentioned paragraph has been rlocated to
Supplementary Section C to comply with the formatting guidelines.

“... Such madels can be seen asnonlacal, but the costly calculasion on grid restrices the applicarions o 1-dimensional
systems. Some other works fit a linear combination of classical KED'F approximarions with explicit expression [62],
including nonlocal ones [63], but the demonsirated systems are still effectively I-dimensional. Deep newral nesworks
have also been explored recently, including multi-layer percepsrons (ak a feed-forward neural nesworks) [64-66, 52,
53, 67] and convoluional newral nerworks [68, 61, 69 54]. Many of them learn the kinetic energy density at each
grid poine from semi-local density features on thas poine [53], and to compensase for nenlocal effects, third-order [64,
65, 52] and fourth-order [66] density derivative features are leveraged Others consider the interaction of density
features at different locarions hence are nonlocal {68, 61, 69, 67, 54]. Many of such works enable the calculation on
F-dimensional systems [08,04-06,53,60.54], and the lower compuwarional complexiry than KSDFT has been shown
empirically [53]. ™
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Q3: Page 2: The caption of figure 1 might benefit from explaining the meaning and the
scope of indices a and tau. Also, mentioning already at this point that theta represents
all learnable parameters might be helpful to the readers.

Response: Thank you for your further suggestions. Indeed we should provide such an explanation. We
have revised the caption to clarify the meaning of atom index a and basis-function pattern index 7, as
well as f as learnable model parameters. We attach the relevant part of the revised caption here for your
reference (we also include explanations of other symbols and colors as required by the editorial guidance ):

“(b) The proposed M-OFDFT uses a deep-learning model Ts s (p, M) (¢ denotes learnable parameters) to ap-
proximate KEDEF, which is learned from data. The model incorporates nonlocal interaction of density over the space,
which is made affordable by inputting a concise representation of the density (gray shaded region around the
molecule): the expansion coefficients p on an atomic basis {w, (r)},, where the index u = (a,7) is composed
of the atom index « and the pattern index (for example, the blue and red spheres located bottom-left iflus-
trate two basis functions centered at atom 2 (the carbon)). The coefficients are correspondingly distributed
over the atoms (for example, (pas.--- ,pa;) for atom 2; different colors denote features on different
atoms). Nonlocality is captured by the attention mechanism which updates features on one atom by cak
culation with features on all other atoms, including distant ones (for example, the sofid blue lines represent
the update of features h'®’ of atom 2 incorporates features on all other atoms). After updates by L layers,
the final scalar features over atoms are summed up to produce the kinetic energy value. "
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Q4: Page 2: The added text on page 2 regarding the meaning and principle of the “at-
tention” mechanism is entirely non-understandable to me, as it uses words of common
english which | can not interpret in this context. What does it mean for an atom to “at-
tend” to another atom, and what does it mean to “use these weights as strenghts to
incorporate features on other atoms”. | am completely lost in this new paragraph. This is
a crucial feature and needs to be explained in a way that can be followed by the readers.
The response letter on this subject, on the other hand, is excellently written and easy to
follow, so | suggest to transfer parts from the response into the actual manuscript.

Response: Thank you for pointing out this potential unclarity, and for informing us of a preferred way to
make the writing more friendly to readers. We have revised the corresponding description in the revision,
which we attach here for your reference:

“To process such input, we bulld a deep-learning model based on Graphormer [29,30], a variant of the
Transformer model [31]. It iteratively processes features on all nodes, and adds up the final features over
the nodes as the kinetic energy output. Nonlocality is covered by the attention mechanism, which updates
features on a node by first calculating a weight (“attention”) for the interaction with every other node using
features on the two nodes and their distance, then adding the features on every other node, each with the
above calculated weight, to the features on this node (Fig. 1(b)). This process accounts for the interaction
of density features in distant locafities, hence nonlocal effect is captured.

(If this could be helpful: By “for an atom to ‘attend’ to another atom” we meant the calculation of the
weight with which an atom incorporates the features of another atom to update the features of itself.
This process can be seen as calculating how much an atom values the state or opinion of another atom
to influence itself, hence the metaphor of “attention”. By “use these weights as strengths to incorporate
features on other atoms”, we meant the process of multiplying features on other atoms with their atom-
specific weights (i.e., “attentions”) with the original atom, adding the multiplied (weighted) features over
these atoms, applying several linear and nonlinear transformations to the result, and assigning the final
result as the new features of the original atom.)
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Q5: Page 3: At the end of the introduction, | suggest to mention that the authors have
indeed taken the effort to compare OF-DFT to standard KS-DFT and other ML-variants on
the very same physical computing sy stem. On one hand, this adds well-deserved weight
to the actual outcome, on the other one, the presented scalings with electron number are
not interpreted by readers as estimates or literature values but have a clear reference to
the current, state-of-the-art supercomputing setup.

Response: Thank you for your constructive suggestion. We have revised the Introduction section in re-
sponse to your suggestion, by highlighting the comparison to KSDFT to demonstrate the lower empirical
computational scaling, and the comparison to neural network potentials (NNPs), which are other ML-
variants, to show the superior extrapolation. We appreciate your suggestion to more directly highlight
the meaning of the scaling results considering that the number of electrons N may not seem obvious to
characterize computational demand to general readers. For this, we mentioned the complexity of KSDFT
using IV in the beginning of Introduction and in Figure 1(a), and narrated system scales (for example,
number of grid points and basis functions) also in N. We expect this could help readers to connect
electron number to computational scales. We attach the relevant revised part in Introduction for your
reference:

“... (2) M-OFDFT achieves an attractive extrapolation capability thar its per-atom error stays constant or even
decreases on increasingly larger molecules all the way to 10 times beyond those in training. The absolute error
is still much smaller than classical OFDFT. In conrasy, the per-atom error keeps increasing by NNP variants.
M-OFDFT also improves more efficiently on limited data in large scale. (3) With the accuracy and extrapolation
capability, M-OFDFT unleashes the scaling advantage of OFDFT to large-scale molecular systems. We find its
empirical time complexity is O(N'*®), indeed lower by order-N than O(N**°) of KSDFT. The absolute time is
always shorter, achieving a 27.4-fold speedup on the protein B system (738 atoms). ... "
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Q6: Regarding Questions 2 and 3 of the first round, | am fine with the answers provided
by the authors in the extended version of the Sl. Question 4, the difference between
choice of basis set for DFT data generation and density fitting, is sufficicently answered
by the manuscript extension suggested by the authors. Regarding questions 5 and 6, |
appreciate the effort taken by the authors to link algorithm and formula in a compressed,
human-readable way, as well as the effort of providing a substantial extension of the
Supplementary Information, in particular on the attempt to introduce the von Weizaecker
functional as a physics-informed lower limit to the KEDF.

Response: Thank you for the acknowledgement of our improvements made in the previous revision. We
are glad that our revision has resolved your concerns. Your comments are valuable and constructive for
improving the quality of our paper.
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2 Response to Reviewer 2

Q1: According to my previous comments, the authors have made appropriate revisions
to the manuscript. The revised manuscript and supporting materials now include justifi-
cation for the study through references to pioneering research, a discussion on the ad-
vantages of the proposed method, i.e., M-OFDFT, compared to neural network potential,
analysis using the electron density optimized by M-OFDFT, and details on computational
time. The overall quality of this paper has seen significant improvement.

Response: We sincerely thank you for your dedicated efforts in reviewing our paper. Your perspectives
and suggestions have played a crucial role in refining our manuscript. We also appreciate your acknowl-
edgement of the quality of the revised manuscript. We are glad that we have addressed your concerns.
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Q2: However, | feel that the revision looks like over-emphasizing the advantage of M-
OFDFT. For example, the following discussion give the impression that M-OFDFT is only
and first OFDFT to optimize the electron density, which is not correct. Some previous
studies reported SCF scheme for the OFDFT.

“With these techniques, M-OFDFT well handles the notorious challenge of unstable
density optimization using a learned KEDF model. Due to this challenge, some prior
machine-learning KEDFs [36, 30, 31] do not support density optimization, and some oth-
ers require projection onto the training-data manifold in each step [21, 22, 24, 27]. In
contrast, M-OFDFT only needs the initialization step be on the manifold (Methods 4.4).”

Response: Thank you for pointing out the potentially misleading statement in our previous revision.
In the previous revision, by “some prior machine-learning KEDFs [36, 30, 31] do not support density
optimization, and some others require projection onto the training-data manifold in each step [21, 22, 24,
271", we thought it does not indicate that the two cases cover all prior works and there could be other
prior works that achieve stable density optimization. To mitigate the possibly misleading impression, we
have revised the paragraph with a milder tone, and have explicitly pointed out prior works that achieve
stable density optimization. We attach the revised discussion here for your reference (we have relocated
this discussion to the beginning of Methods 4 due to editorial requests):

“ With these techniques, M-OF DFT achieves a stable density opiimization process, which is regarded as chaF
lenging using a deepJearning KEDF model. Some prior deep-learning KEDFs [23, 21] do not support density
optimization, and some Of the others require projection onto the training-data manifold in each step [18, 20, 24].
M-OFDFT achieves stable density optimization using an on-manifold infiialization, which is a weaker re-
quirement (Methods 4.4). We note some prior works (for example, [22]) achieve stable density optimization
using a seff-consistent field (SCF) scheme. The applicability of the scheme to M-OFDFT will be investi
gatedin the future. ™
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Q3: | have one comment. The calculation time for computational components (Figure
$17) reveals that machine learning prediction has the highest computational cost in the
Etxc,s formulation. While the advantage of OFDFT is its compatibility with linear scaling
methods using distance cutoffs based on the locality of the electron-density contribution
to molecular properties, the authors have noted the theoretical computational complexity
of the transformer architecture as O(N2). It would be valuable for the authors to share
their perspectives on whether M-OFDFT can achieve linear scaling, which could enhance
the value of this study.

Response: Thank you for your valuable comment. Indeed, Supplementary Figure 18(b) (formerly Fig-
ure S17(b)) indicates that the KEDF model Etxc ¢ takes the largest computational cost. As mentioned,
due to the need for a nonlocal calculation, we used the Transformer architecture, which calculates the
interaction between every pair of atoms, hence inducing an O(A?) = O(N?) computational complex-
ity, where A denotes the number of atoms in the molecule. It is possible to reduce the complexity by
leveraging locality in a certain scale. Specifically, although nonlocality is important for approximating
the kinetic energy density functional, the nonlocal effect does not extend to infinity, and when the scale
of the target system is sufficiently large, locality based on distance cutoff can be assumed without sub-
stantially compromising accuracy. In this case, for each atom, only its neighboring atoms that stay within
a given distance cutoff range r. are considered interacting with the atom. Suppose the average number
of neighboring atoms within the distance cutoff range rc is Arc. Then the number of active interactions
in a molecule becomes O(AA,.). Since r. can be taken as a constant, A, is also a constant. Hence the
complexity of the model can be reduced to O(AA,.) = O(A) = O(N) in the distance cutoff formu-
lation. We not that there are already Transformer variants [75, 76] that achieve a linear complexity by
leveraging distance cutoff, revealing possibility to improve our KEDF model. For other components in
M-OFDFT that exhibit quadratic complexity, we can leverage established linear scaling methods to re-
duce their complexity to O(V), and finally making M-OFDFT a linear scaling method. We have revised
the paper to include this discussion in Supplementary Section D.3. We attach the revised content here for
your reference:

“...We note that in this case, the evaluation of the Exxc o model takes the largest computational cost. This
part has an O(N'®) computational complexity due to the need for nonlocal calculation. As the molecular
size increases, this could lead to considerable computational demands. Despite the importance of the
nonlocal calculation (Supplementary Section D.4.2), its influence presumably does not extend infinitely,
thus allowing us to reduce the complexity by using a distance cutoff for large molecular systems. Specif-
ically, with a distance cutoff r., the Transformer-based model, Graphormer, can be modified to capture
nonlocal interactions between one atom and its neighboring atoms within the cutoff The complexily is
then O(AAc), where Ac. is the average number of neighboring atoms within the distance cutoff r.. As
re IS taken as a constant, A Is a constant. Hence the modification reduces the complexity of the model
to finear: O(AA:.) = O(A) = O(N). We also note that analogous approaches to rim the neighborhood
based on distance cutoffs have been utilized to achieve finear cost scaling using the Transformer architec-
ture in the realm of machine learning [75,76], which pave the way for further improvement of M-OFDFT.
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3 Response to Reviewer 3

Q1: The authors addressed all my previous suggestions. | am impressed by the smooth
PESs. For the dipole tests, the table S7 is somehow confusing. The authors can just
list dipoles from KS-DFT and M-OFDFT calculations, rather than showing MAEs. The
performance of M-OFDFT seems very good, even though it does not really provide a
genuine Kinetic energy density functional, but relies on local bonding information. | am
glad to recommend the publication of this work in nature computational science.

Response: We sincerely thank you for your dedicated efforts in reviewing our paper and for your
valuable feedback. Your suggestions have largely enriched our evaluation results. We are glad that the
revised manuscript has addressed your suggestions and has met your standard for the acce ptance in Nature
Computational Science.

Regarding the dipole test results, we have reported the mean absolute error (MAE) for dipole moments
on ethanol test structures (Results 2.2), CO structures (Supplementary Section D.2.2) and peptides with
varying lengths (Supplementary Section D.2.1). Since the number of structures in each case is large, it
would be tedious to directly list the specific dipole values of these structures, hence we chose to report the
MAE between KSDFT and M-OFDFT results over these structures, as an overall assessment. For a direct
comparison of dipole moments from KSDFT and from M-OFDFT, we provide an example on an unseen
ethanol structure in Supplementary Figure 15. The dipole moment by M-OFDFT is indeed close to the
KSDFT result. We attach the figure and the corresponding description in Supplementary Section D.1.2
here:

“ To further illustrate the results, we provide a representative example in Supplementary Figure 15 of atomic partial
charge on each atom in an unseen test ethanol strucure as wef as the dipole moment of the structure, based on
the optimized density by M-OFDFT. The results show that both the Hirshfeld partial charges for each atom and the
dipole moment from M-OFDFT are in close agreement with those obtained from KSDFT in the ethanol molecule. ™

T es{e) 0.031 eC @O »H

0.043 e dr
0.041 S

0.150
0.157

Dipole moment (D)
[-0.368, 1.164, 0.821)
0.08 [-0.398, 1.137, 0.915]

red: M-OFDFT; gray: KSDFT

Supplementary Figure 15: Visualization of Hirshfeld atomic partial charge on each atom in an ethanol
structure as well as the dipole moment of the structure. Both the atomic partial charges and the dipole moment
derived from the solved electron density by M-OFDFT align closely with those solved by KSDFT.
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Kaitlin McCardle
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changliu@microsoft.com
computationalscience@nature.com,rjsproduction@springernature.com,fernando.chirigati@
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Decision on Nature Computational Science manuscript NATCOMPUTSCI-23-1283C

Message Dear Dr Liu,

We are pleased to inform you that your Article "Overcoming the Barrier of Orbital-Free

Density Functional Theory for Molecular Systems Using Deep Learning" has now been
accepted for publication in Nature Computational Science.

Once your manuscript is typeset, you will receive an email with a link to choose the
appropriate publishing options for your paper and our Author Services team will be in
touch regarding any additional information that may be required.

Please note that Nature Computational Science is a Transformative Journal (TJ). Authors
may publish their research with us through the traditional subscription access route or
make their paper immediately open access through payment of an article-processing
charge (APC). Authors will not be required to make a final decision about access to their
article until it has been accepted. Find out more about Transformative Journals

Authors may need to take specific actions to achieve compliance with funder and
institutional open access mandates. If your research is supported by a funder that
requires immediate open access (e.g. according to Plan S principles) then you should
select the gold OA route, and we will direct you to the compliant route where possible. For
authors selecting the subscription publication route, the journal’s standard licensing terms
will need to be accepted, including self-archiving policies. Those licensing terms will
supersede any other terms that the author or any third party may assert apply to any
version of the manuscript.

If you have any questions about our publishing options, costs, Open Access requirements,
or our legal forms, please contact ASJournals@springernature.com

Acceptance of your manuscript is conditional on all authors' agreement with our publication
policies (see https://www.nature.com/natcomputsci/for-authors). In particular your
manuscript must not be published elsewhere and there must be no announcement of the
work to any media outlet until the publication date (the day on which it is uploaded onto
our web site).

Before your manuscript is typeset, we will edit the text to ensure it is intelligible to our
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wide readership and conforms to house style. We look particularly carefully at the titles of
all papers to ensure that they are relatively brief and understandable.

Once your manuscript is typeset, you will receive a link to your electronic proof via email
with a request to make any corrections within 48 hours. If, when you receive your proof,
you cannot meet this deadline, please inform us at risproduction@springernature.com
immediately.

If you have queries at any point during the production process then please contact the
production team at rjsproduction@springernature.com.

You may wish to make your media relations office aware of your accepted publication, in
case they consider it appropriate to organize some internal or external publicity. Once your
paper has been scheduled you will receive an email confirming the publication details. This
is normally 3-4 working days in advance of publication. If you need additional notice of the
date and time of publication, please let the production team know when you receive the
proof of your article to ensure there is sufficient time to coordinate. Further information on
our embargo policies can be found here:
https://www.nature.com/authors/policies/embargo.html

An online order form for reprints of your paper is available

at https://www.nature.com/reprints/author-reprints.html. All co-authors, authors'
institutions and authors' funding agencies can order reprints using the form appropriate to
their geographical region.

We welcome the submission of potential cover material (including a short caption of
around 40 words) related to your manuscript; suggestions should be sent to Nature
Computational Science as electronic files (the image should be 300 dpi at 210 x 297 mm in
either TIFF or JPEG format). We also welcome suggestions for the Hero Image, which
appears at the top of our home page; these should be 72 dpi at 1400 x 400 pixels in JPEG
format. Please note that such pictures should be selected more for their aesthetic appeal
than for their scientific content, and that colour images work better than black and white
or grayscale images. Please do not try to design a cover with the Nature Computational
Science logo etc., and please do not submit composites of images related to your work. I
am sure you will understand that we cannot make any promise as to whether any of your
suggestions might be selected for the cover of the journal.

You can now use a single sign-on for all your accounts, view the status of all your
manuscript submissions and reviews, access usage statistics for your published articles
and download a record of your refereeing activity for the Nature journals.

To assist our authors in disseminating their research to the broader community, our
Sharedlt initiative provides you with a unique shareable link that will allow anyone (with or
without a subscription) to read the published article. Recipients of the link with a
subscription will also be able to download and print the PDF.

As soon as your article is published, you will receive an automated email with your
shareable link.

We look forward to publishing your paper.
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Best regards,

Kaitlin McCardle, PhD
Senior Editor
Nature Computational Science

P.S. Click on the following link if you would like to recommend Nature Computational
Science to your librarian: https://www.springernature.com/gp/librarians/recommend-to-

your-library

** Visit the Springer Nature Editorial and Publishing website
at www.springernature.com/editorial-and-publishing-jobs for more information about our
career opportunities. If you have any questions please click here.**
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