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Supplementary Information

Supplementary Section 1 Ablation studies for UMedPT

We performed ablation studies for UMedPT regarding input image size and
the choice of normalization layers.

UMedPT-fixed consistently used an image size of 224×224, while UMedPT
used the full image dimensions for each task. In our evaluations across various
tasks, UMedPT outperformed UMedPT-fixed by 2.97%.

In addition, we tested UMedPT-affine, which also used image dimensions
of (224, 224) but added a learnable bias and scaling parameter to UMedPT’s
static layernorms, adding an affine transformation. Compared to UMedPT-
fixed, UMedPT-affine showed an average performance gain of 0.37%. The
results are included in Supplementary Tables 3, 4 and 5.

Supplementary Section 2 Benefit of segmentation and
object detection in pretraining

To quantify the effect of including multiple label types in the pretraining,
we compared UMedPT with a model trained on our classification pretraining
tasks only, which we call UMedPT-clf. The results are shown in the Supple-
mentary Figure 2. There is a large average difference and consistently better
performance of UMedPT for tasks requiring high spatial resolution features.
For the object detection task NucleiDet-WSI, UMedPT achieved a 0.282 higher
mean Average Precision (mAP), and for the segmentation task Coloscopy-
RGB, it outperformed UMedPT-clf by 0.057 mIoU. Interestingly, although the
difference was smaller for Pneumo-CXR (classification), a clear positive knowl-
edge transfer between the label types was found, with an advantage of 2.42%
F1-score in favour of UMedPT.

Supplementary Section 3 State of the art for target tasks

Each item in the list corresponds to one reference result in Table 1.

• CRC-WSI: Over 94% accuracy in the nine-class classification problem was
achieved with ImageNet transfer learning [17].

• Pneumo-CXR: The dataset creators reported a diagnostic accuracy of
92.8%, a sensitivity of 93.2%, and a specificity of 90.1% [18].

• Tuber-CXR: Radiologists achieved an accuracy of 82% [22]. Specialized
representation learning for CXR achieved an AUC of 98.0%, with their
corresponding ImageNet baseline reaching an AUC of 94.5% [11].

• CNS-MRI: Classifiers with different data splits from the Kaggle commu-
nity achieved over 96% accuracy.

• BC-Bach-WSI: An accuracy of 87% was achieved using external validation
on a challenge server [23]

• BC-BHis-MIC: The dataset creators reported an accuracy between 80%
and 85% [56]. The highest reported F1-score was 88% [24].
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Supplementary Fig. 1 Data pre-processing. a We have categorized all of our tasks
into one of three common formats: 2D images, 3D tomographic images, and gigapixel images.
For each format, we developed a data loading strategy that transforms the data into the
required 2D format. Additionally, for each domain, we implemented a standard augmentation
strategy to be applied to the corresponding 2D images. b Our preprocessing results in a
diverse stream of data including samples from all tasks. Image sources: CT [59], CXR [71],
WSI [64].
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Supplementary Fig. 2 Results of label type ablation study with UMedPT-clf.
UMedPT-clf was trained with the same classification tasks as UMedPT, but excluded seg-
mentation and object detection tasks. a Pneumo-CXR (classification). b NucleiDet-WSI
(object detection). c PolypSeg-RGB (segmentation). In each setting, 5 independent trainings
were derived for each training subset and method. The middle line of the boxes represents
the median, the boundaries are the Q1 and Q3 quartiles, the whiskers extend to 1.5 IQR,
and outliers beyond are shown as single points.
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Supplementary Fig. 3 UMedPT’s application to MedMNIST. First, UMedPT was
applied to MedMNIST [16] with the shared encoder frozen and a randomly initialized linear
head (linear probing) and evaluated on the test set using area under the curve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for each
task. Blue and green lines represent the test performances when the model was selected
using the validation set provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theoretically best performance when the best reference method is selected
for each task and metric independently (red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT with 1%, 10% and 100% of the training data. Details
are given in Supplementary Table 1.

• PolypSeg-RGB: The dataset creators [25] reported an mIoU of 0.778. The
highest reported mIoU was 0.9051 [26]

• MedMNIST: The database creators trained a ResNet-50 on the MedM-
NIST database and reported an average accuracy of 80.81% and an average
AUC of 91.2% [16]. When the best reported method was selected for each
metric and task independently (”Ref Cherrypick” in Ext. Data Table 1), the
average accuracy was 82.39% and the average AUC was 92.36%.

Supplementary Section 4 Comparing convolutional
networks and transformer

For quantifying the effect of the encoder’s architecture, we used the MedM-
NIST database including two-dimensional and three-dimensional classification
tasks. We chose the ResNet-50 as convolutional neural network (CNN) and the
tiny variant of the Swin Transformer because they are similar in size. The Swin
Transformer has 27,582,570 trainable parameters compared to 23,508,032 for
the ResNet-50 CNN.

The comparison of the Swin Transformer and ResNet-50 CNN architectures
showed a minimal impact on model performance for the MedMNIST database.
The Swin Transformer achieved an average test accuracy of 86.76 ± 0.79%
over 5 repetitions, while the ResNet-50 CNN achieved an accuracy of 86.34 ±
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Supplementary Table 2 Pretraining database statistics. Image instances refer to
individual 2D images that can be used directly for pretraining. Composite data types,
including 3D volumes and gigapixel images, can be divided into multiple image instances
per imaging study. In total, the pretraining database included more than 3 million 2D
images, more than 1000 large image tiles such as tissue microarrays or whole slide sections,
more than 10000 whole slide images and more than 1000 3D volumes, totalling more than
10 million annotated image instances for pretraining UMedPT. For the dataset splits
provided by the respective publishers, we marked them as train/test and included only the
training set in the pretraining.

Identifer Description Dataset size
Amos22-CT Segmentation of 15 organs in abdominal

CT.
200 3D-CT volumes

Conic-WSI Nuclei detection in colon tissue from 6
different data sources with 6 classes.

4981 image instances

PICAL-MRI Multilabel classification of clinically rel-
evant prostate cancer (csPCa) and
whether or not a lesion is visible.

1476 cases, each with 3
3D-MR sequences

Panda-WSI-Clf
Panda-WSI-Seg

This data source yields two pretraining
tasks. A classification task for predicting
presence of tumor, and a segmentation
task with the classes stroma, healthy
epithelium and gleason grades 3, 4 and 5.

10616 WSI

VinBigData-
CXR

Object detection in chest X-ray with 14
classes.

15000 chest X-rays

Crag-WSI Colorectal adenocarcinoma gland seg-
mentation.

213 image tiles (size ≈
(1500, 1500)

Brats2020-MRI Brain tumor (glioma) segmentation into
five classes.

369 cases. Each case
comes with 4 3D-MR
sequences.

CRC-WSI Multi-class classification of H&E stained
histological images of human colorectal
cancer (CRC).

100,000/7,000 image
instances extracted from
86 WSI

Avaniti-WSI Multi-label classification into four classes
(benign and 3 gleason grades). We
extracted patches from tissue microar-
rays and predict all classes present.

886 TMA

Cyto-WSI Expert-labelled single-cell images taken
from peripheral blood smears. Used as
a multi-class classification task with 21
classes.

137076 image instances

Chexpert-CXR Multilabel classification in chest X-ray
with 14 classes. We use the nine classes
that have a good performance when mea-
sured with the provided validation set.

223414/234 image
instances

SIIM-CXR Segment the pneumothorax area in chest
X-ray.

11583 image instances

ImageNet Multi-class natural image classification
dataset with 1000 classes.

1,281,167/50,000 images

RadImageNet Multi-class classification database devel-
oped for the purpose of pretraining medi-
cal AI. Contains 2D image instances from
CT, MR and ultrasound (US)

263118/29235 CT
605408/67267 MR
350897/38988 US

COCO-Seg
COCO-Det

Natural image dataset with 80 segmenta-
tion and object detection classes.

118287 image instances

1.01%. In addition, a discrepancy in training convergence rates was observed
between the two architectures, as shown in Extended Data Fig. 2a.

Supplementary Section 5 Investigating training schemes

We performed an analysis of training schemes on the MedMNIST database,
including the two- and three-dimensional tasks. All datasets in MedMNIST
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Supplementary Table 3 In-domain benchmark results. The left pair of columns
shows results with a frozen encoder, while the right pair shows results with fine-tuning.
F1-scores are reported as mean ± standard deviation in percentage. P-values, calculated
independently by a paired one-sided t-test for each dataset size, were always compared
against the pretrained ImageNet-1K model. UMedPT-fixed was an ablation study where
patch sizes remained constant, and UMedPT-affine was another ablation where layernorms
had trainable parameters. Unless otherwise stated, all results in the main paper were
obtained with UMedPT.

frozen finetune
Pneumo-CXR CRC-WSI Pneumo-CXR CRC-WSI

Size Model

1%

ImageNet 61.68±12.55% 80.81±0.54% 85.54±2.32% 91.84±1.70%

UMedPT
fixed

89.06±1.39%
p=4.54e-03

97.03±0.07%
p=3.13e-07

91.52±1.97%
p=2.19e-02

96.53±0.61%
p=2.58e-03

UMedPT
affine

88.51±1.71%
p=5.54e-03

97.17±0.08%
p=2.96e-07

91.71±1.97%
p=1.74e-02

96.98±0.76%
p=7.02e-04

UMedPT
91.97±1.57%
p=3.09e-03

95.37±0.13%
p=8.26e-07

92.81±0.82%
p=2.18e-03

95.97±0.64%
p=2.32e-03

5%

ImageNet 78.07±1.27% 84.91±0.35% 84.80±1.99% 94.64±0.82%

UMedPT
fixed

89.49±1.29%
p=8.35e-05

96.96±0.11%
p=2.27e-07

91.34±1.84%
p=1.79e-03

96.57±0.34%
p=3.98e-03

UMedPT
affine

88.24±1.44%
p=9.74e-05

96.96±0.15%
p=1.82e-08

91.04±2.01%
p=5.33e-04

96.78±0.30%
p=7.52e-03

UMedPT
93.46±0.65%
p=1.14e-06

95.45±0.14%
p=6.89e-07

92.02±2.03%
p=6.77e-04

95.68±0.70%
p=7.90e-02

10%

ImageNet 79.05±1.54% 86.13±0.35% 85.06±6.84% 95.44±0.56%

UMedPT
fixed

87.63±2.51%
p=1.02e-04

97.04±0.17%
p=2.65e-07

90.05±3.06%
p=8.43e-02

96.45±0.32%
p=5.16e-03

UMedPT
affine

87.50±2.86%
p=2.06e-04

96.91±0.22%
p=1.99e-07

89.79±2.62%
p=8.19e-02

95.83±0.46%
p=1.25e-01

UMedPT
91.95±1.52%
p=2.16e-05

95.20±0.40%
p=7.47e-06

91.08±2.75%
p=3.12e-02

95.55±0.61%
p=3.93e-01

50%

ImageNet 81.53±0.57% 87.61±0.12% 88.81±2.85% 95.69±0.68%

UMedPT
fixed

89.56±0.76%
p=3.93e-05

96.83±0.13%
p=1.72e-08

90.50±3.02%
p=1.91e-02

95.70±0.68%
p=4.90e-01

UMedPT
affine

89.65±0.64%
p=2.60e-05

96.70±0.12%
p=4.67e-11

92.16±1.04%
p=3.42e-02

95.78±0.76%
p=4.37e-01

UMedPT
90.52±0.35%
p=2.26e-07

95.59±0.13%
p=4.43e-08

90.58±1.94%
p=2.22e-01

95.01±0.69%
p=8.68e-01

100%

ImageNet 82.18±0.94% 87.68±0.07% 90.34±1.77% 95.16±0.59%

UMedPT
fixed

90.14±0.66%
p=8.95e-06

96.82±0.08%
p=4.69e-10

90.17±0.44%
p=5.83e-01

94.93±0.61%
p=6.80e-01

UMedPT
affine

90.01±0.48%
p=2.18e-05

96.59±0.02%
p=4.60e-10

90.61±2.28%
p=4.42e-01

95.60±0.33%
p=9.77e-02

UMedPT
89.36±0.31%
p=3.40e-05

95.57±0.06%
p=1.43e-09

90.73±1.60%
p=3.65e-01

94.98±1.09%
p=5.94e-01
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Supplementary Table 4 Out-of-domain benchmark with frozen encoder. All
tasks were analysed using F1-score. Metrics are reported as mean ± standard deviation in
percentage. P-values, calculated independently by a paired one-sided t-test for each dataset
size, were always compared against the pretrained ImageNet-1K model. UMedPT-fixed
was an ablation study where patch sizes remained constant, and UMedPT-affine was
another ablation where layernorms had trainable parameters.

Tuber-CXR CNS-MRI BC-BHis-MIC BC-BACH-WSI
Size Model

1%

ImageNet 37.88±5.86% 31.49±9.61% 47.94±7.05% 32.98±3.58%

UMedPT
fixed

55.70±14.94%
p=2.27e-02

31.69±9.12%
p=4.73e-01

47.79±7.68%
p=5.20e-01

26.99±5.51%
p=8.87e-01

UMedPT
affine

55.66±13.27%
p=1.75e-02

37.18±7.00%
p=7.53e-02

55.14±11.11%
p=6.43e-02

33.19±8.92%
p=4.82e-01

UMedPT
51.63±16.87%
p=4.38e-02

69.18±5.68%
p=7.19e-05

46.94±5.56%
p=6.24e-01

34.64±10.00%
p=3.94e-01

5%

ImageNet 46.87±14.45% 75.14±2.31% 45.41±3.91% 20.19±10.31%

UMedPT
fixed

67.62±3.28%
p=1.11e-02

80.21±2.85%
p=1.06e-03

55.47±4.68%
p=4.58e-03

26.26±9.31%
p=1.64e-01

UMedPT
affine

68.30±6.40%
p=2.77e-02

78.15±3.69%
p=7.35e-03

61.37±9.69%
p=4.71e-03

33.10±13.31%
p=6.64e-02

UMedPT
76.67±16.65%
p=5.88e-03

86.80±0.76%
p=1.35e-04

74.23±2.77%
p=6.52e-06

29.78±12.12%
p=8.18e-02

10%

ImageNet 50.42±11.04% 80.03±0.84% 57.23±13.31% 39.90±8.90%

UMedPT
fixed

76.18±2.57%
p=1.97e-03

84.82±0.74%
p=8.57e-06

61.34±11.47%
p=2.13e-01

47.70±15.34%
p=7.10e-02

UMedPT
affine

76.25±4.73%
p=1.87e-03

84.22±1.04%
p=7.93e-05

68.03±8.56%
p=1.86e-02

51.29±14.69%
p=5.00e-02

UMedPT
86.42±2.12%
p=9.65e-04

88.95±0.33%
p=5.82e-06

79.17±2.12%
p=9.91e-03

56.83±14.76%
p=4.62e-03

50%

ImageNet 70.42±4.14% 87.83±0.81% 77.76±0.93% 61.24±2.71%

UMedPT
fixed

85.03±1.10%
p=1.56e-03

91.65±0.28%
p=5.36e-04

84.12±0.26%
p=2.45e-05

70.63±6.97%
p=2.59e-02

UMedPT
affine

84.18±1.32%
p=1.78e-03

90.68±0.38%
p=3.27e-03

85.18±1.42%
p=1.37e-03

75.92±3.07%
p=2.17e-04

UMedPT
90.50±0.91%
p=3.88e-04

92.95±0.33%
p=1.53e-04

86.94±1.14%
p=4.44e-05

77.97±0.96%
p=1.84e-04

100%

ImageNet 67.99±1.11% 89.05±0.11% 82.30±0.58% 72.90±1.49%

UMedPT
fixed

86.89±0.93%
p=6.22e-07

93.33±0.11%
p=3.37e-07

87.15±0.31%
p=1.32e-04

80.98±1.28%
p=1.09e-03

UMedPT
affine

86.01±0.25%
p=1.76e-06

92.82±0.20%
p=1.19e-06

87.12±0.22%
p=4.94e-05

85.84±1.24%
p=1.87e-04

UMedPT
93.50±0.20%
p=1.12e-06

94.14±0.17%
p=1.60e-06

89.87±0.22%
p=1.11e-05

81.17±0.43%
p=2.39e-04
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Supplementary Table 5 Out-of-domain benchmark with fine-tuned encoder.
All tasks were analysed using F1-score. Metrics are reported as mean ± standard deviation
in percentage. P-values, calculated independently by a paired one-sided t-test for each
dataset size, were always compared against the pretrained ImageNet-1K model.
UMedPT-fixed was an ablation study where patch sizes remained constant, and
UMedPT-affine was another ablation where layernorms had trainable parameters.

Tuber-CXR CNS-MRI BC-BHis-MIC BC-BACH-WSI
Size Model

1%

ImageNet 58.21±9.50% 69.24±2.81% 68.96±6.90% 36.44±5.12%

UMedPT
fixed

62.70±8.92%
p=2.98e-01

79.46±1.60%
p=3.81e-03

70.87±7.19%
p=1.29e-01

38.07±7.64%
p=3.29e-01

UMedPT
affine

61.47±11.45%
p=3.53e-01

75.81±6.93%
p=2.08e-02

69.72±6.94%
p=3.71e-01

34.81±5.74%
p=6.75e-01

UMedPT
69.54±12.54%
p=1.11e-01

84.77±2.83%
p=4.98e-04

68.79±8.92%
p=5.29e-01

41.19±6.57%
p=1.34e-01

5%

ImageNet 77.05±3.36% 91.21±0.78% 86.77±2.49% 47.62±7.25%

UMedPT
fixed

83.44±1.85%
p=9.78e-03

93.57±0.36%
p=8.46e-04

88.45±1.63%
p=1.22e-02

43.02±6.84%
p=9.43e-01

UMedPT
affine

82.44±2.88%
p=2.55e-02

93.01±0.80%
p=7.60e-04

86.39±1.30%
p=6.79e-01

42.42±8.40%
p=9.44e-01

UMedPT
92.51±2.36%
p=2.80e-04

93.50±0.74%
p=6.54e-03

87.41±1.96%
p=1.27e-01

47.61±12.52%
p=5.01e-01

10%

ImageNet 81.17±2.49% 93.53±1.43% 89.29±1.55% 59.84±8.95%

UMedPT
fixed

89.64±0.98%
p=1.38e-03

95.27±0.66%
p=1.12e-02

91.86±0.53%
p=1.07e-02

66.42±8.97%
p=6.17e-03

UMedPT
affine

88.34±2.59%
p=9.94e-03

95.24±0.65%
p=7.05e-03

91.15±0.57%
p=6.92e-02

64.51±9.56%
p=6.65e-03

UMedPT
96.25±1.75%
p=5.86e-04

95.62±0.47%
p=7.18e-03

91.60±0.72%
p=3.11e-02

66.54±11.62%
p=7.55e-03

50%

ImageNet 88.80±2.20% 98.33±0.19% 95.97±1.44% 83.55±5.42%

UMedPT
fixed

93.01±0.66%
p=3.84e-03

98.30±0.16%
p=5.78e-01

97.21±0.49%
p=3.57e-02

89.58±3.20%
p=2.23e-02

UMedPT
affine

92.61±0.24%
p=1.20e-02

98.24±0.15%
p=6.93e-01

96.65±0.85%
p=5.07e-02

87.87±3.09%
p=9.95e-02

UMedPT
95.44±0.72%
p=7.40e-04

98.63±0.11%
p=2.66e-02

97.20±0.80%
p=1.43e-02

88.81±2.79%
p=5.68e-02

100%

ImageNet 90.13±4.98% 98.98±0.13% 98.39±0.35% 92.99±2.24%

UMedPT
fixed

94.13±0.82%
p=9.53e-02

99.27±0.06%
p=1.25e-02

98.83±0.19%
p=5.34e-02

95.54±1.33%
p=6.15e-02

UMedPT
affine

93.12±0.52%
p=1.48e-01

99.15±0.20%
p=6.26e-02

98.23±0.45%
p=6.47e-01

94.54±1.61%
p=2.09e-01

UMedPT
93.92±0.46%
p=1.11e-01

99.27±0.15%
p=1.65e-02

98.38±0.60%
p=5.07e-01

92.67±2.10%
p=5.64e-01
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have a fixed number of cases. This distinction enabled us to conduct abla-
tion studies comparing infinite task sampling with balanced sampling based
on dataset size. Besides this, we used the same training schedule and hyper-
parameters as in the main study, and accumulated the gradients of as many
steps as there were tasks. In addition, for comparison with traditional train-
ing schemes, we used the same setting without gradient accumulation and also
with the SGD optimizer instead of Adam.

The exploration of training schemes showed that balanced (by dataset size)
and cyclic sampling (as in UMedPT) exhibited similar behaviour in terms of
convergence. However, balanced sampling occasionally showed reduced sta-
bility; it yielded a standard deviation of 1.81±1.79% in validation accuracy
over the previous ten epochs, across five different experiments. In comparison,
cyclic sampling showed a more stable training process, achieving a compara-
tively lower standard deviation of 1.17±1.09%. When gradient accumulation
was excluded, the resulting performance deteriorated, accompanied by longer
convergence times. These results are shown in Extended Data Fig. 2b.

Supplementary Section 6 Inverse relationship between
performance and dataset size

Our evaluation within the clinical benchmark revealed an unexpected trend in
some datasets: increasing the dataset size for fine-tuning sometimes led to a
decrease in model performance.

To investigate the potential influence of catastrophic forgetting [35] or
overfitting during fine-tuning, we first evaluated this phenomenon using four
MedMNIST tasks that had shown improved performance with multi-task
learning compared to single-task learning. We first measured the test accu-
racy of these tasks after multi-task learning, followed by further individualised
training with the full dataset of each task, and assessed the test accuracy
again. The results varied between datasets, suggesting that whether datasets
are affected by forgetting the well generalizing state from multi-task learning
is inconsistent and may be task-dependent:

• SynapseMNIST3D: 83.81±0.31% → 82.90±0.66% (decrease)
• VesselMNIST3D: 93.66±0.31% → 93.77±0.87% (no decrease)
• BreastMNIST: 86.92±1.04% → 85.90±0.91% (decrease)
• PneumoniaMNIST: 91.54±0.48% → 91.70±0.49% (no decrease)

For our in-domain and out-of-domain target tasks, we always used 100
epochs. Consequently, larger datasets used more optimization steps and could
overfit more easily. We investigated by keeping large validation sets (30% of
the full training data) in one in-domain and one out-of-domain task where the
phenomenon occurred and performed model selection using the validation set.
Supplementary Figure 4 shows that for one task the model selection with the
validation set was better, for the other task it was worse.
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Supplementary Fig. 4 Model selection with and without validation sets. For the
target tasks in our clinical benchmark, we did not use validation sets to really only use the
given percentage of training data (UMedPT). This could lead to overfitting on the training
data, which is usually solved by using a validation set, as done with UMedPT-Val. We
investigated this using a representative out-of-domain data set, Tuber-CXR (a), and an in-
domain target task, Pneumo-CXR (b). In each setting, 5 independent trainings were derived
for each training subset and method. The middle line of the boxes represents the median,
the boundaries are the Q1 and Q3 quartiles, the whiskers extend to 1.5 IQR, and outliers
beyond are shown as single points.

Supplementary Section 7 Investigating the Applicability
to 3D Segmentation Tasks

To evaluate the application of a stacked 2D segmentation approach to 3D
images, we examined a lung nodule segmentation task from the medical seg-
mentation decathlon [28]. For compatibility with the benchmark’s results, we
retrained UMedPT with the nine remaining tasks from the decathlon’s dataset
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in addition to UMedPT’s training database. We refer to this version of the
model as UMedPT-large.

The pretraining methodology for UMedPT-large was the same as for
UMedPT. To adapt to the target task, we then trained a linear task-specific
head on the output of the frozen UMedPT-large. The model was trained using
full slices. For inference, we used 2D inference on full slices and stacked the
results to create a 3D prediction.

We compared with nnU-Net [51], as a baseline for medical 3D segmenta-
tion. While we used whole slices (512 × 512) for training, nnU-Net used a
patch size of 128 × 128 × 128. Our evaluation strategy followed the baseline’s
approach of 5-fold cross validation. For evaluation, we adopted the 3D Dice
from [50], reporting only the foreground class. In terms of results, UMedPT-
large achieved a Dice score of 71.96%, while for non-pretrained nnU-Net
52.68% and 66.85% are reported for 2D and 3D, respectively [51]. However,
at the time of writing, the online leaderboard of the Medical Segmentation
Decathlon reports higher metrics (using different test data).

For future work, we suggest following the workflow that was successful
with the external evaluation of a colorectal cancer classifier in gigapixel image
classification. In this process, we first used UMedPT to extract features, fol-
lowed by the application of a smaller specialized CNN to the whole gigapixel
image at once. For 3D segmentation, this specialized network could be a 3D
CNN. Alternatively, the pretraining segmentation task could be extended to
incorporate 3D spatial context as we did for 3D classification with MedMNIST.

Supplementary Section 8 List of data sources

Below is a list of the data sources used in this study. All data are either publicly
available or can be obtained by requesting access from the respective authors
at the URLs listed.

• Amos22 [59] (organ segmentation in CT): https://amos22.grand-challenge.
org/

• Conic-WSI [60] (cell detection): https://conic-challenge.grand-challenge.
org/

• PICAL-MRI [61] (prostate cancer classification) https://pi-cai.
grand-challenge.org/:

• Panda-WSI [62] (prostate tissue semantic segmentation & classification):
https://www.kaggle.com/c/prostate-cancer-grade-assessment

• VinBigData-CXR [63] (Thorax pathology pathol-
ogy detection): https://www.kaggle.com/competitions/
vinbigdata-chest-xray-abnormalities-detection

• Crag-WSI [64] (Colorectal tissue semantic segmentation): https://github.
com/XiaoyuZHK/CRAG-Dataset Aug ToCOCO

• Brats2020-MRI [65–67] (brain semantic segmentation): https://www.kaggle.
com/datasets/awsaf49/brats20-dataset-training-validation

https://amos22.grand-challenge.org/
https://amos22.grand-challenge.org/
https://conic-challenge.grand-challenge.org/
https://conic-challenge.grand-challenge.org/
https://pi-cai.grand-challenge.org/
https://pi-cai.grand-challenge.org/
https://www.kaggle.com/c/prostate-cancer-grade-assessment
https://www.kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection
https://www.kaggle.com/competitions/vinbigdata-chest-xray-abnormalities-detection
https://github.com/XiaoyuZHK/CRAG-Dataset_Aug_ToCOCO
https://github.com/XiaoyuZHK/CRAG-Dataset_Aug_ToCOCO
https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
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• Avaniti-WSI [68] (prostate multi-label classification): https://doi.org/10.
7910/DVN/OCYCMP

• Cyto-WSI [69] (bone marrow single cell multi-class classification): https://
wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=101941770

• Chexpert-CXR [70] (Thorax pathology multi-label clas-
sification): https://stanfordaimi.azurewebsites.net/datasets/
8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2 & https://github.com/rajpurkarlab/
cheXpert-test-set-labels

• SIIM-CXR [71] (pneumothorax semantic segmentation): https://www.
kaggle.com/competitions/siim-acr-pneumothorax-segmentation/data

• ImageNet-1K [1] (real world image classification): https://www.image-net.
org/download.php

• RadImageNet [5] (radiology multi-class classification): request access at
https://www.radimagenet.com/copy-of-home-1

• COCO [72] (real world semantic segmentation & object detection): https:
//cocodataset.org/#download

• CRC-WSI [17] (colorectal cancer tissue classification): https://zenodo.org/
record/1214456

• Pneumo-CXR [18] (pneumonia in pediatric cohort): https://data.mendeley.
com/datasets/rscbjbr9sj/3

• Tuber-CXR [20] (tuberculosis diagnosis in CXR): https://www.kaggle.com/
datasets/raddar/tuberculosis-chest-xrays-shenzhen

• CNS-MRI [21] (CNS neoplasia diagnosis in MRI): https://www.kaggle.com/
datasets/masoudnickparvar/brain-tumor-mri-dataset

• BC-Bach-WSI [23] (breast cancer classification in WSI): https://
iciar2018-challenge.grand-challenge.org/

• BC-BHis-MIC [56] (breast cancer classification in micro-
scopic images): https://web.inf.ufpr.br/vri/databases/
breast-cancer-histopathological-database-breakhis/

• PolypSeg-RGB [25] (polyp segmentation in coloscopy): https://datasets.
simula.no/kvasir-seg/

• NucleiDet-WSI [19] (detection of nuclei in whole slide images): https://www.
nature.com/articles/s41597-020-0528-1

• Medical Segmentation Decathlon [28] (3D segmentation experiment): https:
//decathlon-10.grand-challenge.org/

• MedMNIST database [16] (Application of UMedPT to MedMNIST and sep-
arate experiments with MedMNIST): https://zenodo.org/records/5208230

https://doi.org/10.7910/DVN/OCYCMP
https://doi.org/10.7910/DVN/OCYCMP
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=101941770
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=101941770
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
https://github.com/rajpurkarlab/cheXpert-test-set-labels
https://github.com/rajpurkarlab/cheXpert-test-set-labels
https://www.kaggle.com/competitions/siim-acr-pneumothorax-segmentation/data
https://www.kaggle.com/competitions/siim-acr-pneumothorax-segmentation/data
https://www.image-net.org/download.php
https://www.image-net.org/download.php
https://www.radimagenet.com/copy-of-home-1
https://cocodataset.org/#download
https://cocodataset.org/#download
https://zenodo.org/record/1214456
https://zenodo.org/record/1214456
https://data.mendeley.com/datasets/rscbjbr9sj/3
https://data.mendeley.com/datasets/rscbjbr9sj/3
https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen
https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://iciar2018-challenge.grand-challenge.org/
https://iciar2018-challenge.grand-challenge.org/
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