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Supplementary Section 1. tmQMg-L dataset

Random ligand samples

The random sampling over the tmQMg-L ligand dataset shown in Supplementary Figure

1 contains twenty-eight ligands belonging to these twelve different categories: phosphines,

alkyls, carbenes, chelating amines, allyls, olefins, arenes, carboxylates, amidos, arsinines,

halides, and pincers.

Supplementary Figure 1: Structural diversity in the tmQMg-L dataset. Random sample
of 28 ligands, each labeled with its charge, followed by the denticity (κnE) and hapticity (ηmE ), where
n and m are the number of metal-bound atoms of element(s) E, respectively.
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Metal coordination environments

The histograms in Supplementary Figure 2 show the absolute and relative frequencies of

the SMARTS patterns representing the 20 most common coordination environments in the

tmQMg-L and OctLig1 ligand datasets, as well as the corresponding heatmaps of the pair-

wise Tanimoto coefficients. For tmQMg-L, the five most common environments, in decreasing

order of popularity, can be assigned to aromatic N-heterocyles, imines, alcohols (and alkox-

ides), aliphatic phosphines, and olefine ligands. Most of these environments also appear in

the OctLig dataset, though with significantly different relative frequencies in most cases.

Whereas the Tanimoto heatmaps suggest that both datasets are highly diverse, with most

coefficients taking values < 0.2, the SMARTS histograms show that the tmQMg-L dataset is

more balanced, with a softer decay of the frequencies, which, in absolute terms, are generally

significantly larger than those of the smaller OctLig dataset.
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Supplementary Figure 2: Chemical diversity in the tmQMg-L and OctLig datasets.
Frequencies of the 20 most popular coordination environments in the tmQMg-L (a) and OctLig (b)
datasets, and heatmaps showing the associated pairwise Tanimoto coefficients for the tmQMg-L
(c) and OctLig (d) datasets. The coordination environments are encoded with SMARTS patterns,
in which the first atom is the metal-bound.

Special cases in charge and metal coordination assignment

In the manual inspection of the 500 ligands selection, we found only one systematic error in

the assignment of the charges from the NBO Lewis structure; i.e. several η2 and η4 ligands

containing the neutral (R)2C=C(R)2 and (R)2C=C(R)–C(R)=C(R)2 moieties were incor-
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rectly assigned a charge of –2e. The manual inspection of 100 randomly selected examples

containing these two moieties revealed that 92% and 96% of them, respectively, had to be

corrected to a neutral charge. This correction was systematically applied to all tmQMg-L

ligands falling into these two categories. The ligands for which the bonding to the metal

center was dominated by 3C NBOs were excluded.

It should be noted that, depending on several factors, like the synthesis of the TMCs and

the nature of their metal centers, there are ligands for which the charge can take different

values and the coordination to the metal can occur in different modes. For example, regarding

the charge, the O2 ligand can be either neutral (i.e. dioxygen ligand) or anionic (i.e. superoxo

O2
−1 and peroxo O2

−2). Regarding the coordination mode, whereas the superoxo often

coordinates in κ1 fashion, the peroxo prefers the η2. Further, these two factors are not

necessarily related. For example, aliphatic ligands with a single carboxylate functional group

will have a unique charge of -1e, and yet they may coordinate to the metal in either κ1 or κ2

fashion. For this type of ligands, the tmQMg-L dataset may contain either one or multiple

charge and coordination variants. Using the fingerprints provided, these ligands can be

easily distinguished and found in the dataset and, if needed for a given task, their charge

and coordination mode can be further diversified.
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Stereoelectrochemical fingerprints

Supplementary Table 1: Systematic list of all features included in the stereoelectrochemical
fingerprints of the tmQMg-L ligand dataset. NBO = Natural Bond Orbital theory; NatQG =
Natural Quantum Graph;2 DFT1 = PBE/def2SVP optimization; DFT2 = PBE0/def2TZVP single-
point.

Chemical properties. General
Label Definition Units Method/Software Structure(s)
F Chemical formula — Hill system —
M Molecular mass Da — —
qL Molecular charge e NBO —
NA Total number of atoms — — —
NA,E Number of atoms by element — — —
Ne Number of electrons — — —
Pop Occurrences in tmQMg — — L∈TMC

Chemical properties. Coordination mode
Label Definition Units Method/Software Structure
NMB Number of metal-bound atoms — NatQG L∈TMC

κn Denticity order — NatQG L∈TMC

κn
E κn by element — NatQG L∈TMC

ηn Hapticity order — NatQG L∈TMC

ηnE ηn by element — NatQG L∈TMC

Cheminformatics descriptors
SMILES SMILES string — RDKit —
MFP Morgan fingerprints — RDKit —
logP Octanol/water partition coefficient — RDKit —
NR,Al Num. of aliphatic rings — RDKit —
NR,Ar Num. of aromatic rings — RDKit —
NR,Sat Num. of saturated rings — RDKit —
NRB Num. of rotatable bonds — RDKit —

Electronic properties
Label Definition Units Method/Software Structure
α Polarizability Bohr3 DFT1 Lfree

µ Dipole moment D DFT1, DFT2 Lfree, L
∗
∈TMC

ν Largest vibrational frequency cm−1 DFT1 Lfree

ϵ HOMO-LUMO gap Ha DFT1, DFT2 Lfree, L
∗
∈TMC

EMB
HOMO Metal-bound HOMO energy Ha DFT1, DFT2 Lfree, L

∗
∈TMC

SMB
HOMO Metal-bound HOMO symmetry — DFT1, DFT2 Lfree, L

∗
∈TMC

EMB
LUMO Metal-bound LUMO energy Ha DFT1, DFT2 Lfree, L

∗
∈TMC

SMB
LUMO Metal-bound LUMO symmetry — DFT1, DFT2 Lfree, L

∗
∈TMC

Steric properties
Label Definition Units Method/Software Structure

V Molecular volume Å3 DFT1, DFT2 Lfree, L
∗
∈TMC

I1
I3
, I2I3 Principal moments of inertia ratios3 — DFT1, DFT2 Lfree

ASAS Solvent accessible surface area (SAS)4,5 Å2 Morfeus Lfree, L
∗
∈TMC

V SAS Volume within SAS4,5 Å3 Morfeus Lfree, L
∗
∈TMC

VBur Buried volume6 % Morfeus L∗
∈TMC

θ◦ Exact cone angle7,8 ° Morfeus L∗
∈TMC

Ω Solid angle9,10 sr Morfeus L∗
∈TMC

Θ Solid cone angle9,10 ° Morfeus L∗
∈TMC

G G parameter9,10 — Morfeus L∗
∈TMC
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RDKit sanitization

When loading molecules into RDKit from a SMILES string, a “sanitization” process is

performed to ensure chemical correctness before properties are computed. This includes a

check for the explicit valence of each atom of the molecule, which fails if a deviation from

the values allowed is detected.11 In the tmQMg-L ligand dataset, however, these constraints

are often times violated due to the nature of the ligands and the fact that they are extracted

from TMCs; e.g. elements from groups 13–17 can be hypervalent in their lowest-energy

configuration. Therefore, the default RDKit sanitization was deactivated and a custom

procedure was adopted. In order to allow for the violation of the valency constraint, we

made use of the individual sanitization flags provided by RDKit. The following code snippet

shows our custom sanitization procedure:

from rdkit import Chem

# read molecule to RDKit

mol = Chem.MolFromSmiles(smi, sanitize=False)

# custom sanitization

mol.UpdatePropertyCache(strict=False)

Chem.SanitizeMol(

mol,

Chem.SanitizeFlags.SANITIZE_SETAROMATICITY|

Chem.SanitizeFlags.SANITIZE_SETCONJUGATION|

Chem.SanitizeFlags.SANITIZE_SETHYBRIDIZATION|

Chem.SanitizeFlags.SANITIZE_CLEANUP

)

where smi refers to the variable containing the SMILES string of the ligand.
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Ligand geometry categories

Supplementary Figure 3: Ligand geometry categories. The L∗
∈TMC , L∈TMC , and Lfree

geometry sets for an example phosphine ligand in tmQMg-L. Element color code: Violet (P), blue
(N), grey (C), red (O), yellow (S), and white (H).

Steric descriptor failures

In total, there were 12 ligands for which the calculation of the steric descriptors with the

MORFEUS package12 failed. More precisely, the calculation of the exact cone angle failed

in these cases:

• Seven monodentate ligands which fully surrounded the metal center. This should yield

a cone angle of 360 degrees but caused a mathematical error during the calculation.

• Five monodentate ligands for which a linear coordination geometry left all atoms,

except the metal-bound, outside of the sphere defined by the covalent radii of the

metal center, also causing an error in the calculation of the cone angle.

By definition, in the latter case, the calculation of the solid angle, solid cone angle, and G

parameter also failed. The corresponding cells in the descriptors .csv files were left empty.

Examples of these structures are shown in Supplementary Figure 4.

Furthermore, the calculation of principal moments of inertia with Gaussian13 could not be

extracted due to a bug in the printing of the data. In these cases their ratios could not be

computed and were left blank in the dataset.
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(a) Surrounded metal center (b) Linear coordination

Supplementary Figure 4: Non-defined cone angles. Examples of ligands for which the
calculation of the exact cone angle failed. Element color code: Blue (N), grey (C), and white (H).

Definition of unique ligands

We define unique ligands in terms of their chemical graph and metal-coordination mode.

This means that one chemical graph can give rise to multiple unique ligands if it occurs with

different coordination modes in the tmQMg dataset. We determined this by looping over

all extracted ligands and checking for graph isomorphism between them. If the chemical

graphs of two ligands are isomorphic to each other, they correspond to the same structural

isomer and we subsequently compare their coordination modes in order to determine whether

they are identical. Ligands with isomorphic graphs and the same coordination mode are

considered duplicates of each other. Noteworthy, chemical graph isomorphism does not

distinguish stereoisomers. However, these isomers, e.g. cis/trans configurations, tend to

yield different coordination modes (e.g. a cis bidentate ligand becoming monodentate in

the trans form), which are differentiated by our algorithm. For conformers and, in general,

any collection of isomorphic graphs having the same coordination mode, we took the ligand

yielding the lowest energy. Overall, our approach strictly excluded any ligand duplicates in

the final tmQMg-L dataset.
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Weisfeiler-Lehman graph hashes

The Weisfeiler-Lehman graph hashes14 were computed for all ligands using the Python pack-

age networkx.15 Four variations were computed differing in what graph information was

considered for generating the hashes:

• Plain: Only the connectivity was taken into account.

• Atom attribution: Connectivity as well as the atom elements were taken into ac-

count.

• Bond attribution: Connectivity as well as the bond orders were taken into account.

• Atom and bond attribution: Connectivity as well as both the atom elements and

bond orders were taken into account.

All hashes were computed with 3 neighbor aggregation iterations, meaning that neighbors

up to 3 bonds away were considered.

Supplementary Section 2. 1.37M chemical space

ML4 square planar TMC combinatorics

For a square planar geometry with four monodentate ligands, there are seven different coor-

dination patterns. Each pattern gives rise to a different number of unique TMCs depending

on the number of ligands, n. Some of the patterns exhibit equivalencies due to symmetry

that need to be accounted for. Additionally, in this work, we restricted the overall charge of

the TMCs to the range {−1, 0, 1}, which further reduces the number of possible complexes.

We considered only neutral and monoanionic ligands and the +II oxidation state for the

palladium center. Therefore, we express the number of unique TMCs per pattern in terms

of the number of neutral (nn) and anionic (na) ligands.
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Below, we list the number of unique TMCs considering the aforementioned constraints

for each pattern. Furthermore, the associated symmetries and the resulting reduction in the

number unique TMCs are also presented.

A M A

A

A

• 0 unique members as the charge constraint is vi-
olated for all possible arrangements.

• No equivalencies.

Supplementary Figure 5: AAAA pattern. Square planar geometry with all four ligands (A)
equal in the M(A)4 formulation. M = Metal center.

A M B

B

B

• 2nnna unique members.

• no equivalencies.

Supplementary Figure 6: ABBB pattern. Square planar geometry combining two different
ligands (A and B) in the M(A)(B)3 formulation. M = Metal center.

A M A

B

B

• 2nnna unique members.

• 1 equivalency:

– (rotation, 2) XYXY = YXYX

→ corresponds to a prefactor of 1
2

Supplementary Figure 7: ABAB pattern. Trans square planar geometry combining two
different ligands (A and B) in the M(A)2(B)2 formulation. M = Metal center.

A M B

A

B

• 2nnna unique members.

• 1 equivalency:

– (rotation, 2) XXYY = YYXX

→ corresponds to a prefactor of 1
2

Supplementary Figure 8: AABB pattern. Cis square planar geometry combining two different
ligands (A and B) in the M(A)2(B)2 formulation. M = Metal center.
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A M C

B

C

• 3nnna(na − 1) + 3nann(nn − 1) unique members.

• 1 equivalency:

– (reflection, 2) XYZZ = YXZZ

→ corresponds to a prefactor of 1
2

Supplementary Figure 9: ABCC pattern. Cis square planar geometry combining three
different ligands (A, B, and C) in the M(A)(B)(C)2 formulation. M = Metal center.

A M A

B

C

• 3nnna(na − 1) + 3nann(nn − 1) unique members.

• 1 equivalency:

– (rotation, 2) XYXZ = XZXY

→ corresponds to a prefactor of 1
2

Supplementary Figure 10: ABAC pattern. Trans square planar geometry combining three
different ligands (A, B, and C) in the M(A)2(B)(C) formulation. M = Metal center.

A M C

B

D

• 4nn(nn − 1)(nn − 2)na + 4na(na − 1)(na − 2)nn +
6nn(nn − 1)na(na − 1) unique members.

• 3 equivalencies:

– (rotation, 4) WXYZ = XYZW

– (reflection, 2) WXYZ = ZYXW

→ corresponds to a prefactor of 1
4·2

Supplementary Figure 11: ABCD pattern. Square planar geometry combining four different
ligands (A, B, C and D) in the M(A)(B)(C)(D) formulation. M = Metal center.

Regarding the distinction between rotation and reflection symmetries, we have to consider

that the ligands used are not necessarily symmetric. This means that both the ordering of

the ligands in the TMC and their position relative to each other are relevant. In other words,

in the ABCD pattern, the member WXYZ might not be equivalent to the member ZYXW

if some of the ligands {W,X,Y,Z} are non-symmetric. To account for this, we excluded

all reflection symmetries. This changes the symmetry pre-factors of the ABCC and ABCD

patterns to 1 and 1
4
, respectively.
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After adding the formulas of the seven patterns and simplifying the resulting expression,

the number of unique TMCs in this systems is given by

nan
3
n + n3

ann +
3

2
n2
an

2
n +

1

2
nann (1)

50-ligand pool

The 50 ligands used in the generation of the 1.37M chemical space are shown in Supplemen-

tary Figure 12.

Supplementary Figure 12: The 50-ligand pool. Ligands appear ordered by popularity from
top-left to bottom-right. In the polyatomic ligands, the arrow signals the metal-coordinating atom.
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Supplementary Section 3. Lighthouse algorithm

The Lighthouse functionality of the PL-MOGA was implemented with the ZEROMASK

function shown in algorithm 1,

Algorithm 1 PL-MOGA ZEROMASK function

function zeromask(x, X, T , S)
for t in T do

mt ← population Xt median
if xt < st ·mt then

return 0
end if

end for
return x

end function

where x denotes the fitness vector of any query TMC, X denotes the list of fitness vectors

of the current population, T denotes the list of t indices of the selected targets, and S

denotes the list of corresponding factors st used to scale the population median of each

target (mt). ZEROMASK returns the fitness either unchanged or transformed to zero,

assuming that this is its lowest possible value for any target. This function is only valid

when dim(T ) = dim(S); i.e. one scaling factor must be provided for each selected target.

Numerical experiments showed that the scaling factors should be within the continuous [0, 1]

range, where zero corresponds to no masking applied. Scaling values larger than 1 yielded

high thresholds with which large portions of the population were mapped to zero fitness,

significantly hindering evolution. Further, compared to a GA using a weighted-sum fitness

(see Supplementary Section 7), the PL-MOGA generally performed at a higher level, finding

more dominating points within more diverse Pareto front solutions, with optimization scope

control, and without requiring prior knowledge on the numerical limits of the objectives.
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Supplementary Section 4. Estimation of population diversity

In order to quantify diversity, we compute the Tanimoto coefficients of each TMC relative

to all other TMCs in any given population and average them to obtain a mean estimate

of chemical similarity. Averaging again over the total number of TMCs give us a global

Tanimoto coefficient measuring the diversity of the populations evolved in each MOGA

generation.

The Tanimoto coefficients are computed with Morgan fingerprints (MFP) derived from

SMILES strings. The problem of generating MFPs for TMCs is circumvented by using a

string representation consisting of the concatenation of all ligand SMILES with the . sym-

bol, which accounts for non-covalent-bound fragments. This representation is permutation-

invariant relative to the order in which the ligand SMILES are concatenated and excludes

the troublesome fingerprinting of SMILES strings containing metal–ligand bonds. Since

the metal is Pd in all TMCs, this approach is still able to capture all relevant chemical

(dis-)similarities. The TMC MFPs are generated with a size of 215 bits.

Supplementary Figure 13: DFT fitness. Left-hand side: MOGA (α,ϵ) optimization in the
1.37M space plotted against the 60K tmQMg dataset. All data points were computed at the
DFT(PBE/def2SVP//PBE0/def2TZVP) level of theory. Right-hand side: Evolution of the devia-
tion of the GFN2-xTB α and ϵ values relative to the DFT over the MOGA generations. In both
plots, the α and ϵ units are Bohr3 and eV, respectively.
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Supplementary Section 5. DFT fitness

The evolution of the hits with the GFN2-xTB fitness was also analyzed after recomputing the

target properties with a DFT method. We extracted all TMCs for which the calculation of α

and ϵ with xTB was successful in generations 1, 10, 30, 50, and 100. For these TMCs (99% of

the total), we recomputed both properties at the PBE/def2SVP (α) and PBE0/def2TZVP (ϵ)

levels. The results were plotted against the 60K tmQMg dataset, for which these properties

were also available at the same DFT levels (Supplementary Figure 13). This plot showed

that 1) there was clear progress towards the DFT tmQMg Pareto front, though less stable

than with xTB, in line with the significant differences between these two methods, and 2)

there was a gap between the TMC hits and the DFT tmQMg Pareto front, in line with

the different sizes of the associated fragment pools; i.e.: 1 vs. 30, for the metal center,

and 50 vs. 30K for the ligands. We hypothesized that the average deviation between DFT

and xTB would increase by approaching the Pareto front but the opposite trend was seen

(Supplementary Figure 13), likely due to the TMCs being constrained into a smaller (α,ϵ)

region. These results suggested that an xTB-guided MOGA followed by a DFT recalculation

of selected solutions may constitute a robust computational protocol.

Supplementary Section 6. Convergence and diversity in the billion

spaces

For the PL-MOGA optimizations in the billion spaces, we also assessed the convergence of

the properties (Supplementary Figure 14), the ligand frequency use (Supplementary Fig-

ure 15), and the chemical diversity of the generations evolved (Supplementary Figures 16

and 17) in a way analogous to that followed in the benchmarks taking the 1.37M as the

reference. The geometries of four selected TMC hits evolved with the random 252-ligand

pool, which, in general, had complex structures with large ligands, were optimized at the

DFT(PBE/def2SVP) yielding energy minima with all-real vibrational frequencies in all cases
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(Supplementary Figure 18). Further, optimization repetitions were also carried out to assess

the robustness of the algorithm (Supplementary Figure 19).

Supplementary Figure 14: Billion scale properties convergence. Evolution of α and ϵ in
the unmasked PL-MOGA optimizations carried out in the implicit billion spaces.

17



Supplementary Figure 15: Billion scale ligand use frequencies. Ligand use frequencies in
the unmasked PL-MOGA optimizations carried out in the implicit billion spaces.
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Supplementary Figure 16: Diversity in the billion scale optimizations. Convergence
of the average Tanimoto coefficient in the unmasked PL-MOGA optimizations carried out in the
implicit billion spaces.

Supplementary Figure 17: Pareto solutions from billion scale optimization. TMC hits
from the unmasked PL-MOGA leveraging the extended 252-ligand pool.
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Supplementary Figure 18: DFT geometries from billion scale optimization. Geometries
fully optimized at the PBE/def2SVP level of selected TMC hits evolved in the unmasked PL-
MOGA using the random 252-ligand pool. Each 3D structure is presented together with its 2D
chemical drawing. Element color code: Violet (P), blue (N), grey (C), red (O), green (F), and
orange (Pd).
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Supplementary Figure 19: Optimization dependence on initial population. PL-MOGA
repetitions from three different random initial populations in the extended 252-ligand pool billion
space.

Supplementary Section 7. Weighted-sum benchmark

For the sake of benchmarking the PL-MOGA method, we used the weighted-sum approach

to multiobjective optimization with genetic algorithms (WS-MOGA) as baseline. The cal-

culations were carried out for the reference 1.37M space. In the WS-MOGA, the fitness (F )

is calculated as a weighted sum of the different optimization targets:

F =
∑
i

βifi (2)

where βi denotes the weighting factor of target fi. By choosing different weighting factors,

the algorithm can be tuned to prioritize the optimization of one target over the others. In the

1.37M space, the fitness can therefore be expanded as the weighted sum of the polarizability

(fα) and the HOMO-LUMO gap (fϵ) with independent weighting factors (βα and βϵ):
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F = βαfα + βϵfϵ (3)

The weighted-sum approach has the effect of turning the multiobjective optimization

problem into a single objective optimization of a composite fitness function. Therefore,

Pareto-based ranking and selection schemes are not necessary and standard GA methods can

be employed. The parent selection, which in the PL-MOGA was based on the non-dominated

front ranking of individuals, becomes a simple roulette wheel selection with probabilities

proportional to the fitness values. Similarly, the survivor selection simply takes the n best

individuals and discards the rest, where n is the population size of the generations evolved.

A relevant issue with this weighted-sum fitness approach is that the different optimiza-

tion targets (y) might be of vastly different scales making it difficult to choose appropriate

weighting factors. In fact, this is the case for the polarizability and the HOMO-LUMO

gap. Therefore, the values were individually normalized to the range [0, 1] using min-max

normalization:

y′ =
y − ymin

ymax − ymin

(4)

where y′ denotes the normalized target and the ymin and ymax values have been obtained from

the calculated ground truth of the 1.37M space. Noteworthy, the ground truth is normally

unknown in real-world design tasks, thus making the normalization of the optimization

targets a challenging task. This prior knowledge is not required in the implementation and

application of the PL-MOGA algorithm.

The largest difference in performance between the two algorithms was found when the

WS-MOGA was used for a balanced search in which both coefficients were equal to one; i.e.

(βα, βϵ) = (1.0, 1.0). The comparison of the evolution scatter plots in Supplementary Figure

20 shows that the WS-MOGA optimization resolved a narrower region of the Pareto front,

resulting in poorer performance in terms of both the number of dominating points found

22



(8 versus 18) and the diversity of the final generation (TC = 0.44 versus 0.33). Another

important limitation of the WS-MOGA algorithm relative to the PL-MOGA is the lack

of scope control. For example, the separate (βα, βϵ) = (1.0, 1.0) and (0.1, 0.1) optimizations

produced exactly the same results and, therefore, it was not possible to direct a multiobjective

optimization towards a central region of the Pareto front meanwhile fine-tuning its scope.

For non-balanced WS-MOGA optimizations using the (βα, βϵ) coefficients (0.8, 0.2) and

(0.2, 0.8), the differences relative to the PL-MOGA extreme runs discussed in the manuscript

were smaller and yet the latter algorithm performed slightly better in most cases. Whereas

for α, the WS-MOGA found less dominating points (7 versus 9) with lower diversity (TC =

0.57 versus 0.56), for ϵ, the WS-MOGA found more dominating points (7 versus 5) though

with lower diversity (TC = 0.39 versus 0.37).
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Supplementary Figure 20: Weighted-sum benchmark. PL-MOGA (top) and weighted-sum
(bottom) optimizations within the 1.37M space using (0.0, 0.0) scaling factors and (1.0, 1.0) weights,
respectively. Units: Bohr3 (α) and eV (ϵ).
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