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Dear Dr Berndt,

Your manuscript "Machine Learning Ensemble Directed Engineering of Genetically
Encoded Fluorescent Calcium Indicators" has now been seen by 4 referees, whose
comments are appended below. You will see that while they find your work of
interest, they have raised points that need to be addressed before we can make a
decision on publication.

The referees’ reports seem to be quite clear. Naturally, we will need you to address
*all* of the points raised.

While we ask you to address all of the points raised, the following points need to be
substantially worked on:
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- Please follow the referees’ suggestions to add the required comparison data.

- Please follow referees’ suggestion to better discuss the limitation in your Discussion
section.

- Please address those technical concerns raised by all referees.

Please use the following link to submit your revised manuscript and a point-by-point
response to the referees’ comments (which should be in a separate document to any
cover letter):

[REDACTED]

** This url links to your confidential homepage and associated information about
manuscripts you may have submitted or be reviewing for us. If you wish to forward
this e-mail to co-authors, please delete this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy
of your manuscript files that indicates your revisions by making use of Track Changes
or similar mark-up tools. Please also ensure that all correspondence is marked with
your Nature Computational Science reference number in the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your
text, to assist us in the editorial stage.

If you have any issues when updating your Code Ocean capsule during the revision
process, please email the Code Ocean support team Cc'ing me.

To improve transparency in authorship, we request that all authors identified as
‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System
(MTS), prior to acceptance. ORCID helps the scientific community achieve
unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature
account’. For more information please visit please

visit www.springernature.com/orcid.

We hope to receive your revised paper within three weeks. If you cannot send it
within this time, please let us know.

We look forward to hearing from you soon.
Best regards,
Jie Pan, Ph.D.

Senior Editor
Nature Computational Science

Reviewers comments:

Reviewer #1 (Remarks to the Author):
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Berndt and coworkers describe their efforts to apply machine learning methods to
develop improved versions of the GCaMP calcium ion indicator. To train their machine
learning algorithm, they used previously reported data for 1078 variants that were
screened during the development of GCaMP6 and jGCaMP7. The two key properties
they focussed on were the fluorescent response to one action potential and the
fluorescent decay time. The model was also trained on amino acid properties such as
size and polarity, which seemed to improve the predictive properties of the models.
Sequences that were predicted by the model to have either the biggest changes in
the fluorescent response and kinetics were tested experimentally.

The authors clearly explain how the L317 variants had the opposite effect from the
prediction. While they go on to rationalize why this is the case. While I don't expect
any sort of protein sequence prediction algorithm to be perfect, the whole point of
this work is to try to demonstrate the utility of the machine learning algorithms for
predicting mutations that would improve the performance. With the L317 mutations,
it is clear that the algorithm correctly identified an important “hot spot” in the protein
sequence where mutations were likely to impact the performance. I am certain that a
well-trained biochemist could have made the same prediction. Indeed, the fact that
Dana et al previously tested mutations at this position, demonstrates that this is the
case.

Based on the machine learning predictions, and subsequent in vitro testing, the
authors identified jGCaMP7s L317H as the most promising variant. As noted above,
this machine learning algorithm had predicted that this variant would have decreased
fluorescent response. To continue to improve this variant, the authors resorted to
conventional (that is, empirical) protein engineering. They transplanted the L317H
mutation to jGCaMP8f, and tested various combinations of promising mutations in the
jGCaMP7s scaffold, ultimately leading to the identification of 3 improved variants
(eGCaMP, eGCaMP+, and eGCaMP2+). These improved variants also showed
improved performance in primary neurons.

Overall, I found this work to be interesting and innovative. I greatly appreciate the
ambition and goals of the work, and I am excited about the potential for machine
learning algorithms to accelerate protein engineering and ultimately provide better
GEFIs than would otherwise be attainable. However, I also found myself unconvinced
that the machine learning provided any valuable insight, beyond what an
appropriately trained protein chemist could have gained by studying the literature
and the crystal structures. Though, I also appreciate that maybe the goal here is to
match the ability of expert, and not necessarily exceed it? If the goal is to match the
insight of an expert (who still might make imperfect predictions, like the L317
mutations), then I would consider this work a success. If the goal is to exceed the
abilities of an expert, then I don't consider this work to be a success. Either way, I
feel that there needs to be discussion that frames this work in this context, which is
truly fundamental to this and all other machine learning and Al efforts.

In addition to the fundamental concern described above, I have three other major
concerns related to the protein engineering aspects of this work. I will leave it to
other reviewers to comment on the appropriateness of the computational methods.

1. The data set used for training is highly biased. As far as I understand, the residues
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to be mutated were chosen based on inspection of the crystal structure to identify
mutations that were most likely to have an impact on the GCaMP function. I assume
that this bias must propagate through every aspect of this work and the every
prediction that the algorithm makes. The authors will need to more clearly address
this concern, and explain why (or why not) it is a limitation or this work. I feel that a
useful discussion point would be to provide some perspective on what the ideal
training set for such efforts would be, as this may inspire other workers to collect the
appropriate data.

2. In the section on in vitro testing of predicted mutations, the authors explain how
some mutations gave the expected response, yet others gave the opposite response.
Somehow, the authors will need to quantify the overall accuracy of their predictions
and convince the reader that their predictions, in sum, are better than would be
expected based on random chance.

3. Finally, I feel that there needs to be a bit more nuance applied to the comparisons
between the three new variants and the previously reported GCaMP variants. I
believe that previous workers settled on their final variants (GCaMP6s, jGCaMP7s,
etc), as the best possible compromises, taking all of the properties into account.
During their screening, the previous workers certainly found variants that were
improved in one property or another (and are thus in the training sets), but these are
not necessarily the final variants that they settled on. The authors will need to
acknowledge this and write their comparisons and discussion accordingly.

Reviewer #2 (Remarks to the Author):

This paper reports a successful case study about improving the ability of GEFI. It is
clearly written and the result is basically worth publishing. However, I have the
following comments.

1) The ensemble used here is based on relatively old machine learning techniques.
Please clarify why modern deep learning methods are not preferred here.

2) The search range from the wild type is limited. Single mutations and a few double
mutations are considered, but not more. Please discuss if this technique can be used
to discover more distant mutations.

3) Not being an expert in this field, I could not really understand how the
performance of the new variants compares to the best GEFI available. Please discuss
about it.

Reviewer #3 (Remarks to the Author):

Wait et al. present a new approach for machine-learning-based engineering of
genetically-encoded calcium (or more generally, fluorescence) indicators. Their
approach depends on the existence of a large database of standardized experiments
that explore the effect of multiple mutations on a protein sensor of interest. Then,
they implemented a combination of three regression algorithms to learn the
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important parameters that affected fluorescence fluctuations and kinetics when
different amino acids were mutated. The model is then used to predict the
performance of new mutations, which were never tested before, and finally, the
predicted hits were tested in vitro to validate the model accuracy. The main
advantage of the presented approach is its ability to saturate the tested mutation
space, i.e. to computationally test all the possible combinations of amino acids in
multiple specific positions, which is expensive, time- and labor-consuming, but is also
experimentally inefficient — as many of the variants are expected to show low
performance levels.

The manuscript is well-written, and the concept is exciting. The main limitation to its
application to additional types of sensors is the availability of experimental databases
that are required to train the regression algorithms. However, such databases exist
for few sensors and with the current trends of large-scale projects and data sharing,
may be generated for additional sensors. In addition, the authors show that even in a
“mature” protein like GCaMP they can identify regions that were neglected in previous
optimization cycles, which further demonstrated the power of their approach and
emphasize the potential for less-explored proteins.

Some weaknesses are noted below, first some general comments and then more
specific questions or concerned. Overall, upon a satisfactory revision of the
manuscript, this paper can be a good fit for the journal, as it highlights a new path to
engineer protein sensor and overcome a major experimental hurdle of screening
through a huge amount of candidates.

General comments:

1. It seems the model is currently limited to predicting the effect of one mutation at a
time, or at least, this is how it is implemented in this manuscript. I suggest discussing
this topic and how it may develop in the future in the Discussion section.

2. The authors used two databases that were derived from experiments with cultured
neurons but implemented their model’s predictions on HEK cells. The section where
they tested the new variants with cultured neurons doesn’t include a systematic
comparison of the model prediction as in Fig. 3. This seems like a flaw in the logic of
the manuscript and is not addressed. The authors should include these comparisons
(if exist) and discuss changes between the two assays and how they affect the
model’s prediction accuracy.

3. There is no in vivo data included in the paper to validate that the new eGCaMPs
sensors work as good as expected (see comments below regarding different values in
screening experiments compared to previously reported values). Since the main
novelty of this work is in the way it implemented ML-based approach, this is not a
fundamental issue.

4. The DF/FO amplitudes and decay times the authors report (Fig. 5A-E) are
substantially different than previously reported values for the GCaMP6s and mainly
the jGCaMP7s sensors. The 1AP response amplitudes are very low, the decay times
are very slow. Do the authors have any explanation for these changes? This should
be referred in the manuscript as well.

5. The paragraph in page 5 lines 11-28 is an excellent demonstration of the power of
the presented work to explore the mutation space in a way that is hard to do
experimentally. I think it can be further emphasized in the discussion.

Specific comments:
1. Page 4 line 7: The encoding of the amino acid properties, and the nature of these
properties should be better explained. The current explanation is vague (including the
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Methods and supplementary information parts) and doesn’t generate a coherent
picture of why the authors picked this model for describing the AA, why 5 parameters
were chosen, whether some parameters were more “predictive” than others across
AAs, etc.

2. Page 4 lines 17-20: the last sentence of the paragraph is not clear.

3. The authors use the term “fluorescence” to describe the DF/FO changes (Fig. 1A).
Although this term is defined in the paper, it is quite confusing in respect to the way
it is used in the literature. Fluorescence will generally describe the raw signal, and not
the DF/F0, and aspects that relate to the fluorescence will also include the baseline
fluorescence levels, maximal fluorescence level, and bleaching rate. Since the authors
limit themselves to consider DF/FO, then maybe they should use this term explicitly.
4. Page 6 line 5: I think the authors should better clarify the “retrospective analysis”,
which is mentioned here and in other places across the manuscript. What exactly was
done?

5. Page 6 lines 11-12: can you add quantification to the multiple examples that are
mentioned?

6. Page 8 Lines 1-2 (Fig 4): Where these changes significant?

7. Page 8 lines 4-21: Missing — quantification of the accuracy of the models’
prediction for the performance of GCaMP variants in cultured neurons (similar to the
section that studied the performance in the HEK cells). Missing — what is the
agreement between HEK cells and cultured neurons assays? The authors should also
explain why the HEK cells assay is required (is that throughput?).

8. Fig. 1C : It can help to add labels (Calmodulin, GFP, CBD).

9. Fig. 2A: The bubble plot is not clear. What is presented there?

10. Fig. 3B-D: What are the dotted lines in panels B-D?

11. Fig. 3D: Why were the variants arranged in that order?

Reviewer #3 (Remarks on code availability):

The code provides detailed information for the users to install the software and
reproduce the data, including a readme file, a demo movie with step-by-step
installation guide, and the input data used for generating the data in the paper.

Reviewer #4 (Remarks to the Author):

Genetically encoded fluorescent sensors play a crucial role in monitoring neural
activity and neurochemicals. To achieve optimal in vivo performance, the iterative
optimization of these sensors often entails extensive mutagenesis and screening. To
enhance the efficiency of this optimization process, the authors employed a machine
learning ensemble to predict potential beneficial mutations. By integrating these
identified mutations, the authors successfully improved calcium sensors with faster
decay kinetics and a high fluorescent response. This study introduces a valuable
strategy with the potential to be adopted to optimize various other sensors. There are
several minor concerns that I hope the authors will address.

1.The authors get improved eGCaMP series sensors. However, the photophysical
properties of these sensor, including affinity, extinction coefficient and quantum yield
have not been fully characterized. This information holds significance for end-users as
they consider the utility of these sensors.
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2.In figure 4F, it is recommended to clearly label which variants are eCaMP+ and
eCaMP2+. Besides, it will be clearer to align the bar color in figure4F with the trace
color in figure4G.

3.In Figure 5, it would be beneficial for the authors to include a comparison of the
signal-to-noise ratios between different sensors.

Author Rebuttal to Initial comments
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Reviews: Nature Computational Science
S Wait et al.

Table of Contents:

Reviewer #1 (Remarks to the Author): 2
Reviewer #2 (Remarks to the Author): 9
Reviewer #3 (Remarks to the Author): 9
Reviewer #4 (Remarks to the Author): 20

Dear Dr. Pan and Reviewers,

Thank you for taking the time to provide detailed feedback on our manuscript. Your
comments have helped us to refine our work, improve clarity, and ensure completeness. We
sincerely appreciate your overall positive and constructive response. For example, reviewer #1
remarked on our “interesting and innovative” work. Reviewers #2 and #3 stated that the
manuscript is “clearly written and the result is basically worth publishing®, and that “the concept is
exciting”. Reviewer #4 found that the study “introduces a valuable strategy with the potential to
be adopted to optimize various other sensors”.

We have addressed each comment and made the necessary modifications to the
manuscript. For example, we characterized the photophysical properties of our engineered
eGCaMPs together with existing alternatives (Suppl. Table 6). We also conducted in vivo
experiments to validate the enhanced performance of eGCaMPs in behaving animals using fiber
photometry (Suppl. Figure 8). Other comments concerned the accuracy of the machine learning
approach, how generalizable our results are, the cross-compatibility of different biological
preparations, and the choice of specific ML models and parameters. As a result, we extensively
revised the manuscript, highlighting our approach and rationales in much more detail (see Suppl.
Figure 9, Resulits, Discussion, and Methods).

The comments helped tremendously to further increase the impact of this study and its
relevance for the readers of Nature Computational Science. Together with our responses below,
we submitted a revised and annotated version of our manuscript, highlighting all changes in blue
fonts. In summary, this work underscores the power of data-driven approaches to accelerate
complex projects in biological sciences, such as mutational sensor engineering, while greatly
reducing cost and resource commitments.

We look forward to your feedback and hope the revised manuscript meets the high
standards of Nature Computational Science. Thank you once again for your valuable input that
helped improve our work.

Sincerely,

Andre Berndt and Sarah Wait
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Reviewer #1 (Remarks to the Author):

Berndt and coworkers describe their efforts to apply machine learning methods to develop
improved versions of the GCaMP calcium ion indicator. To train their machine learning algorithm,
they used previously reported data for 1078 variants that were screened during the development
of GCaMP6 and jGCaMP7. The two key properties they focussed on were the fluorescent
response to one action potential and the fluorescent decay time. The model was also trained on
amino acid properties such as size and polarity, which seemed to improve the predictive
properties of the models. Sequences that were predicted by the model to have either the biggest
changes in the fluorescent response and kinetics were tested experimentally.

The authors clearly explain how the L317 variants had the opposite effect from the prediction.
While they go on to rationalize why this is the case. While | don’t expect any sort of protein
sequence prediction algorithm to be perfect, the whole point of this work is to try to demonstrate
the utility of the machine learning algorithms for predicting mutations that would improve the
performance. With the L317 mutations, it is clear that the algorithm correctly identified an
important “hot spot” in the protein sequence where mutations were likely to impact the
performance.l am certain that a well-trained biochemist could have made the same prediction.
Indeed, the fact that Dana et al previously tested mutations at this position, demonstrates that this
is the case.

Based on the machine learning predictions, and subsequent in vitro testing, the authors identified
jGCaMP7s L317H as the most promising variant. As noted above, this machine learning algorithm
had predicted that this variant would have decreased fluorescent response. To continue to
improve this variant, the authors resorted to conventional (that is, empirical) protein engineering.
They transplanted the L317H mutation to jGCaMP8f, and tested various combinations of
promising mutations in the jGCaMP7s scaffold, ultimately leading to the identification of 3
improved variants (eGCaMP, eGCaMP+, and eGCaMP2+). These improved variants also
showed improved performance in primary neurons.

Overall, | found this work to be interesting and innovative. We greatly appreciate the ambition and
goals of the work, and | am excited about the potential for machine learning algorithms to
accelerate protein engineering and ultimately provide better GEFIs than would otherwise be
attainable. However, | also found myself unconvinced that the machine learning provided any
valuable insight, beyond what an appropriately trained protein chemist could have gained by
studying the literature and the crystal structures. Though, | also appreciate that maybe the goal
here is to match the ability of expert, and not necessarily exceed it? If the goal is to match the
insight of an expert (who still might make imperfect predictions, like the L317 mutations), then |
would consider this work a success. If the goal is to exceed the abilities of an expert, then | don’t
consider this work to be a success. Either way, | feel that there needs to be discussion that frames
this work in this context, which is truly fundamental to this and all other machine learning and Al
efforts.
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In addition to the fundamental concern described above, | have three other major concerns related
to the protein engineering aspects of this work. | will leave it to other reviewers to comment on
the appropriateness of the computational methods.

We are grateful for the reviewer's comments on the innovativeness of our work and additional
thoughts that reflect many of the fundamental points we discussed when developing the
framework for this study. Fundamentally, we aimed to demonstrate that machine learning, a
powerful tool for pattern recognition and predictions, can be used to guide the engineering of
sensor proteins. In this regard, our study undoubtedly succeeded. It is possible that the identified
mutations could, eventually, have been identified by an experienced expert. However, our
approach showed that an alternative, ML-based approach can be successful at a much faster
speed, with less prior knowledge, and by using fewer resources. Our goal was to identify trends
within large mutational datasets and to test a select smaller number of variants in biological host
systems. For example, instead of screening the 1492 novel mutations individually by laborious,
time-intensive benchwork, our approach succeeded by doing most of the screening /n sifico.
Eventually, we tested only about 20 selected variants in vitro. Because the training data is derived
from an expert, the ML models can learn from it to provide insightful analysis. In other words, the
current configuration of the model is best suited for extrapolation as opposed to exploration. In
the future, we anticipate the underlying training data can be created specifically with machine
learning in mind, i.e., data that is free from empirical biases inherent in many ML datasets.
Specifically, we plan to utilize this pipeline together with our own or other high-throughput
screening platforms capable of generating large mutational datasets. We will address the
additional comments individually below.

1. The data set used for training is highly biased. As far as | understand, the residues to be
mutated were chosen based on inspection of the crystal structure to identify mutations that were
most likely to have an impact on the GCaMP function. | assume that this bias must propagate
through every aspect of this work and the every prediction that the algorithm makes. The authors
will need to more clearly address this concern, and explain why (or why not) it is a limitation or
this work. 1 feel that a useful discussion point would be to provide some perspective on what the
ideal training set for such efforts would be, as this may inspire other workers to collect the
appropriate data.

This is a very astute observation that we have thought about extensively in our current work. We
agree that the dataset itself is inherently biased due to the mutated residues being chosen through
crystal structure analysis and, as mentioned, expert insight. Whether this is truly a limitation is
difficult to ascertain. We did observe that highly mutated positions tend to come to the forefront
of final predictions; however, this does not mean that they are not influential or that the mutations
that the ensemble suggests cannot be exploited further. Even with the biases inherent to the
mutation library, it did not preclude less explored residues from being chosen as influential in
sensor performance. For example, in the graph below, we see that the residues with large
numbers of amino acids tested (317, 52, 390) get pulled out as important in both the kinetics and
AF/F predictions. However, we observed that mutations such as 392, 303, and 59 had relatively
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few amino acids tested at each position but were still pulled out as impactful on both biophysical
properties.
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In creating an ideal dataset for machine learning, we recommend several key steps. First, users
should define the sequence space and dimensionality for the acquired data. Smaller
dimensionality offers more in-depth analysis and comprehension of combinatorial mutations. At
the same time, larger numbers of residue positions will begin to limit the number of mutations that
should be tested in combination. Future data acquisition should characterize equal numbers of
mutations per residue to avoid any potential biases that may arise due to prevalence.
Furthermore, identifying 'loss-of-function' mutations is as vital to proper training as 'gain-of-
function'. Iterative model training is an ideal application of this technology, but testing only
promising variants should be avoided, as this may introduce bias into the dataset.

We ultimately benefitted more from the well-characterized mutation library that was already
published than what was detracted via biased mutations. Although the GCaMP library was not
formed with the ML application in mind, the information found within was still incredibly valuable
and the driving force behind this work. In addition to inspiring others to collect data appropriate
for machine learning, we also want to impress upon the readers and the broader scientific
community that a wealth of data exists and can be analyzed in this way.

We have additionally added the below paragraphs to the discussion:

“Lastly, we acknowledge that the dataset used to train the ensemble was more biased toward
influential residues, as the mutated residues were chosen through crystal structure analysis and
previous empirical insight. Whether this is truly a limitation is difficult to ascertain. We observed
that highly mutated positions tend to come to the forefront of final predictions; however, this does
not mean that they are not influential or that the mutations that the ensemble suggests cannot be
exploited further. Likewise, even with biases in the mutation library, it did not preclude less
explored residues from being chosen as influential in sensor performance. We believe that we
ultimately benefitted more from the well-characterized mutation library that was already published
than what was detracted via biased predictions. Although the mutational dataset was not
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intentionally formed with machine learning in mind, the information found within was invaluable
and capable of training machine learning models.

As machine learning studies become more prevalent, several considerations for data
acquisition may help generate datasets better suited for machine learning extrapolation. First,
sequence space and dimensionality have to be well-defined. Smaller dimensionality offers more
in-depth analysis and comprehension of combinatorial mutations. At the same time, larger
numbers of residue positions will span a much greater sequence space but limit the study to small
iterations from the starting sequence. Data acquisition should have equal numbers of mutations
per residue in their characterization to avoid any potential biases that may arise due to unbalanced
prevalence. Furthermore, identifying 'bad' mutations is as vital to proper training as 'good'
mutations. The use case of iterative model training, in which the user is informed by machine
learning and then retrains the model with additional information, is an ideal application of this
technology. However, testing only promising variants should be avoided, as this may introduce
bias into the dataset during retraining. Testing mutations at sites where the ensemble shows
significant variability in the predictions can increase understanding.”

2. In the section on in vitro testing of predicted mutations, the authors explain how some mutations
gave the expected response, yet others gave the opposite response. Somehow, the authors will
need to quantify the overall accuracy of their predictions and convince the reader that their
predictions, in sum, are better than would be expected based on random chance.

We appreciate the comment and the chance to discuss the accuracy in more detail. To address
this comment, we have included confusion matrices for random chance (ie, 50/50 chance of
success vs. failure), the ensemble (both models), the AF/F model, and the kinetics model (see
below).

We categorize our predictions as binary outcomes, classifying kinetics predictions into variants
that are either faster or slower than jGCaMP7s, and AF/F predictions into variants containing a
larger or smaller AF/F than jGCaMP7s. To evaluate our model's performance, we computed an
accuracy score using the empirical data, which is the ratio of true positives and true negatives to
the total number of predictions.

To gauge whether our accuracy scores surpassed what could be expected by random chance,
we compared them to the accuracy score of an experiment with an equal probability of
success/failure. A standard method for testing equiprobability in binary outcomes involves
repeatedly tossing a fair, unbiased coin (Reimers, Donkin, and Le Pelley 2018). We simulated a
coin toss experiment computationally, where we recorded 1600 consecutive coin tosses (16 trials
x 100 times) to represent predicted values for true/false and 1600 consecutive coin tosses to
represent observed true/false. The accuracy for the coin toss experiment was 0.5, mirroring a
genuinely random change in binary outcomes.

In our ensemble quantifications, AF/F model quantifications, and kinetics model quantifications,
we see that, in every instance, the precision and accuracy are greater than 0.5. This means that
the probability of the ensemble prediction matching empirical observation is greater than what
would be expected from the coin toss and, thus, random chance. Additionally, it is worth noting
that the “random chance” comparison for protein engineering, in actuality, falls far below a 0.5
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chance of success and has a much larger probability of failure (Smith 1970; Yang, Wu, and Amold
2019). Where appropriate, we have included the model accuracies in the results: [n_Vitro
Performance of Ensemble Predictions, Discussion, and as Supplementary Figure 9.
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Estimation of Model Accuracy with Acetyicholine Results. (A.) Confusion Matrix of 100
simulated coin flip experiments (each containing 16 samples). (B.) Confusion matrix of all both
models predictions and acetylcholine performance. (C.) Confusion matrix of all fluorescence
model's predictions and acetylcholine performance. (D.) Confusion matrix of all kinetics model's
predictions and acetylcholine performance. (E.) Quantification of each confusion matrices
accuracy and precision.
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3. Finally, | feel that there needs to be a bit more nuance applied to the comparisons between the
three new variants and the previously reported GCaMP variants. | believe that previous workers
settled on their final variants (GCaMP6s, jGCaMP7s, etc), as the best possible compromises,
taking all of the properties into account. During their screening, the previous workers certainly
found variants that were improved in one property or another (and are thus in the training sets),
but these are not necessarily the final variants that they settled on. The authors will need to
acknowledge this and write their comparisons and discussion accordingly.

We agree with this statement, and in response to this comment, we have conducted additional
experiments. Our results now include the photophysical properties of our variants, including their
Kds, hill coefficients, extinction coefficients, and quantum yield, which should further benchmark
their capabilities compared to previously published variants (Suppl. Table 6).

In discussions with the previous authors, namely Dr. Hod Dana, he mentioned that they decided
on their published variants based primarily on kinetic capability and maximal fluorescence. He
mentioned that they split the variant performances into kinetic “regimes,” i.e., slow, medium, and
fast, and then sorted them based on “maximal fluorescence,” which is the baseline fluorescence
+ AF/F,. The variants they published had the highest maximal fluorescence ranking within each
regime. Depending on where they set their kinetic cutoffs, some variants may rank better than
those in other regimes but not outcompete the best within their kinetic capability. Similarly, the
AF/F,of one variant may be greater than another within the same regime but be considered lower
based on a diminished baseline fluorescence. Our approach does most of the screening in silico
and selects variants with the same favorable biophysical properties, i.e. response amplitude AF/F,
or off kinetics. As a result, we screened fewer variants in vitro but achieved similar results while
reducing the experimental burden.

We have included the below paragraph in the discussion to address this comment and provide
further insight for future studies:

“In previous studies, generating the GCaMP libraries, the authors employed a volume approach,
in which they tested over a thousand variants iteratively and chose to fully characterize those
determined to have optimal kinetic and maximal fluorescence capabilities. Because of the sheer
number of experiments, they split their variants into kinetic regimes and determined the best
possible variant within each regime based on multiple biophysical properties*®. The approach we
employ here allowed the vast majority of the screening to occur in sifico, which significantly
reduced the experimental burden. Importantly, we trained and selected variants incorporating one
of two favorable biophysical properties: AF/F, or off-kinetics. As a result, we tested fewer variants
in vitro but achieved similar results while greatly reducing time and resource commitments. The
selected eGCaMP variants displayed compensation within favorable biophysical characteristics,
such as a lower baseline fluorescence (Supp. Fig. 7). However, the lower baseline did not impact
the performance of eGCaMPs in neuron cultures or in vivo fiber photometry (Supp. Fig. 8).
Hence, it would be an acceptable tradeoff in many use scenarios. As a consideration for future
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studies, metrics for baseline fluorescence or other favorable biophysical characteristics could be
included in ensemble training to preserve them within the final variants.”

Reviewer #2 (Remarks to the Author):

This paper reports a successful case study about improving the ability of GEFI. It is clearly written
and the result is basically worth publishing. However, | have the following comments.

1) The ensemble used here is based on relatively old machine-leaming techniques. Please clarify
why modern deep leamning methods are not preferred here.

We appreciate the reviewer's recommendation for publications and are happy to address the
concems. It is true that some underlying concepts and algorithms, such as K-NN and neural
networks, have been used for a longer time than deep learning methods. However, the
contemporary application of these techniques in modern machine learning settings, along with
advancements in computing power and data availability, makes them relevant and modern
approaches specifically to regression problems.

It is important to acknowledge that there are numerous approaches to solving the same task. We
do not doubt that an approach undertaken with the resources to support modern deep learning
algorithms would yield comparable outcomes. Our choice of the ensemble models was influenced
by several factors. First, their simplicity makes them less prone to overfitting, particularly when
dealing with limited data. These models are also easy to interpret and implement, which allows
us to comprehend better the interprotein factors influencing the predictions made by the models.
Lastly, our ensemble models have lower computational demands compared to deep learning
techniques such as Convolutional Neural Networks (CNNs) or transformers. The reduction in
computational demand makes this ensemble more accessible to potential users.

2) The search range from the wild type is limited. Single mutations and a few double mutations
are considered, but not more. Please discuss if this technique can be used to discover more
distant mutations.

That is a very critical point and a good observation. Therefore, we have added the paragraph
below in the main text to discuss the choice of point mutations.

“One of the major hurdles of protein engineering is the susceptibility of proteins to experience
epistasis, in which combinations of mutations non-additively influence the phenotypic
characteristics of a protein®. Though the mutation library we worked with had >1000 well-
characterized variants, the large number of mutated residues renders the dimensionality
incredibly large. For a library such as this, there are 1.18e+91 possible combinations of residues
over 70 mutated residue positions, meaning that the variant library is only a small sampling of the
theoretical mutation space. We felt that the risk of epistasis upon combinatorial mutation was too
great and that the relatively limited size of the library in comparison to its dimensionality rendered
this application better suited to single-point mutation testing. Though investigation of a
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combinatorial library was not used in this study, others have shown promise using machine
learning to engineer protein combinatorial libraries'.”

3) Not being an expert in this field, | could not really understand how the performance of the new
variants compares to the best GEFI available. Please discuss about it.

We are happy to discuss the benchmarking of eGCaMPs against previous state-of-the-art calcium
sensors in more detail. Our in vitro assessment of the eGCaMP suite of sensors shows that they
have larger amplitudes of AF/Fp responses and faster decay kinetics than the GCaMP6,
jGCaMP7, and jGCaMP8 families of calcium sensors. It is difficult to define which sensor from
any of these suites is the “best.” Usually, users choose which sensor best fits their specific
experimental needs based on fradeoffs such as faster kinetics for lower AF/Fg or vice versa.
However, we can conclude that eGCaMP* is faster than jGCaMPS8f (previously the fastest
published variant) and has larger AF/Fo under most conditions. The dynamic range of eGCaMP?*
under saturating conditions (max. AF/Fp) is larger than GCaMP6s (which in our hands was the
next best-published variant) but has fast kinetics. Therefore, the eGCaMP variants impressively
avoid some of the tradeoffs of previous generations and form a class of their own. Nevertheless,
eGCaMPs also have lower baseline fluorescence (Supp Fig. 7), which could impact some
applications but may be acceptable in others such as in vivo fiber photometry (see new Supp.
Fig. 8). Additionally, a subsequent reviewer asked for each sensor's photophysical properties,
and in our revised manuscript, we provide a much more detailed and side-by-side comparison of
how our variants compare to previous instances (now included in the text and new supplementary
table 6). This complete benchmarking of the sensors should give readers and potential users a
better overview of our sensor's capabilities and help them make informed decisions.

Reviewer #3 (Remarks to the Author):

Wait et al. present a new approach for machine-learning-based engineering of genetically-
encoded calcium (or more generally, fluorescence) indicators. Their approach depends on the
existence of a large database of standardized experiments that explore the effect of multiple
mutations on a protein sensor of interest. Then, they implemented a combination of three
regression algorithms to learn the important parameters that affected fluorescence fluctuations
and kinetics when different amino acids were mutated. The model is then used to predict the
performance of new mutations, which were never tested before, and finally, the predicted hits
were tested in vitro to validate the model accuracy. The main advantage of the presented
approach is its ability to saturate the tested mutation space, i.e. to computationally test all the
possible combinations of amino acids in multiple specific positions, which is expensive, time- and
labor-consuming, but is also experimentally inefficient — as many of the variants are expected to
show low performance levels.

The manuscript is well-written, and the concept is exciting. The main limitation to its application
to additional types of sensors is the availability of experimental databases that are required to
train the regression algorithms. However, such databases exist for few sensors and with the
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current trends of large-scale projects and data sharing, may be generated for additional sensors.
In addition, the authors show that even in a “mature” protein like GCaMP they can identify regions
that were neglected in previous optimization cycles, which further demonstrated the power of their
approach and emphasize the potential for less-explored proteins.

Some weaknesses are noted below, first some general comments and then more specific
questions or concerned. Overall, upon a satisfactory revision of the manuscript, this paper can be
a good fit for the journal, as it highlights a new path to engineer protein sensor and overcome a
major experimental hurdle of screening through a huge amount of candidates.

We are thrilled to read that the reviewer found the concept “exciting.” We are happy to discuss
the fundamentals and future applications in more detail. For example, as the reviewer noted,
larger-scale approaches are becoming more common in biology, which justify or even require
machine learning for data analysis. The applications are still limited in protein engineering, but we
and others are actively developing approaches that can generate mutational sensor libraries
specifically for analysis by machine learning. We added generalizable requirements for future
screens into the Discussion section, while this manuscript provides a roadmap for future sensor
engineering incorporating ML.

General comments:

1. It seems the model is currently limited to predicting the effect of one mutation at a time, or at
least, this is how it is implemented in this manuscript. We suggest discussing this topic and how
it may develop in the future in the Discussion section.

We added the paragraph below into the Discussion explaining why we restricted this study to
point mutations.

“One of the major hurdles of protein engineering is the susceptibility of proteins to experience
epistasis, in which combinations of mutations non-additively influence the phenotypic
characteristics of a protein®. Though the mutation library we worked with had >1000 well-
characterized variants, the large number of mutated residues renders the dimensionality
incredibly large. For a library such as this, there are 1.18e+91 possible combinations of residues
over 70 mutated residue positions, meaning that the variant library is only a small sampling of the
theoretical mutation space. We felt that the risk of epistasis upon combinatorial mutation was too
great and that the relatively limited size of the library in comparison to its dimensionality rendered
this application better suited to single-point mutation testing. Though investigation of a
combinatorial library was not used in this study, others have shown promise using machine
leaming to engineer protein combinatorial libraries's.”

2. The authors used two databases that were derived from experiments with cultured neurons but
implemented their model's predictions on HEK cells. The section where they tested the new
variants with cultured neurons doesn't include a systematic comparison of the model prediction
as in Fig. 3. This seems like a flaw in the logic of the manuscript and is not addressed. The authors
should include these comparisons (if exist) and discuss changes between the two assays and
how they affect the model’s prediction accuracy.
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We agree that the ideal configuration to measure our model's capability should be against data
acquired in the same manner as the training data. While our field stimulus protocol was similar to
that of previous publications, there were some differences in the final implementation, as noted in
our response to comment #4 (below). However, we observed comparable response patterns,
where the response to 1 AP from GCaMP7s was larger than either 6s or 6f, and the half decay
times of GCaMP7s were larger than 6s, which in turn were larger than 6f. The primary limitation
was throughput and sample size acquisition within neuron culture screening.

Due to the low throughput nature of the culture neuron screens, we opted to perform an
intermediate acetylcholine assay step in HEK293 cells. The primary benefit of the acetyicholine
assay is our ability to screen thousands of cells for any given variant efficiently. Despite being a
different host system, the acetylcholine assay provided a close approximation of sensor
capabilities prior to transitioning promising variants into cultured neuron assays.

In response to the comment, we conducted an additional neuron culture screen with the single-
point mutation variants and compared the responses to those obtained using acetylicholine.
Despite a limited sample size, the acetylcholine screen largely reflected what we observed in
cultured neurons. Specifically, the kinetics assay results from the acetylcholine assay closely
matched our observations in cultured neurons, even with a low sample size. This is further
compounded by an excellent accuracy score of 0.75 for the kinetics model's predictions in HEK
cells in vitro (new Supp. Fig. 9). Based on the similarity between the two assays; we expect that
the neuron culture screen accuracy score would be similar.

Decay after 10 uM Acetyicholine Decay after 10 AP Stimulus
(HEK293) (Cultured Neurons)
—} Ensemble Pradiction L Ensemble Prediction
200 4 Slower [GCaMPTs Faster — Slower [GCaMPTs Faster
w
s | B Fol| ] T
> 150 ¢
g g
o B
¥ 1001 8
g T
=
so{ | T .
g : ¥
" ¥ 7 ‘.'.’H | 3
o4 L5 sllellc s
RS O R & DK O
g SIS IST

Within the AF/F testing, we did see some dissimilarities in the acetylcholine assay and the neuron
responses; however, the differences aligned better with the machine learning predictions. This is
illustrated in Figure 5A, where the 1AP response from eGCaMP (L317H) is diminished compared
to jGCaMP7s, which is consistent with the model's predictions. In the neuron culture screen, we
begin to see this same effect where the model predictions appear to reflect what was observed in
neurons, particularly with the L317 variants.
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Overall, the acetyicholine assay in HEK cells proved to be a close approximation for assessing
sensor capabilities in neurons, offering significantly higher throughput. We acknowledge
differences in experimental approaches between labs but emphasize that these did not
compromise the ensemble's ability to guide our engineering efforts. Our approach yielded multiple
variants of interest and highlighted potential mutations for future exploration by other researchers
and developers.

3. There is no in vivo data included in the paper to validate that the new eGCaMPs sensors work
as good as expected (see comments below regarding different values in screening experiments
compared to previously reported values). Since the main novelty of this work is in the way it
implemented ML-based approach, this is not a fundamental issue.

We agree that the main focus of the manuscript is on the ML part. However, many potential users
of eGCaMPs would be interested in confirming the in vitro results in vivo. Therefore, we added
expression and stimulus results of our eGCaMP? and eGCaMP* sensors (currently available on
addgene) from the mouse prefrontal cortex, measured by fiber photometry in vivo (New Supp.
Fig. 8). Confirming their in vitro performance, we found that eGCaMP?* displayed a significantly
larger AF/F, compared to GCaMP6f. Similarly, eGCaMP* displayed the fastest decay after
activation. We have included these findings as Supplementary Figure 8 and included
results/discussion within the main text!

12
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Supplementary Figure 8: In Vivo Performance of eGCaMP+ and eGCaMP2+ expressed in mPFC
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4. The DF/FO amplitudes and decay times the authors report (Fig. SA-E) are substantially different
than previously reported values for the GCaMP6s and mainly the jGCaMP7s sensors. The 1AP
response amplitudes are very low, the decay times are very slow. Do the authors have any
explanation for these changes? This should be referred in the manuscript as well.

While we developed a neuron culture screen similar to that of the previous authors, it is difficult
fo replicate the experimental setup entirely. Therefore, we developed our paradigms as the
closest approximation. Then, we thoroughly benchmarked the new eGCaMPs against the
previously published variants in various biological host systems under identical conditions. Thus,
even when the magnitude or speed of response of individual variants differed, we reproduced the
relative trends between different sensors, which reflected what previous authors had published.
Importantly, we showed how our sensors performed under identical experimental conditions
against other published variants. The relative performance of GcaMP variants was largely
recapitulated in HEK cells and in vivo (new Supplementary Figure 8).
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To shed light on the observed variations, we highlight some key differences in our experimental
setup compared to previous studies (as reported in the Methods section), which may contribute
to the disparities in the reported AF/Fqs and kinetics.

Experimental Setup Differences:
e Different Neuron Sources:

o The source of the previous work’s neurons were from the hippocampus (Wardill
et al. 2013), whereas we chose to derive our neurons from the cortex, where we
could acquire many more healthy cells.

Different Promoters:

o In our experiment, we used variants driven by the CAG promoter, whereas
previous authors used the Syn promoter (Wardill et al. 2013). It is possible that
the differences in strengths of these promoters led to differences in both
expression speed and levels (which could affect the baseline, and thus AF/F)

Different Transfection Methods:

o We used calcium phosphate as a method to transfect our neuron cultures, while
the other studies used viral transfection. This could affect transfection
efficiencies and expression rates.

Different Wires

o We used silver electrodes, whereas the previous authors reported using

platinum electrodes.
Different imaging media

o Previous Authors Imaging Solution: 145 mM NacCl, 2.5 mM KCI, 10 mM glucose,
10 mM HEPES pH 7.4, 2 mM CaCl2, 1 mM MgCi2

o Our Imaging media: 150 mM NacCl, 4 mM KCI, 10 mM glucose, 10 mM HEPES
pH 7.33, 3 mM CaCi2, 1 mM MgCI2

e Inhibitor Usage:

o We observed these calcium transients without using any inhibitors, whereas the
previous authors used certain neuronal receptor antagonists.

In response to your suggestion, have incorporated the following into the manuscript, discussing
these variations and their potential impact on the reported resuits.

“We included these previously published variants to benchmark the responses from our sensors

under identical experimental conditions.”

5. The paragraph in page 5 lines 11-28 is an excellent demonstration of the power of the
presented work to explore the mutation space in a way that is hard to do experimentally. | think it
can be further emphasized in the discussion.

We appreciate the comment and have added a paragraph to the discussion highlighting the
residue interactions and their promise in future studies.
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“With the functional predictions gathered from the model, we were not only able to gather
mutations that directed sensor engineering but also able to observe the leaming and predictive
patterns to better understand the protein function. For example, when we mapped the residues
the ensemble predicted would be influential back onto the GCaMP crystal structure, we found that
the highlighted residues were in structurally significant parts of the GCaMP protein and often
faced inward toward one other. This phenomenon may indicate that the ensemble is learning
which residue interactions are important for protein function and govern the given biophysical
property. As such, these residue interactions constitute a promising basis for further mutational
studies and may even be used to influence future mutation library generation.”

Specific comments:

1. Page 4 line 7: The encoding of the amino acid properties, and the nature of these properties
should be better explained. The cumrent explanation is vague (including the Methods and
supplementary information parts) and doesn’t generate a coherent picture of why the authors
picked this model for describing the AA, why 5 parameters were chosen, whether some
parameters were more “predictive” than others across AAs, efc.

We agree that the readers would benefit from more detailed information and rationals. We have
edited the text and added more information where appropriate. The responses to individual points
and edits to manuscript sections are listed below.

The encoding of the amino acid properties

To perform the encoding, we replace each amino acid in the sequence with the corresponding
value from the property dataset, i.e., the float type value that exists for that amino acid’s position
in the property dataset list. [see Methods: Data Preprocessing]

nature of these properties should be better explained.

AAINDEX consists of 554 complete matrices that each describe a different AA property, such as
size, polarity, or hydrophobicity. The general shape and composition of each one of the property
datasets is a list of 20 float type values, in which the order is linked to the amino acid, and the
float type value is a quantitative value that is dependent on the property in question. [see
Methods: Data Preprocessing, and Results: Description of Variant Library, Computational
Approach, and Predictions on Novel Sequences]. The specific AA properties that were selected
for each ensemble are listed in Supplementary tables 1 and 2. We also added a more in depth
discussion on the AA properties and their impact in the “Discussion” section.

why the authors picked this model for describing the AA

We needed to choose an encoding method in order to discretize our sequence and make it
available for interpretation by the models. There are previous examples in which authors
performed both one-hot encoding (Bedbrook et al. 2019) and amino acid property encoding (Saito
et al. 2018) that both led to successful machine learning-guided engineering of protein properties,
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and both are valid methodologies (Yang, Wu, and Amnold 2019). We evaluated each of these
encoding methods alongside label encoding and found that our encoding using 5 datasets led to
the best predictive outcomes in our hands (Supplementary Figure 2C). [Results: Description of
Variant Library, Computational Approach, and Predictions on Novel Sequences

why 5 parameters were chosen,

The reason we chose to include five property datasets in the final ensemble prediction was
twofold. The first was that, during our training, we found that the top-performing datasets often
achieved R? values that were remarkably similar (Supp. Table 1&2; Supp. Fig. 2). Given the
marginal superiority of the top-performing dataset over its counterparts, a strategic choice was
made to include additional matrices. The selection of five datasets was made semi-arbitrarily, as
it afforded the desired additional insights without dramatically impacting computational demands,
processing time, and storage requirements. The second reason we chose to include more was
due to the type of ensemble we were performing. Within the stacked ensemble, each final
ensemble prediction was determined through unweighted averaging. This method is not free from
outlier corruption, meaning that if one model's prediction is vastly different from the others, it will
influence how that prediction is considered in the final ensemble predictions. The addition of more
datasets/models enables some buffering to happen and for a large sample size to determine our
ensemble's mean predictions. [see Methods: Ensembie Training]

whether some parameters were more “predictive” than others across AAs, etc.

This is the discussion we aim to promote in Supplementary Figure 2 by describing the top-
performing properties in Supplementary Tables 1 and 2.

Within supplemental figure 2, we aimed to provide some insight into the top-performing datasets
and whether or not there was a pattern in each model’s learning. In our analysis, we took all 30
top-performing datasets (15 from each model) and performed PCA clustering to garner an idea
of the degree of similarity between each dataset.

We evaluated the contents of each cluster (Supp. Fig. 2D) to identify a shared parameter within
them that is driving predictive capabilities. For example, we found that the parameter ‘Interactivity
scale obtained from the contact matrix’ clustered in group 3, alongside parameters such as
‘Average surrounding hydrophobicity,” ‘Modified Kyte-Doolittle hydrophobicity scale,” and
‘Normalized hydrophobicity scales for alpha/beta-proteins.’ This gave us some insight into the fact
that even though that parameter was associated with high predictive capabilities, it may be due
in part to its similarity with hydrophobicity matrices, which may be the driving interaction within
the protein. This enabled us to ascertain the underlying properties that lead to our model decisions
(i.e., altering amino acids' hydrophobicity at key residues).

We found that parameters that described hydrophobicity were commonly associated with higher-

performing predictive capabilities in the AF/F model, meaning that some of the protein behavior
modifications may be partly due to key hydrophobic interactions. In comparison, parameters
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associated with protein folding and energetics were common amongst the higher-performing
predictive capabilities in the kinetics model.

While the information in this figure does not drive the predictions that we test downstream, it is an
exciting exploration into how the model was able to learn and served as a lens into the interprotein
interactions we may be missing. [Discussion]

Text included in the discussion:

“Analysis of the top performing datasets within each model additionally provides insight into how
the model was able to learn and served as a lens into the interprotein interactions. For instance,
we found that AA property datasets that described hydrophobicity were commonly associated
with higher-performing predictive capabilities in the AF/F model (Supp. Fig 2B-D; Supp. Table
1), meaning that some of the modifications in protein behavior may be due in part to key
hydrophobic interactions. In comparison, AA property datasets associated with protein folding and
energetics were common amongst the higher-performing predictive capabilities in the kinetics
model (Supp. Fig 2B-D; Supp. Table 2)."

2. Page 4 lines 17-20: The paragraph's last sentence is unclear.
We agree that this was a run-on sentence and not clear in the way that it was written. We removed
some of the quantification from the text, disambiguating the message we aimed to present.

3. The authors use the term “fluorescence” to describe the DF/FO changes (Fig. 1A). Although
this term is defined in the paper, it is quite confusing in respect to the way it is used in the literature.
Fluorescence will generally describe the raw signal, and not the DF/F0, and aspects that relate to
the fluorescence will also include the baseline fluorescence levels, maximal fluorescence level,
and bleaching rate. Since the authors limit themselves to consider DF/FO0, then maybe they should
use this term explicitly.

This is a fair critique, and we understand how the term can be too ambiguous for the context in
which we meant it. We have replaced all instances of fluorescence with AF/Fo (where appropriate).
Thank you for your insight!

4. Page 6 line 5: We think the authors should better clarify the “retrospective analysis”, which is
mentioned here and in other places across the manuscript. What exactly was done?

When we refer to retrospective analysis in the text, it is mostly phrased for deeper analysis of the
mutant library. In the context in which we use the phrase, we are isolating all of the variants that
exist within the characterized library that harbor a 317 mutation and observing their performance
as compared to jGCaMP7s. This was not clear in the way that it was written, so we have
rephrased these sentences to describe the analysis performed better.

5. Page 6 lines 11-12: can you add quantification to the multiple examples that are mentioned?
We absolutely agree and have added quantification for this line! It now includes that we observed
4 variants that displayed the predicted increase in AF/F and five that displayed the predicted
decrease in AF/F!
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Text changed to: “Regardless, we identified four mutations (P303W, P303F, G392F, G392W) that
displayed their predicted increase in AF/FQ as well as five mutations (A390Y, L302C, L302H,
L302G, L302R) that displayed the predicted decrease in AF/FQ."

6. Page 8 Lines 1-2 (Fig 4): Where these changes significant?

In the case of eGCaMP?* the changes in AF/F at all concentrations were significant (by
student’s t-test, tested against JGCaMP7f (the next highest performing published variant). Not all
of eGCaMP*'s changes in AF/F were significant compared to jGCaMP7f with the same analysis,
but We have indicated in Figure 4G levels of significance and listed the p-values in the figure
legend. We have also slightly modified the text to delineate significance!
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7. Page 8 lines 4-21: Missing — quantification of the accuracy of the models’ prediction for the
performance of GCaMP variants in cultured neurons (similar to the section that studied the
performance in the HEK cells). Missing — what is the agreement between HEK cells and cultured
neurons assays? The authors should also explain why the HEK cells assay is required (is that
throughput?).

This is a valid point. We addressed many of these concerns regarding comparing HEK cells and
neurons in comment #2 above. We believe the information provided there will also answer this

point here.

8. Fig. 1C: It can help to add labels (Calmodulin, GFP, CBD).
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We added bracket labels of where the domains are in relation to the structure! We additionally
provide a full characterization of all of the mutation positions and their location on the protein in
Supplementary Figure 1A, as well as a crystal structure that is color-labeled for the domains in
Supplementary Figure 3A. (The updated Figure 1C is provided below). We appreciate the
comment on the clarity of our figure panels.
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9. Fig. 2A: The bubble plot is not clear. What is presented there?

The specific bubble plot in 2A is meant to be a representative graph to demonstrate how we derive
the bubble plot in 2D. We want to show that we take the mutations that the ensemble predicted
would have the greatest effect on sensor function (IE, those that occur at the bottom and top of
the ranked predictions) and count the number of times that each residue appears. This becomes
what we describe as the influential residues for each biophysical characteristic. To address any
ambiguity, we have bolstered the description of this process both in the main text and figure
caption.

10. Fig. 3B-D: What are the dotted lines in panels B-D?

They indicate the mean of the base construct, [GCaMP7s, and were intended to be visual aids to
determine the change compared to the baseline. We will better indicate the identity of these dotted
lines in the corresponding figure legends.

11. Fig. 3D: Why were the variants arranged in that order?

The variants in B/C were ordered based on the ranked prediction from the ensemble, whereas
we did not form predictions for SNR or performance score and instead listed them in ascending
order with the base construct as the first to appear. We have included this in the figure legend to
improve clarity.

Reviewer #3 (Remarks on code availability):
The code provides detailed information for the users to install the software and reproduce the

data, including a readme file, a demo movie with step-by-step installation guide, and the input
data used for generating the data in the paper.
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Reviewer #4 (Remarks to the Author):

Genetically encoded fluorescent sensors play a crucial role in monitoring neural activity and
neurochemicals. To achieve optimal in vivo performance, the iterative optimization of these
sensors often entails extensive mutagenesis and screening. To enhance the efficiency of this
optimization process, the authors employed a machine learning ensemble to predict potential
beneficial mutations. By integrating these identified mutations, the authors successfully improved
calcium sensors with faster decay kinetics and a high fluorescent response. This study introduces
a valuable strategy with the potential to be adopted to optimize various other sensors. There are
several minor concerns that | hope the authors will address.

1.The authors get improved eGCaMP series sensors. However, the photophysical properties of
these sensor, including affinity, extinction coefficient, and quantum yield, have not been fully
characterized. This information holds significance for end-users as they consider the utility of
these sensors.

We appreciate the reviewer's valuable insights and comments. We agree that the manuscript
would benefit from additional biophysical characterization as these key features interest many
readers and potential users. Therefore, we conducted additional experiments on purified proteins.
Below are the affinities, hill coefficients, extinction coefficients in the saturated state, and quantum
yields in the saturated states of our sensors compared to previously published variants. We have
included this data as a supplementary table 6 and discussed the results in the text.

£Satureled
Sensor Kd (nM) Hill Coefficient (x1000) (pSaluralod
(M em™)
GCaMP6s |120.8[110.6, 132.2]| 2.014 [1.716, 2.387] N/A N/A
GCaMP6f |291.3 [256.4, 333.1]| 1.857 [1.544, 2.261] 65.276 0.6
jGCaMP7s | 46.2[39.3, 53.7] 2.138 [1.596, 1.918] N/A N/A
eGCaMP |354.8[262.8,516.4]| 1.761 [1.087,3.339] 62.726 0.68
eGCaMP2+ |358.7 [310.4, 418.8]| 1.925 [1.540, 2.461] 60.070 0.72
eGCaMP+ | 1885 [1.082, 34.02] | 0.9976 [0.4875, 1.871] 58.988 0.63

2.In figure 4F, it is recommended to clearly label which variants are eCaMP+ and eCaMP2+.
Besides, it will be clearer to align the bar color in figure4F with the trace color in figure4G.

We have added the color of eGCaMP?* to Figure 4E as well as bold the label at the bottom to
indicate its importance. eGCaMP* was discussed in Figure 4A/B, and we attempted to match the
colors in these graphs to their corresponding color in 4G, but we can see how the color is slightly
off. We will change the color of these bars to match it better and additionally bold the text similar
to what is done in 4F.
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Figure 4: Mutation Transfer and Combinatorial Mutation For The Identification of eGCaMP*
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3.In Figure 5, it would be beneficial for the authors to include a comparison of the signal-to-noise
ratios between different sensors.

We had included this data in Supplementary Figure 7 as a ratiometric comparison originally;
however, we additionally included SNR calculations (using Eq.2) for the data collected during the
acetylcholine concentration curve so that the side-by-side comparison can be appreciated. This
data can now be found in Supplementary Figure 5C. We observed that the trend was consistent,
and the eGCaMPs again outperformed the previously published variants.
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: 25th January 24 01:42:59

: Jie Pan
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: AIP Decision on Manuscript NATCOMPUTSCI-23-0833B
: Our ref: NATCOMPUTSCI-23-0833B

25th January 2024
Dear Dr. Berndt,

Thank you for submitting your revised manuscript "Machine Learning Ensemble
Directed Engineering of Genetically Encoded Fluorescent Calcium Indicators"
(NATCOMPUTSCI-23-0833B). It has now been seen by the original referees and their
comments are below. The reviewers find that the paper has improved in revision, and
therefore we'll be happy in principle to publish it in Nature Computational Science,
pending minor revisions to satisfy the referees' final requests and to comply with our
editorial and formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist
detailing our editorial and formatting requirements in about 10 days. Please do not
upload the final materials and make any revisions until you receive this additional
information from us.

TRANSPARENT PEER REVIEW

Nature Computational Science offers a transparent peer review option for original
research manuscripts. We encourage increased transparency in peer review by
publishing the reviewer comments, author rebuttal letters and editorial decision
letters if the authors agree. Such peer review material is made available as a
supplementary peer review file. Please remember to choose, using the
manuscript system, whether or not you want to participate in transparent
peer review.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the
interest of confidentiality. If you are concerned about the release of confidential data,
please let us know specifically what information you would like to have removed.
Please note that we cannot incorporate redactions for any other reasons. Reviewer
names will be published in the peer review files if the reviewer signed the comments
to authors, or if reviewers explicitly agree to release their name. For more
information, please refer to our FAQ page.
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Thank you again for your interest in Nature Computational Science. Please do not
hesitate to contact me if you have any questions.

Sincerely,

Jie Pan, Ph.D.
Senior Editor
Nature Computational Science

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are
encouraged to do so. Please note that it will not be possible to add/modify ORCIDs at
proof. Thus, please let your co-authors know that if they wish to have their ORCID
added to the paper they must follow the procedure described in the following link
prior to acceptance: https://www.springernature.com/gp/researchers/orcid/orcid-for-
nature-research

Reviewer #1 (Remarks to the Author):

All reviewers were fundamentally supportive of the work, and the authors have done
an exceptionally thorough job of addressing all of the comments. I recommend that
the manuscript be accepted in its current form.

Reviewer #2 (Remarks to the Author):

The authors addressed all of my comments properly.

Reviewer #3 (Remarks to the Author):

Wait et al., has done an excellent work in responding thoroughly to all reviewers,
including to my comments. I think the corrected manuscript has significantly
improved as a result of that and should be accepted to publication with some minor
corrections that are noted below:

1. The term GEFI is defined twice.

2. The term AA (amino acid) is not defined in the paper.

3. The terms “accuracy” and precision” that are used to characterize the model (main
text and Supp. Fig. 9) are not defined.

4. In the Methods/Animals section, the term ad-lithium should be changed to ad-
libitum.

5. In the Methods “fiber photometry recording” and “fiber photometry analysis”
sections, it is not clear what is the role of the 410nm line, what is the linear scaling
that is mentioned, how it is done, and why. It would be helpful to add a brief
description and a reference to a detailed protocol.

Reviewer #4 (Remarks to the Author):
I wanted to express my satisfaction upon reviewing the revised manuscript, which
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has been meticulously organized by the authors. They have diligently addressed most
concerns raised during the review process. However, I would like to draw your
attention to a specific point mentioned in the general comments 2 provided by
reviewer #3.

In their review comments, reviewer #3 highlighted the need for additional
descriptions regarding the inconsistency of model organisms used in the database
used for training (based on HEK293) and the test results (based on cultured neurons)
within the main text. While the authors have made clear explanation for the issue
raised in the response letter with experimental data, these results do not seem to be
incorporated in the main text. To ensure a comprehensive understanding of the
study, it would be beneficial for the authors to incorporate this information.
Additionally, it is recommended that the relevant data be included in the
supplementary figures to provide a more complete picture.

Once these additions have been made, I wholeheartedly support the publication of
this manuscript. The authors' commitment to addressing the reviewers' comments
and incorporating the necessary revisions demonstrates their dedication to producing
a high-quality piece of work.

‘ Author Rebuttal, first revision:
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Secondary Reviews:

Reviewer #1 (Remarks to the Author):

All reviewers were fundamentally supportive of the work, and the authors have done an
exceptionally thorough job of addressing all of the comments. | recommend that the manuscript
be accepted in its current form.

Reviewer #2 (Remarks to the Author):

The authors addressed all of my comments properly.

Reviewer #3 (Remarks to the Author):

Wait et al., has done an excellent work in responding thoroughly to all reviewers, including to my
comments. | think the corrected manuscript has significantly improved as a resulit of that and
should be accepted to publication with some minor corrections that are noted below:

1. The term GEFI is defined twice.
We have removed the second instance, thank you for noticing!

2. The term AA (amino acid) is not defined in the paper.
We have added the definition to Results: Description of Variant Library, Computational
Approach, and Predictions on Novel Sequences, once again, thank you for noticing!

3. The terms “accuracy” and precision” that are used to characterize the model (main text and
Supp. Fig. 9) are not defined.

We have added the equations to the methods sections and referenced the equations in the text
as well as in the figure caption.

Resuits: In Vitro Performance of Ensemble Predictions
The overall accuracy (Eq.6) of the AF/Fomodel is 0.56 (Supp. Fig. 9C,E).
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Methods:

To calculate the accuracy of our model, we classified kinetics predictions into variants that
are either faster or slower than JGCaMP7s, and AF/F predictions into variants containing a larger
or smaller AF/F than JGCaMP7s. To evaluate our model's performance, we computed an accuracy
score (Eq.6) using the empirical data, which is the ratio of sum of the true positives (TP) and true
negatives (TN) to the total number of predictions.

TP+TN

Accuracy Score = ————
Npredictions

(Eq.6)

To calculate the precision of our model, we classified kinetics predictions into variants that
are either faster or slower than JGCaMP7s, and AF/F predictions into variants containing a larger
or smaller AF/F than jGCaMP7s. To evaluate our model's performance, we calculated the
precision (Eq.7) of our models using the empirical data, which is the ratio of number of TP over
the number of TP and false positive (FP).

NIRRT ¢
Precision = —— (Eq.7)

Supp Fig 9. Caption:

Supplementary Figure 9: Estimation of Model Accuracy with Acetylcholine Resuits.

A. Confusion Matrix of 100 simulated coin flip experiments (each containing 16
samples).

B. Confusion matrix of all both models’ predictions and acetylcholine performance.

c. Confusion matrix of all fluorescence model's predictions and acetylcholine
performance.

D. Confusion matrix of all kinetics model's predictions and acetylcholine performance.

E. Quantification of each confusion matrices accuracy (Eq.6) and precision (E£q.7).

4. In the Methods/Animals section, the term ad-lithium should be changed to ad-libitum.
We changed the term.

5. In the Methods “fiber photometry recording” and “fiber photometry analysis” sections, it is not
clear what is the role of the 410nm line, what is the linear scaling that is mentioned, how it is done,
and why. It would be helpful to add a brief description and a reference to a detailed protocol.

We added the following paragraph to the Methods section “Fiber photometry recording”
“Imaging GCaMP with 410 nm wavelength excitation light represents the isosbestic wavelength
of the sensor. This means the GFP emission when imaging at this wavelength is not dependent
on calcium. Measuring the fluorescence signal using 410 nm wavelength allows us to get a control
signal that shows non-Ca2+ related signal changes that could be contributing to the measured
Ca2+-dependent signal (470 nm signal). The 410 nm signal was linearly scaled to best fit the 470
nm signal using least-squares regression. The scaled 410 nm was then used as a reference trace
to obtain the motion-corrected 470 nm signal by subtracting it from the 470 nm signal. Please see
the reference for further details (Kim et al. 2016).”
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Reviewer #4 (Remarks to the Author):

| wanted to express my satisfaction upon reviewing the revised manuscript, which has been
meticulously organized by the authors. They have diligently addressed most concerns raised
during the review process. However, | would like to draw your attention to a specific point
mentioned in the general comments 2  provided by reviewer  #3.

In their review comments, reviewer #3 highlighted the need for additional descriptions regarding
the inconsistency of model organisms used in the database used for training (based on HEK293)
and the test results (based on cultured neurons) within the main text. While the authors have
made clear explanation for the issue raised in the response letter with experimental data, these
results do not seem to be incorporated in the main text. To ensure a comprehensive
understanding of the study, it would be beneficial for the authors to incorporate this information.
Additionally, it is recommended that the relevant data be included in the supplementary figures to
provide a more complete picture.

We have included the response to reviewer #3 in the main text as well as an additional
supplemental figure! Thank you for your feedback!

We have included the text below in results section: “/n_Vitro Performance of Ensemble
Predictions”

“The ideal configuration would be to evaluate them in the same manner as the training data.
However, due to the lower throughput of cultured neuron screens, we first performed an
intermediate acetylcholine assay step in HEK293 cells. We found the acetyicholine assay
approximated variant performances accurately before cultured neuron assays (Supplementary
Figure 4A-F)”

We have included the following figure as Supplementary Figure 4.

29



natureresearch

Decay after 10 uM Acetyichaline \F/F after 10 uM Acatyicholine \F/F after 10 AP Stimulus
A (HEK233) C (HEK293) B (Cultured Neurons)
: : {2 ) .

Ensonnde Fration Eﬂ”mw Ensemble Procicti

Sow CCANPTS Fasne

g

Lasser  JGCaMPIs Greatar

Lazeer [ACsMPIs Grastoe

T. Decay (3)
i
HH

Max AF/F, (%)
8 5 8 8 B

n-!m

aw@«w 7 7 7 ¥ 7y N T S E T T

B. Decay after 10 AP St:mulus D \F/F after 1 AP Stimulus F \F/F after 80 AP Stimulus
'Culrumd Neurons) (Cultured Neurons) : (Cultured Neurons)

b | Ensemixe Frodiction T Ensertle Frediction

Tewe OCAVTS Tase
Loczor  jGCaVP7s Grooter o

Half Deczy TIme, 1, , (s)

1

777777577 2l 775y il 7 v Y

Once these additions have been made, | wholeheartedly support the publication of this
manuscript. The authors' commitment to addressing the reviewers' comments and incorporating
the necessary revisions demonstrates their dedication to producing a high-quality piece of work.
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‘ Final Decision Letter:

Date:
Last Sent:

Triggered
By:

From:
To:

CC

BCC:

Subject:

Message:

15th February 24 14:59:20

15th February 24 14:59:20

Fernando Chirigati
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Decision on Nature Computational Science manuscript NATCOMPUTSCI-23-0833C
Dear Dr Berndt,

We are pleased to inform you that your Article "Machine Learning Ensemble Directed
Engineering of Genetically Encoded Fluorescent Calcium Indicators" has now been
accepted for publication in Nature Computational Science.

Once your manuscript is typeset, you will receive an email with a link to choose the
appropriate publishing options for your paper and our Author Services team will be in
touch regarding any additional information that may be required.

Please note that Nature Computational Science is a Transformative Journal (TJ). Authors
may publish their research with us through the traditional subscription access route or
make their paper immediately open access through payment of an article-processing
charge (APC). Authors will not be required to make a final decision about access to their
article until it has been accepted. Find out more about Transformative Journals

Authors may need to take specific actions to achieve compliance with funder
and institutional open access mandates. If your research is supported by a funder
that requires immediate open access (e.g. according to Plan S principles) then you
should select the gold OA route, and we will direct you to the compliant route where
possible. For authors selecting the subscription publication route, the journal’s standard
licensing terms will need to be accepted, including self-archiving policies. Those
licensing terms will supersede any other terms that the author or any third party may
assert apply to any version of the manuscript.

If you have any questions about our publishing options, costs, Open Access
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requirements, or our legal forms, please contact ASJournals@springernature.com

Acceptance of your manuscript is conditional on all authors' agreement with our
publication policies (see https://www.nature.com/natcomputsci/for-authors). In
particular your manuscript must not be published elsewhere and there must be no
announcement of the work to any media outlet until the publication date (the day on
which it is uploaded onto our web site).

Before your manuscript is typeset, we will edit the text to ensure it is intelligible to our
wide readership and conforms to house style. We look particularly carefully at the titles
of all papers to ensure that they are relatively brief and understandable.

Once your manuscript is typeset, you will receive a link to your electronic proof via
email with a request to make any corrections within 48 hours. If, when you receive your
proof, you cannot meet this deadline, please inform us at
rjsproduction@springernature.com immediately.

If you have queries at any point during the production process then please contact the
production team at rjsproduction@springernature.com.

You may wish to make your media relations office aware of your accepted publication,
in case they consider it appropriate to organize some internal or external publicity. Once
your paper has been scheduled you will receive an email confirming the publication
details. This is normally 3-4 working days in advance of publication. If you need
additional notice of the date and time of publication, please let the production team
know when you receive the proof of your article to ensure there is sufficient time to
coordinate. Further information on our embargo policies can be found here:
https://www.nature.com/authors/policies/embargo.html

An online order form for reprints of your paper is available

at https://www.nature.com/reprints/author-reprints.html. All co-authors, authors'
institutions and authors' funding agencies can order reprints using the form appropriate
to their geographical region.

You can now use a single sign-on for all your accounts, view the status of all your
manuscript submissions and reviews, access usage statistics for your published articles
and download a record of your refereeing activity for the Nature journals.

To assist our authors in disseminating their research to the broader community, our
Sharedlt initiative provides you with a unique shareable link that will allow anyone (with
or without a subscription) to read the published article. Recipients of the link with a
subscription will also be able to download and print the PDF.

As soon as your article is published, you will receive an automated email with your
shareable link.

We look forward to publishing your paper.
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Best,
Fernando (on behalf of Jie Pan)

Fernando Chirigati, PhD
Chief Editor, Nature Computational Science
Nature Portfolio

P.S. Click on the following link if you would like to recommend Nature Computational
Science to your librarian: https://www.springernature.com/gp/librarians/recommend-

to-your-library

** Visit the Springer Nature Editorial and Publishing website
at www.springernature.com/editorial-and-publishing-jobs for more information about
our career opportunities. If you have any questions please click here.**

41


https://www.springernature.com/gp/librarians/recommend-to-your-library
https://www.springernature.com/gp/librarians/recommend-to-your-library
http://editorial-jobs.springernature.com/
mailto:editorial.publishing.jobs@springernature.com

