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: ** Please ensure you delete the link to your author homepage in this e-mail if you
wish to forward it to your co-authors. **

Dear Professor Kiessling,

Your manuscript "Overcoming Data Scarcity in Biomedical Imaging with a
Foundational Multi-Task Model" has now been seen by 2 referees, whose comments
are appended below. You will see that while they find your work of interest, they have
raised points that need to be addressed before we can make a decision on
publication.

The referees’ reports seem to be quite clear. Naturally, we will need you to address
*all* of the points raised.

While we ask you to address all of the points raised, the following points need to be
substantially worked on:
- Please discuss how the datasets for pretraining are selected.
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- As both reviewers have mentioned, an increase in data volume can enhance the
model's performance. Are there any reasons analyzed here for the weakening of
performance?

- In the study, when standardizing 3D images into 2D images, a significant amount of
the original three-dimensional information is lost. It should be discussed if the
performance of this foundational model been directly compared to the training
performance of 3D networks for 3D images.

- Please include an ablation study involving the proposed algorithm gradient
accumulation and traditional training schemes.

- Please include statistical information about the pretraining datasets, such as the
total amount of data in pretraining, the amount of data per dataset.

- As indicated by Reviewer #1, the README file should be provided.

In addition to these points, it would also be beneficial to address the following
concerns:
- Please avoid the use of the phrase "foundational model". Instead, please use "LLM".

Please use the following link to submit your revised manuscript and a point-by-point
response to the referees’ comments (which should be in a separate document to any
cover letter):

[REDACTED]

** This url links to your confidential homepage and associated information about
manuscripts you may have submitted or be reviewing for us. If you wish to forward
this e-mail to co-authors, please delete this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy
of your manuscript files that indicates your revisions by making use of Track Changes
or similar mark-up tools. Please also ensure that all correspondence is marked with
your Nature Computational Science reference number in the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your
text, to assist us in the editorial stage.

To improve transparency in authorship, we request that all authors identified as
‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System
(MTS), prior to acceptance. ORCID helps the scientific community achieve
unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature
account’. For more information please visit please

visit www.springernature.com/orcid.

We hope to receive your revised paper within three weeks. If you cannot send it
within this time, please let us know.

We look forward to hearing from you soon.


http://www.springernature.com/orcid
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Best regards,

Ananya Rastogi, PhD
Senior Editor
Nature Computational Science

Reviewers comments:
Reviewer #1 (Remarks to the Author):

This study developed a foundational pretrained model using a multi-task learning
strategy across various biomedical modalities and label types. This model
demonstrated effective knowledge transfer capabilities to reduce the amount of data
and time for unseen tasks. The foundation model is valuable for biomedical imaging,
especially in data-scarce scenarios. While the research holds promise, there are
several concerns and areas of improvement.

1. Technical concerns:

a. How the datasets for pretraining are selected? Why them?

b. Is ImageNet being used in reference to ImageNet 1K? Any performance
comparisons with ImageNet 21K pre-training? As I understand it, pre-training with
21K classes exhibits notably stronger performance.

c. In lines 160-162, “Surprisingly, for UMedPT, increasing the training data beyond
1% did not enhance the model’s performance and sometimes tended to degrade it.”
In theory, an increase in data volume can enhance the model's performance. Are
there any reasons analyzed here for the weakening of performance?

d. In line 460: “To accommodate these different data types, the encoder of UMedPT
used a standardized 2D image input format.” To my knowledge, 3D networks perform
better with 3D images compared to 2D networks. In the study, when standardizing
3D images into 2D images, a significant amount of the original three-dimensional
information is lost. Has the performance of this foundational model been directly
compared to the training performance of 3D networks for 3D images?

e. In lines 388-389, "No information on the dataset’s length was needed beforehand,
which allowed each epoch to have a different length depending on data
augmentation.” Confused about the varying lengths per epoch. Are different batch
sizes used for each task?

f. In lines 586-590, “For this reason, we did not use a validation set in our
experiments.” How to determine the endpoint of training without validation set for
downstream tasks?

g. The study claim a contribution that one model covers various data modalities and
tasks. But the comparison over other methods is limited, including different
pretraining methods, backbones, learning strategies, etc. If the pretrained model is
universal, I suggest to report experiments on MedMNIST (Scientific Data, 2023),
where 12 2D data and 6 3D data are standardized to be compared with other
methods.

2. Ablation studies:
a. The paper lacks ablation study involving the proposed algorithm gradient
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accumulation and traditional training schemes. There can be many variants, including
loss weights and dataset balanced sampling.

b. Only one backbone is used in this study. Convnet-based models are also
encouraged.

3. On writing:

a. I don't understand the difference between UMedPT, UMedPT-fixed and UMedPT-
affine, the description in the paper is hard to follow.

b. The article lacks statistical information about the pretraining datasets, such as the
total amount of data in pretraining, the amount of data per dataset.

4. Minor suggestions :

a. In Extended Data Table 1, "PPneumo-CXR” should be “Pneumo-CXR"; If UMedPT-A
and UMedPT-affine refer to the same thing, their naming needs to be unified; Is the
result "58.21+9.50%" representing the mean and standard deviation? It's not
specified in the table header.

b. In line 239 and 304, SemiCOL challenge dataset should be classification task, not
tumor detection subtask.

Reviewer #1 (Remarks on code availability):
Lack of clarity due to lack of README.

The absence of instructions on project structure, environment setup, required
packages, and reproduction steps is a major obstacle. Yet, the presence of many test
files is a positive sign, showing extensive testing of the code blocks.

Reviewer #2 (Remarks to the Author):

Overcoming Data Scarcity in Biomedical Imaging with a Foundational Multi-Task
Model

Training models with scarce data is a major problem in the field of image analysis. In
addition, combining multimodal datasets (eg imaging, pathology) is another major
challenge for precision medicine and it is not usually the case that image analysis
solutions at the tissue level can successfully be applied to in vivo imaging. The
authors have used a multi-task foundational model to overcome these issues by using
simultaneous training of a single model that generalizes across multiple tasks. This
could therefore be applied to the many small datasets that are currently available
given the absence of larger datasets. The approach used here included three
supervised label types: object detection, segmentation, and classification. The
authors developed a fully supervised foundational model for biomedical imaging which
they termed UMedPT, using 17 tasks based on 15 datasets and their original
annotations.

The authors divided the assessment in two ways: in-domain benchmark to assess the
applicability of UMedPT to problems closely related to its training database and the
out-of-domain benchmark to evaluate its performance in unfamiliar domains. The
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UMedPT outperformed the pretrained ImageNet network in both in and out-of-domain
tasks. Their results were impressive with UMedPT matching the best performance of
the ImageNet baseline over all configurations using only 1% of the original training
data. Increasing the training data beyond 1% did not enhance performance and
sometimes tended to degrade it - this is counterintuitive, and the authors should
provide some explanation for this result.

The examples given include classification of colorectal and breast cancer on
pathological slides, diagnosing pneumonia/TB on chest X-ray, and brain
tumours/organ segmentation on MRI. It is important to understand how all of these
were validated: there is mention of two expert pathologists annotating the breast
cancer slides but it is not clear how the diagnoses were confirmed on some of the
other datasets (eg TB).

The approach for the colorectal cancer slide was applied to data acquired from
multiple separate sites showing its applicability on data not from the primary training
set. Was this multi-site approach also performed on the X-ray and MRI data? The
authors state that these foundational models should be robust to multi-center
variances, thereby improving generalizability, but appear to provide the evidence for
this from histological analysis only.

In summary, the authors have presented some very interesting work on how a novel
multitask training strategy can be used for unseen target tasks and scarce data. It
would be interesting to understand the authors views on how far this approach could
be extended to other out-of-domain tasks: what are the limits of how this approach
could be applied to new data and what are the factors affecting these limits?

‘ Author Rebuttal to Initial comments
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Our direct replies are presented in this document, and the actual changes in the manuscript have
been highlighted in green.

Editor
Editor: Please discuss how the datasets for pretraining are selected.

Reply: We are happy to add this information and added details on the process of constructing the
pretraining database (page 18, lines 563-581):

“Pretraining Tasks

We selected 15 publicly available datasets for pretraining and extracted 17 tasks from them. Several
criteria guided the selection of datasets:

* Availability: All datasets should be publicly available.

* Clinical Relevance: Datasets should include imaging modalities that are widely used in
radiology and pathology. For that reason, we included tasks from histopathology, X-ray, and
tomography.

* Diversity of Label Types: Where possible, we included tasks with a classification,
segmentation, and detection label type for each category.

* Performance: We prioritized datasets that demonstrated satisfactory performance when
trained individually. We defined satisfactory performance as either aligning with the metrics
reported by the dataset creators where available, or passing a plausibility check conducted
by a medical expert.

We included four auxiliary datasets for the purpose of meta-learning. These datasets were not
intended to directly improve a specific clinical application, but rather to enhance the model’s general
image understanding capabilities, drawing inspiration from the strong foundational capabilities of
ImageNet pre-trained models. Detailed statistics on the pretraining database are reported in Table
4"

Editor: As both reviewers have mentioned, an increase in data volume can enhance the model's
performance. Are there any reasons analyzed here for the weakening of performance?

Reply: We appreciate the opportunity to discuss the counterintuitive phenomenon observed in our
study. We agree that, intuitively, collecting more data for an unseen clinical target task should
improve performance. The phenomenon of a smaller dataset beating a larger dataset was observed
primarily for fine-tuning, suggesting that the current method of fine-tuning may in some cases lead
to “catastrophic forgetting” of the well generalizing multi-task parameters. Catastrophic forgetting is
a phenomenon in which Al systems lose information from previous tasks as they learn new ones.

In fact, our training schedule used a fixed number of epochs. Consequently, as the size of the fine-
tuning dataset increased, there were naturally more update steps. This gives the training process
more time to overwrite or ‘forget’ the useful features learned during the pretraining phase,
especially as all parameters are allowed to change freely during fine-tuning.

To test the hypothesis, we performed an additional experiment (page 27, lines 879-899):
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“In our clinical benchmark, we observed that increasing the amount of data for a target task could
paradoxically lead to a decrease in performance during the fine-tuning phase. To explore the
potential role of catastrophic forgetting, where neural networks lose previously learned information
as they acquire new knowledge, we designed an experiment focused on the fine-tuning phase of our
model.

We pretrained a multi-task deep learning network on the MedMNIST database. From this, we
selected four tasks (SynapseMNIST3D, VesselMNIST3D, BreastMNIST, PneumoniaMNIST) that had
shown improved performance with multi-task learning compared to single-task learning. Our aim
was to analyse how further training of these tasks, individually with their full datasets, would affect
their test accuracy.

For the experiment, we first measured the test accuracy for the four selected tasks after multi-task
learning with with 12 MedMNIST tasks for 100 epochs. We then continued to train the selected tasks
individually using 100% of their respective training data for 100 epaochs, after which we recorded the
test accuracy again.

If, after this further individual fine-tuning, test accuracy fell to levels comparable to those achieved
by single-task training, this would indicate that catastrophic forgetting had occurred.”

Our experiments revealed that it depended on the dataset whether catastrophic forgetting occurred
during fine-tuning or not. We present the findings in page 11, lines 282-296:

“[...] The results varied between datasets, suggesting that whether catastrophic forgetting affects
fine-tuning is not consistent across datasets and may be task-dependent:

- SynapseMNIST3D: 83.81+0.31% -> 82.90+0.66% (decrease)

- VesselMNIST3D: 93.6620.31% -> 93.77+0.87% (no decrease)

- BreastMNIST: 86.92+1.04% -> 85.90+0.91% (decrease)

- PneumoniaMNIST: 91.54+0.48% -> 91,70£0.49% (no decrease)”

Unfortunately, at the moment we do not have a solution to predict the appearance of catastrophic
forgetting.

The phenomenon of catastrophic forgetting could be addressed by tools developed for language
models. In this context, parameter-efficient fine-tuning techniques could be BitFit (where only the
bias-terms are fine-tuned) and LoRA (where a small number of additional parameters are fine-tuned).
We discuss these potential future improvements on our approach in page 12, lines 353-363:

“Investigating catastrophic forgetting in target tasks

in some cases we observed that the performance of UMedPT decreased as the size of the training
dataset increased. This could be due to catastrophic forgetting of the well generalizing features
learned during pretraining. However, this effect was not consistent, suggesting that it may be dataset
dependent.

Recently, more sophisticated fine-tuning strategies have been proposed for foundational models in
natural language processing, such as BitFit [33], where only the bias-terms are fine-tuned, or LoRA
[34], where a small number of additional parameters are fine-tuned. A training configuration
targeted specifically to foundational vision models might combine the strengths of frozen and fine-
tuned training configurations, and could improve on the problem of catastrophic forgetting [25]."
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Editor: In the study, when standardizing 3D images into 2D image data, a significant amount of the
original three-dimensional information is lost. It should be discussed if the performance of this
foundational model been directly compared to the training performance of 3D networks for 3D
images.

Reply: We agree that the conversion of 3D images into 2D slices during pretraining results in a loss of
spatial context, and quantifying this loss is important for the interpretation of our results. To quantify
the performance differences between 2D pre-training for 3D tasks and 3D convolutional neural
networks, we performed additional analyses, which are described in the Methods section of the
additional MedMNIST experiments on page 26, lines 842-862:

“Assessing 3D context preservation in pretraining

Transforming inherently 3D medical imaging data into 2D slices for pretraining purposes can resultin
the loss of three-dimensional contextual information. This dilemma presents a challenge when
building a unified database for pretraining: while large pretraining databases are populated with 2D
images, many tomographic medical imaging techniques capture complex anatomical structures in
three dimensions.

To evaluate the ability to maintain three-dimensional context in our pre-training approach, we
trained MedMNIST multi-task networks that handled 2D and 3D tasks simultaneously. For the 3D
tasks, we used a simple strategy based on a learned weighted average across slices with the
classification task described in section 5. Intuitively, this allows the network to learn focusing on the
most relevant slices of a 3D case.

Our objective was to determine the effectiveness of this strategy compared to a network using three-
dimensional convolutional layers. We assessed this by directly comparing our learned weighted
average-based classification results with the performance reported by the MedMNIST authors using
a standard 3D CNN. For a useful comparison, we analysed the results not only for a Resnet-50 CNN
[53], as used by the MedMNIST authors, but also for the Swin Tiny Transformer [38), which is a
smaller variant of the encoder architecture used in UMedPT."

We present the results in page 10, lines 253-264:
“Assessing 3D context preservation in pretraining

To assess the impact of transforming inherently 3D medical imaging data into 2D slices for
pretraining, we evaluated single-task learning with 2D data, single-task learning with original 3D data
[24] and multi-task learning with 2D data. When only taking the 3D tasks, the average accuracies
were:

- 83.22 £1.61% for single-task learning pretrained using Imagenet;
- 83.76% for the single-task MedMNIST 3D CNN;
- B86.46 + 1.13% for multi-task learning with weighted averaging.

The results showed that single-task 3D CNNs performed better than single-task 2D CNNs pretrained
using Imagenet. However, multi-task learning 2D networks outperformed the single-task 3D CNNs.
We present the details in Extended Data Table 5.”

Here we show an excerpt from Extended Data Table 5 with only the 3D results for the CNNs:
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Extended Data Table 5 MedMNIST test performance. Multi-task learning (MTL) networks were trained using all tasks,
including both 2D and 3D tasks. Single-task (ST) were troined independently. Metrics are reported as mean # standard
deviation in percentage. The reference accuracy (ACC Ref) and area under the curve (AUC Ref) are taken from the
publication associated with the MedMNIST database [52).

ACC MTL AUC MTL ACC 8T AUC ST ACC Ref  AUC Ref
CNN

AdrenalMNIST3D  R380+0.88%  86.85+1.95%  SORTHIA0%  TO.06H1T.78%  T4.50% 82.80%
Nodule MNISTSD 85.941+0.97%  85.9041.40%  86.13+0.04%  90.87H0.TIH S4.T0% &7.50%
Organ MNIST3ID BT.11E1.25%  99.0040.25%  86.8242.74%  98.6910.25% SR.B0% 99.40%
SynapseMNISTSD  BLOSELS0%  81.8141.32%  73.5240.55%  65.6246.14% TH.50% 85.10%
Vesel MNIST3D 04.2040.45%  95.6440.75%  B8.T4H0.00%  69.6042.80% O1.80% 90.70%

Editor: Please include an ablation study involving the proposed algorithm gradient accumulation and
traditional training schemes

Reply: Thank you for your valuable suggestion to include an ablation study comparing our proposed
gradient accumulation-based training strategy with traditional training schemes. We understand the
importance of demonstrating whether our method is superior to or differs from traditional training
schemes, and we agree that this information would be highly interesting for the readers of the
article. Therefore, we extended the UMedPT ablation study that was part of the initial submission. In
this context, we have performed several additional ablation studies related to the training strategy
and included the following paragraph in the Methods section (page. 27, lines. 868-878):

“Investigating training schemes

All datasets in MedMNIST have a fixed number of cases. This distinction enabled us to conduct
ablation studies comparing infinite task sampling with balanced sampling based on dataset size.
Besides this, we used the same training schedule and hyperparameters as in the main study, and
accumulated the gradients of as many steps as there were tasks. In addition, for comparison with
traditional training schemes, we used the same setting without gradient accumulation and also with
the SGD optimizer instead of Adam.

To quantify the effect of task scheduling, we reported the stabilities of the training processes by the
standard deviations of the validation performances over the last 10 training epochs.”

We report the new results in page 10, lines 272-281:

“The exploration of training schemes showed that balanced (by dataset size) and cyclic sampling (as
in UMedPT) exhibited similar behaviour in terms of convergence. However, balanced sampling
occasionally showed reduced stability; it yielded a standard deviation of 1.81+1.79% in validation
accuracy over the previous ten epochs, across five different experiments. in comparison, cyclic
sampling showed a more stable training process, achieving a comparatively lower standard deviation
of 1.17+1.09%. When gradient accumulation was excluded, the resulting performance deteriorated,
accompanied by longer convergence times. These results are shown in Extended Data Figure 2b.”
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b Training Scheme
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Extended Data Fig. 2 MedMNIST training convergence. a Architecture comparison [...] b Comparison of training schemes
for the Swin Transformer tiny architecture. Troditional SGD used SGD optimizer without momentum and without gradient
accumulation. Traditional Adam used the sume setting but with the Adom optimizer. Balanced added 12 gradient
accumulation steps to the traditional Adam setting. Cyclic systematically sampled each task exoctly once per updote step,
identical to the method used to train UMedPT. The average standard deviation across five independent experiments of the
last 10 epochs of validation accuracy was 1.81 * 1.79% for balonced sampling and 1.17 + 1.09% for cyclic sampling.

Editor: Please include statistical information about the pretraining datasets, such as the total amount
of data in pretraining, the amount of data per dataset.

Reply: Additional details on the datasets used in the pretraining of our model are now presented in
Extended Data Table 4:

10
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Extended Data Table 4 Pretraining database statistics. Image instances refer to individuel 2D images that can be used
directly for pretraining. Compaosite data types, including 3D volumes and gigapixel images, can be divided into multiple
image instances per imaging study. In total, the pretraining database included more than 3 million 2D images, more than
1000 large image tiles such as tissue microarrays or whole slide sections, more than 10000 whole slide images and more
than 1000 30 volumes, totalling more than 10 million annotated image instances for pretraining UMedPT.

Identifer

Description

Dataset size

Amos22-CT

Segmentation of 15 organs i abdominal
CT.

200 3D-CT volumes

Clome-WSI1

Nucler detection in colon tissue from 6
different data sources with 6 classes,

4981 image instances

PICAL-MRI

Multilabel classification of chinically rel-
evant  prostate cancer (esPCa)  and
whether or not a lesion is visible,

1476 cases, each with 3
3D-MR scquences

Panda-WSI-CIf
Panda-WSI-Seg

This data source yields two pretraming
tasks. A classification task for predicting
presence of tumor, and a scgmentation
task with the classes stroma., healthy
epithelium and gleason grades 3. 4 and 5.

10616 WSl

VinBigData-
CXR

Object detection in chest X-ray with 14
classes.

15000 chest X-rays

Crag-WSI

Colorectal adenocarcinoma  gland  seg-
mentation.

213 image tiles (size &~
(1500, 1500)

Brats2020-MR1

Brain tumor (ghioma) segmentation into
five classes.

369 cascs, Each  case

comes with 4 3D-MR

SOQUENCeS.

CRC-WSI Multi-class classification of HEGE stained — 100,000/7,000 image
histological images of human colorectal instances extracted from
cancer (CRC). 86 WSI

Avaniti-WSI Multi-label classification into four classes 886 TMA

(benign and 3 gleason grades). We
extracted patches from tissue microar-
rays and predict all classes present.

Cyto-WSI

Expert-labeled single-cell images taken
from peripheral blood smears, Used as
a multi-class classification task with 21
classes.

137076 image instances

Chexpert-CXR

Multilabel classification in chest X-ray
with 14 classes. We use the nine classes
that have a good performance when mea-
sured with the provided validation set.

223414/234
instances

image

SHM-CXR Segment the pneumothorax ares in chest 11583 image instances
X-ray.

ImageNet Multi-class natural mage classification 1,281,167 /50,000 mmages
dataset with 1000 classes,

RadlmageNet Multi-class classihcation database devel- 263118 /292!

oped for the purpose of pretraining medi-
cal AL Contains 2D image instances from
CT, MR and ultrasound (US)

5 C
G05408,/67267 MR
350897 /38988 US

COCO-Seg
COCO-Det

Natural image dataset with 80 segmenta-
tion and object detection classes,

118287 image instances

Editor: As indicated by Reviewer #1, the README file should be provided.

Reply: We appreciate the remark and think that simple code reuse and reproducibility is a
cornerstone of valuable research. For this reason, we have extended the original README file
(located in code/readme.md) and will soon release the training framework on Github:
https://github.com/FraunhoferMEVIS/UMedPT.

11
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For reproducibility, we also published a Docker image (docker pull hub.cc-asp.fraunhofer.de/mtl-
torch/mtl-torch-stack:main) that already contains all requirements to train the latest open source
version of UMedPT.

Editor: Please avoid the use of the phrase "foundational model”. Instead, please use "LLM".

Reply: We feel that the term Large Language Model (LLM) would be inaccurate, as our work does not
include language modelling. If we have misunderstood this request, we would welcome further
clarification.

12
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Reviewer 1

Reviewer: This study developed a foundational pretrained model using a multi-task learning strategy
across various biomedical modalities and label types. This model demonstrated effective knowledge
transfer capabilities to reduce the amount of data and time for unseen tasks. The foundation model is
valuable for biomedical imaging, especially in data-scarce scenarios. While the research holds
promise, there are several concerns and areas of improvement.

Reply: We thank the reviewer for the valuable time and effort spent in reviewing our manuscript and
providing constructive feedback. In response to this reviewer's comments, we have

- added the suggested database MedMNIST as a second benchmark for our method;

- performed additional experiments to gain insights into combining 3D context with 2D
pretraining;

- performed ablation studies;

- gained insights into the phenomenon that more data can be detrimental to the prediction
performance for downstream tasks.

Reviewer: How the datasets for pretraining are selected? Why them?

Reply: We appreciate the reviewer's suggestion. We have added details about the process of building
the pretraining database (page 18, lines 563-581):

“Pretraining Tasks

We selected 15 publicly available datasets for pretraining and extracted 17 tasks from them. Several
criteria guided the selection of datasets:

* Availability: All datasets should be publicly available.

* (Clinical Relevance: Datasets should include imaging modalities that are widely used in
radiology and pathology. For that reason, we included tasks from histopathology, X-ray, and
tomography.

* Diversity of Label Types: Where possible, we included tasks with a classification,
segmentation, and detection label type for each category.

* Performance: We prioritized datasets that demonstrated satisfactory performance when
trained individually. We defined satisfactory performance as either aligning with the metrics
reported by the dataset creators where available, or passing a plausibility check conducted
by a medical expert.

We included four auxiliary datasets for the purpose of meta-learning. These datasets were not
intended to directly improve a specific clinical application, but rather to enhance the model’s general
image understanding capabilities, drawing inspiration from the strong foundational capabilities of
ImageNet pre-trained models. Detailed statistics on the pretraining database are reported in Table
a”

Reviewer: Is ImageNet being used in reference to ImageNet 1K? Any performance comparisons with
ImageNet 21K pre-training? As | understand it, pre-training with 21K classes exhibits notably stronger

performance.
13
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Reply: In the present study, we used ImageNet-1K. We specify the used version of ImageNet in
several places in the manuscript, e.g.

Page 4, Figure 1: “The performance of UMedPT was compared with that of ImageNet-1K
pretraining”.

Page 5, lines 146-147: “we compared UMedPT to [...] ImageNet-1K".

As the reviewer rightly points out, recent research suggests that pretraining with ImageNet-21K may
yield better performance.

However, the following practical considerations led us to use ImageNet-1K:

- We still perceive ImageNet-1k as the standard for medical pretraining.

- Model Compatibility: For our chosen architecture, specifically the Swin Transformer,
pretrained weights on ImageNet-21K are not available. However, such external weights are
important for a fair assessment.

- In addition, we tried to get access to ImageNet-21K on the 16th of April 2023. Unfortunately,
up to now our request remained unanswered. In consequence, we were not able to integrate
the dataset.

Reviewer: In lines 160-162, “Surprisingly, for UMedPT, increasing the training data beyond 1% did not
enhance the model’s performance and sometimes tended to degrade it.” In theory, an increase in
data volume can enhance the model's performance. Are there any reasons analyzed here for the
weakening of performance?

Reply: This is indeed a surprising finding, which was also commented by the editor and the other
reviewer. We agree that, intuitively, collecting more data for an unseen clinical target task should
improve performance. The phenomenon of a smaller dataset beating a larger dataset was observed
primarily for fine-tuning, suggesting that the current method of fine-tuning may in some cases lead
to “catastrophic forgetting” of the well generalizing multi-task parameters. Catastrophic forgetting is
a phenomenon in which Al systems lose information from previous tasks as they learn new ones.

In fact, our training schedule used a fixed number of epochs. Consequently, as the size of the fine-
tuning dataset increased, there were naturally more update steps. This gives the training process
more time to overwrite or ‘forget’ the useful features learned during the pretraining phase,
especially as all parameters are allowed to change freely during fine-tuning.

To test the hypothesis, we performed an additional experiment (page 27, lines 879-899):

“In our clinical benchmark, we observed that increasing the amount of data for a target task could
paradoxically lead to a decrease in performance during the fine-tuning phase. To explore the
potential role of catastrophic forgetting, where neural networks lose previously learned information
as they acquire new knowledge, we designed an experiment focused on the fine-tuning phase of our
model.

We pretrained a multi-task deep learning network on the MedMNIST database. From this, we
selected four tasks (SynapseMNIST3D, VesselMNIST3D, BreastMNIST, PneumoniaMNIST) that had
shown improved performance with multi-task learning compared to single-task learning. Our aim
was to analyse how further training of these tasks, individually with their full datasets, would affect
their test accuracy.

14
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For the experiment, we first measured the test accuracy for the four selected tasks after multi-task
learning with with 12 MedMNIST tasks for 100 epochs. We then continued to train the selected tasks
individually using 100% of their respective training data for 100 epochs, after which we recorded the
test accuracy again.

If, after this further individual fine-tuning, test accuracy fell to levels comparable to those achieved
by single-task training, this would indicate that catastrophic forgetting had occurred.”

Our experiments revealed that it depended on the dataset whether catastrophic forgetting occurred
during fine-tuning or not. We present the findings in page 11, lines 282-296:

“[...] The results varied between datasets, suggesting that whether catastrophic forgetting affects
fine-tuning is not consistent across datasets and may be task-dependent:

- SynapseMNIST3D: 83.81+0.31% -> 82.90+0.66% (decrease)

- VesselMNIST3D: 93.6620.31% -> 93.7740.87% (no decrease)

- BreastMNIST: 86.9241.04% -> 85.90+0.91% (decrease)

- PneumoniaMNIST: 91.54+0.48% -> 91.70£0.49% (no decrease)”

Unfortunately, at the moment we do not have a solution to predict the appearance of catastrophic
forgetting.

The phenomenon of catastrophic forgetting could be addressed by tools developed for language
models. In this context, parameter-efficient fine-tuning techniques could be BitFit (where only the
bias-terms are fine-tuned) and LoRA (where a small number of additional parameters are fine-tuned).
We discuss these potential future improvements on our approach in page 12, lines 353-363:

“Investigating catastrophic forgetting in target tasks

In some cases we observed that the performance of UMedPT decreased as the size of the training
dataset increased. This could be due to catastrophic forgetting of the well generalizing features
learned during pretraining. However, this effect was not consistent, suggesting that it may be dataset
dependent.

Recently, more sophisticated fine-tuning strategies have been proposed for foundational models in
natural language processing, such as BitFit {33], where only the bias-terms are fine-tuned, or LoRA
[34], where a small number of additional parameters are fine-tuned. A training configuration
targeted specifically to foundational vision models might combine the strengths of frozen and fine-
tuned training configurations, and could improve on the problem of catastrophic forgetting [25].”

Reviewer: In line 460: "To accommodate these different data types, the encoder of UMedPT used a
standardized 2D image input format.” To my knowledge, 3D networks perform better with 3D images
compared to 2D networks. In the study, when standardizing 3D images into 2D images, a significant
amount of the original three-dimensional information is lost. Has the performance of this
foundational model been directly compared to the training performance of 3D networks for 3D
images?

Reply: We appreciate the reviewer's point and addressed it by performing additional experiments
using the MedMNIST benchmark. The editor has adopted this point as well. We agree that the
conversion of 3D images into 2D slices during pretraining results in a loss of spatial context, and
quantifying this loss is important for the interpretation of our results. To quantify the performance
differences between 2D pre-training for 3D tasks and 3D convolutional neural networks, we
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performed additional analyses, which are described in the Methods section of the additional
MedMNIST experiments on page 26, lines 842-862:

“Assessing 3D context preservation in pretraining

Transforming inherently 3D medical imaging data into 2D slices for pretraining purposes can result in
the loss of three-dimensional contextual information. This dilemma presents a challenge when
building a unified database for pretraining: while large pretraining databases are populated with 2D
images, many tomographic medical imaging techniques capture complex anatomical structures in
three dimensions,

To evaluate the ability to maintain three-dimensional context in our pre-training approach, we
trained MedMNIST multi-task networks that handled 2D and 3D tasks simultaneously. For the 3D
tasks, we used a simple strategy based on a learned weighted average across slices with the
classification task described in section 5. Intuitively, this allows the network to learn focusing on the
most relevant slices of a 3D case.

Our objective was to determine the effectiveness of this strategy compared to a network using three-
dimensional convolutional layers. We assessed this by directly comparing our learned weighted
average-based classification results with the performance reported by the MedMNIST authors using
a standard 3D CNN. For a useful comparison, we analysed the results not only for a Resnet-50 CNN
[53], as used by the MedMNIST authors, but also for the Swin Tiny Transformer [38], which is a
smaller variant of the encoder architecture used in UMedPT."”

We present the results in page 10, lines 253-264:
“Assessing 3D context preservation in pretraining

To assess the impact of transforming inherently 3D medical imaging data into 2D slices for
pretraining, we evaluated single-task learning with 2D data, single-task learning with original 3D data
[24] and multi-task learning with 2D data. When only taking the 3D tasks, the average accuracies
were:

- 83.22 £ 1.61% for single-task learning pretrained using Imagenet;
- 83.76% for the single-task MedMNIST 3D CNN;
- 86.46 + 1.13% for multi-task learning with weighted averaging.

The results showed that single-task 3D CNNs performed better than single-task 2D CNNs pretrained
using Imagenet. However, multi-task learning 2D networks outperformed the single-task 3D CNNs.
We present the details in Extended Data Table 5.”

Here we show an excerpt from Extended Data Table 5 with only the 3D results for the CNNs:
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Extended Data Table 5 MedMNIST test performance. Multi-task learning (MTL) networks were trained using all tasks,
including both 2D and 3D tasks. Single-task (ST) were troined independently. Metrics are reported as mean # standard
deviation in percentage. The reference accuracy (ACC Ref) and area under the curve (AUC Ref) are taken from the
publication associated with the MedMNIST database [52).

ACC MTL AUC MTL ACC ST AUC ST ACC Ref  AUC Ref
CNN

AdrenaINMNISTID RIBOH088%  86.80+1.90%  BORTHEIA%  TEOGHIT.T8YA  TAN0WN 82.80%
Nodule MNIST3D B5.94+0.97%  85.950+1.40%  86.13+0.54%  90.87H0.TIH S4.70% &7.50%
Organ MNISTID RT.1LEL25%  99.0040.25%  B6.8212.74%  9B.6910.25% SR.B0% 99.40%
SynapscMNISTSD  BLOSELA0%  81.8141.32%  73.52+0.55%  65.6216.14% TH.50% 85.10%
Vesiel MNISTID 04.2040.45%  95.6440.75%  B8.T4H0.00%  69.6042.80% 91.80% 90.70%

Reviewer: In lines 388-389, “No information on the dataset’s length was needed beforehand, which
allowed each epoch to have a different length depending on data augmentation.” Confused about the
varying lengths per epoch. Are different batch sizes used for each task?

Reply: We indeed used different batchsizes for each task depending on the memory requirements of
its label type and the spatial dimensions of the image input. However, this does not change the
number of image instances that a task contributes to a training epoch. We apologize for the
confusing wording and have rephrased the respective part of the Methods section:

Page 15, lines 453-463: “To accommodate datasets of different sizes, we implemented an "infinite
task sampler”, which yielded one training batch of each task for every optimization step.
Problematically, for 3D volumes the number of image instances used for training could depend on
the randomly chosen axis of slicing, while for gigapixel images, the random zoom level could
influence the number of image instances used for training. Our task sampler independently restarted
the data loading for a task once all of its data points had been used. As a result, no information on
the dataset's length was needed beforehand, allowing each epoch to have a different length
depending on data augmentation.”

Reviewer: In lines 586-590, “For this reason, we did not use a validation set in our experiments.” How
to determine the endpoint of training without validation set for downstream tasks?

Reply: We allocated a fixed computational budget for all evaluations and used the last model state.
We added the missing information to the methods section:

Page 22, lines 663-668: “We developed the downstream training schedule and tuned the
hyperparameters using a simple synthetic dataset and ran the clinical evaluation exactly once
without further hyperparameter tuning. We evaluated the model after training for a fixed number of
epochs. For this reason, we did not use a validation set in our experiments.”

Page 22, lines 673-676: “Two distinct usage settings were considered in our evaluation: frozen and
fine-tuning. [...] Both frozen and fine-tuning were trained for 100 epochs each.”

In few-shot learning, curating a representative validation set can be challenging. This is because the
available data are so limited that any data used for validation purposes could be better used in the
training process to improve the performance of the model.

To avoid overfitting, which can be addressed by model selection with a validation set, we
implemented strong regularization techniques during model training, such as domain-specific
augmentation, dropout and weight decay.
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This approach was validated by an additional experiment using the MedMNIST database; training a
convolutional neural network (CNN) under these conditions resulted in an average test accuracy of
86.17 + 0.84% with model selection using the validation set, compared to 86.35 + 1.01% with the
final model state after 100 epochs. The average was taken over all tasks with 5 repetitions.

Reviewer: The study claims a contribution that one model covers various data modalities and tasks.
But the comparison over other methods is limited, including different pretraining methods,
backbones, learning strategies, etc. If the pretrained model is universal, | suggest to report
experiments on MedMNIST (Scientific Data, 2023), where 12 2D data and 6 3D data are standardized
to be compared with other methods.

Reply: We appreciate the reviewer's suggestion to test the generality of our pretraining method with
the MedMNIST database. We performed additional experiments on

- pretraining alternatives: we employed alternative scheduling strategies (2a) and used
different backbones (2b);

- quantification of the 3D performance difference when applying 2D methods, 3D methods,
and pretrained 2D methods (1d);

- reproducing and understanding the phenomenon of weakening performance with more data
(1c).

We introduced the experiment as follows (page 25, lines 814-841):
“Experiments with MedMNIST

In addition to the primary studies conducted with UMedPT, we also performed supplementary
analyses using the MedMNIST database (24, 52].

MedMNIST is a collection of 18 medical datasets that were downscaled to enable quick
experimentation with medical datasets. We used the same training schedule and hyperparameters as
for the main study. Nevertheless, MedMNIST differs from the pretraining database of UMedPT in the
following aspects:

* Spatial size: MedMNIST images are scaled down to a uniform 28x28 (2D) or 28x28x28 (3D)
size, while UMedPT was trained using images at their original dimensions;

* Task type: MedMNIST exclusively includes classification tasks. UMedPT was trained with
classification, segmentation and object detection tasks;

* Augmentations: We applied weak standard augmentations to the MedMNIST datasets,
avoiding flips, whereas UMedPT used domain-specific augmentations tailored to each task
type within its training set;

* Data loading: MedMNIST datasets have a fixed dataset length. For the UMedPT database, we
developed domain specific data loading strategies to be able to augment loading of the raw
data;

* Meta-learning: MedMNIST does not include any meta-learning datasets, while UMedPT
includes four large datasets for the purpose of general applicability, including non-medical
data.

Out of the 18 MedMNIST datasets, 12 were selected. We excluded 3 datasets (Organ{A,C,SIMNIST)
because they were composed of 2D images from one of the included 3D datasets. Further 3 datasets
(RetinaMNIST, TissueMNIST & FractureMNIST3D) were excluded as the authors had reported a low
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performance. In total, the subset included 370,980 imaging studies, or 1,087,104 image instances for
training, validation, and testing.”

We present the new results in in Extended Data Table 5:

Extended Data Table 5 MedMNIST test performance. Multi-task leorning (MTL) networks were trained using all tasks,
including both 2D ond 3D tasks. Single-tosk {ST) were trained independently. Metrics are reported as mean # standard
deviation in percentage. The reference accuracy (ACC Ref) and area under the curve (AUC Ref) are taken from the
publication associated with the MedMNIST database [52).

ACC MTL AUC MTL ACC ST AUC ST ACC Ref  AUC Rof
CNN
Blood MNIST 0L 31E041% 096440029 M 4940.41%  99.70+0.06% O6.60% 99,7004
Breast MNIST BT I8L041%  S681+1.58%  SLOMELGOYN  S3.86+1.19% 81.20% 85.70%
Chest MNIST MLT6HO.01% TH3440.50% 91.4240.29% 6695 40.30% 94.709% THN
DermaMNIST TEASE067%  91.9740.20%  T6.8110.42%  92.0040.33% T350% 91.30%
OCTMNIST 73824 1.47% A3H0.31%  THA6E2.01%  95.0340.42% 76.20% 95, 20%

PathMNIST BROTHLO4%  98.5840.26%  STO92H1L.03%  98.7840.03% 21.10% 99,00%
PoeumoniaMNIST  9L.761£0.93%  97.9140.25% 90.264£1.24%  97.9710.18% 85.40% 94.80%

Adrenad MNISTAD BE8OL088%  86.85+41.90% SO8TES.40% TOO6E1T.78% TLH0% 82.80%
NoduleMNIST3D A5.ME0.97%  85.0541.40%  86.13H0.0MW 90.87H0.T1% S4.T0% 87.50%
Organ MNISTID BT.ILEL25%  99.0040.259 86.821L2.74%  98.6910.25% SR.I0% D940
SynapseMNISTID BLO8L 1L.50% 81.8141.32% 73521055  65.6216.14% TO50% 85.10%
Versol MNISTID 04.20£0.45%  95.6410.75%  BS.TALO.OW  69.6012.80% 9180, 90.70%
Transformer

Blood MNIST 95.96:0.11%  99.7740.01% 95.7040.30%  99.7610.04% - -
Breast MNIST 86.924L1L.04% 86,204 1,38% 86,41 £1.24%  86,8110.78% - -
ChestMNIST M.I5L0.01%  75.1940.35% 93.60+0.10%  68.0440.42% - -
DermaMNIST 79.00:40.45%, 93.04.40.30% 79.20£0.57%  03.3440.31% - -
OCTMNIST TLOSELILY  05.434041% TI6240.92%  93.5540.60% - -
PathMNIST NG 0.A85, 99,154 0.06% 9211 H0.98% 99.3440.13% - -

FoeumonmaMNIST  91L54400.48%  98.2240.37% B8RS LA2% 97.6941.01% - -

AdrenaIMNISTID R201EL 1% S5.28+0.77% T6NSGE0.0% 66.5418.03% - -
Nodule MNIST3 RINIELT4% R6.394237% 83.29+42.056%  84.52+5.25% - -
Organ MNIST3ID RLNOGELATH  O8.8110.07% 9052+2.06%  99.284+0.12% - -
SynapseMNISTID  R331+031%  85.7040.890%  T3.0LH0.00%  A7.11+4.79% - -
Vessel MNIST3ID 93.66+0.31% 93.9441.40% S8 T4H0.00%  66.93+5.30% - -

Reviewer: The paper lacks ablation study involving the proposed algorithm gradient accumulation
and traditional training schemes. There can be many variants, including loss weights and dataset
balanced sampling.

Reply: We appreciate the reviewer's feedback and addressed it by including data from additional
experiments. The editor has adopted this point. For convenience, we will repeat our response here:

We understand the importance of demonstrating whether our method is superior to or differs from
traditional training schemes, and we agree that this information would be highly interesting for the
readers of the article. Therefore, we extended the UMedPT ablation study that was part of the initial
submission. In this context, we have performed several additional ablation studies related to the
training strategy and included the following paragraph in the Methods section (page. 27, lines. 868-
878):

“Investigating training schemes

All datasets in MedMNIST have a fixed number of cases. This distinction enabled us to conduct
ablation studies comparing infinite task sampling with balanced sampling based on dataset size. 19
Besides this, we used the same training schedule and hyperparameters as in the main study, and
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accumulated the gradients of as many steps as there were tasks. In addition, for comparison with
traditional training schemes, we used the same setting without gradient accumulation and also with
the SGD optimizer instead of Adam.

To quantify the effect of task scheduling, we reported the stabilities of the training processes by the
standard deviations of the validation performances over the last 10 training epochs.”

We report the new results in page 10, lines 272-281:

“The exploration of training schemes showed that balanced (by dataset size) and cyclic sampling (as
in UMedPT) exhibited similar behaviour in terms of convergence. However, balanced sampling
occasionally showed reduced stability; it yielded a standard deviation of 1.81+1.79% in validation
accuracy over the previous ten epochs, across five different experiments, In comparison, cyclic
sampling showed a more stable training process, achieving a comparatively lower standard deviation
of 1.1741.09%. When gradient accumulation was excluded, the resulting performance deteriorated,
accompanied by longer convergence times. These resuits are shown in Extended Data Figure 2b.”

b Training Scheme

19 10

—— Tradgional 5GO
—— Tradtional Adam
— Oxic

] 20 0 () 00
Epech

Extended Data Fig. 2 MedMNIST training convergence. a Architecture comparison [...] b Comparison of training schemes
for the Swin Transformer tiny architecture. Traditional SGD used SGD optimizer without momentum and without gradient
occumulation. Traditional Adam used the same setting but with the Adam optimizer. Balanced added 12 grodient
accumulation steps to the traditional Adam setting. Cyclic systematically sampled each task exactly once per update step,
identical to the method used to train UMedPT. The average standard deviation across five independent experimernts of the
last 10 epochs of validation accuracy was 1.81 + 1.79% for bolanced sampling and 1.17 + 1.09% for cyclic sampfing.

Reviewer: Only one backbone is used in this study. Convnet-based models are also encouraged.

Reply: We agree that including a convolutional network-based model provides additional insights
into the performance of our pretraining strategy across different types of backbones. To address this
point, we included a ResNet (ResNet-50 with 23.5m parameters) alongside a Swin Transformer of
comparable capacity (Swin-Tiny with 27.5m parameters) in the additional MedMNIST experiments.

Page 27, lines 863-867: “For quantifying the effect of the encoder's architecture, we chose the
ResNet-50 as convolutional neural network (CNN) and the tiny variant of the Swin Transformer 20
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because they are similar in size, The Swin Transformer has 27,582,570 trainable parameters
compared to 23,508,032 for the ResNet-50 CNN.”

We present the results in page 10, lines 265-271:
"Comparing convolutional networks and transformer

The comparison of the Swin Transformer and ResNet-50 CNN architectures showed a minimal impact
on model performance for the MedMNIST database, The Swin Transformer achieved an average test
accuracy of 86.76 £ 0.79% over 5 repetitions, while the ResNet-50 CNN achieved an accuracy of 86.34
+ 1.01%. In addition, a discrepancy in training convergence rates was observed between the two
architectures, as shown in Extended Data Figure 2a.”

a Architecture
10 Lo
{ ~———|
as (,MMW Qq17/' ¢
03 . . . : 0.8
z
5 E
o 4 + ! 4 07
asé + + + + 06
= Cornolutisnal Noural Network = Comwlutional Neural Network
—— Swin Transformer —— Swin Transiormer
s T T T T 0.5 T
0 20 a0 o0 80 o 0 0 L1 0 100
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(]

Extended Data Fig. 2 MedMNIST training convergence. a Architacture comparison between ResNet-50 [53)

and Swin Transformer in the “tiny" variant [38), evaluated on combined 2D and 3D multi-task trainings. b [...]

Reviewer: | don't understand the difference between UMedPT, UMedPT-fixed and UMedPT-affine, the
description in the paper is hard to follow.

We apologize for the confusion and have clarified the distinctions between UMedPT, UMedPT-fixed,
and UMedPT-affine in the short introduction in the results section:

Page 5, lines 135-143: “Ablation studies are included in Extended Data Tables 1, 2 and 3. UMedPT-
fixed consistently used an image size of (224, 224), while UMedPT used the full image dimensions for
each task. In addition, we tested UMedPT-affine, which also used image dimensions of (224, 224) but
added a learnable bias and scaling parameter to UMedPT's static layernorms, adding an affine
transformation. In our evaluations across various tasks, UMedPT outperformed ImageNet by an
average of 8.5% and surpassed UMedPT-fixed by 2.97%. Compared to UmedPT-fixed, UMedPT-affine
showed an average performance gain of 0.37%.”

In addition, we clarified the setup of UMedPT-fixed:

Page 18, lines 552-558: “In an ablation study, we evaluated how a uniform image size affected the
performance of our model. We trained a version called UMedPT-fixed and downsized all image 21
instances to 224 x 224 pixels. This contrasts with our standard UMedPT, where the gradient
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accumulation technique allows for dynamic image sizes to suit the requirements of each task.
Besides this, the preparation of the 2D image inputs for UMedPT-fixed followed the same process as
for the original UMedPT.”

Additionally, we added details regarding UMedPT-affine:

Page 17, lines 523-530: “We empirically analysed the effect of layernorms with affine parameters on
our approach using an adaptation of UMedPT (UMedPT-affine). UMedPT used layernorms without
parameters in the formy = i;—", where @ = vvar x + £ and x was the input. The mean u and
standard deviation o were computed over all channels of an input, but not over the batch dimension.
UMedPT-affine added trainable parameters including a bias B and a scaling factor y inthe form y =

downscaled to 224 x 224 pixels.”

4 B for each channel. Similar to UMedPT-fixed, UMedPT-affine was only used with images

Reviewer: The article lacks statistical information about the pretraining datasets, such as the total
amount of data in pretraining, the amount of data per dataset.

Reply: We appreciate the reviewer's feedback. The editor has adopted this point. For convenience,
we will repeat the response here:

Additional details on the datasets used in the pretraining of our model are now presented in
Extended Data Table 4:
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Extended Data Table 4 Pretraining database statistics. Image instances refer to individuel 2D images that can be used
directly for pretraining. Compasite data types, including 3D volumes and gigapixel images, cen be divided into multiple
image instances per imaging study. In total, the pretraining database included more than 3 million 2D images, more than
1000 large image tiles such as tissue microarrays or whole slide sections, more than 10000 whole slide images and more
than 1000 3D volumes, totalling more than 10 million annotated image instances for pretraining UMedPT,

Identifer

Description

Dataset size

Amos22-CT

Segmentation of 15 organs in abdominal
CT.

200 3D-CT volumes

Conic-WSI

Nuclei detection in colon tissue from 6
different data sources with 6 classes,

4981 image instances

PICAL-MIRL

Multilabel classification of clinically rel-
evant  prostate  cancer  (esPCa)  and
whether or not a lesion i visible.

1476 cascs, cach with 3
3D-MR sequences

Panda-WSI1-CIf
Panda-WSl-Seg

This data source yiclds two pretraming
tasks. A classification task for predicting
presence of tumor, and a segmentation
task with the classes stroma, healthy
epithelium and gleason grades 3, 4 and 5.

10616 WSI

VinBigData- Object detection in chest X-ray with 14 15000 chest X-rays

CXR classes,

Crag-WSI Colorectal adenocarcinoma gland  seg- 213 image tiles (size =
mentation. (1500, 1500)

Brats2020-MRI1 Brain tumor (glioma) segmentation into 369 cases. BEach  case
five clisses. comes with 4 3D-MR

SOQUETICES.

CRC-WSI Multi-class clasification of HEE stained  100,000/7,000 anage
histological images of human colorectal  instances extracted from
cancer (CRC). 86 WS1

Avaniti-WSI Multi-label classification into four classes 886 TMA

(benign  and 3 gleason  grades),  We
extracted patches from tissue microar-
rays and predict all classes present.

Cyto-WSI

Expert-labeled single-cell images taken
from peripheral blood smears. Used as
a multi-class classification task with 21
classes.

137076 image instances

Chexpert-CXR

Multilabel classification in chest X-ray
with 14 classes. We use the nine classes
that have a good performance when mea-
sured with the provided validation set.

223414/234
instances

mage

SIIM-CXR Seg! t the horax area in chest 11583 image instances
X-ray.

ImageNet Multi-class natural image classification 1,281,167 /50,000 images
dataset with 1000 classes,

RadlmageNet Multi-class classification database devel-  263118/29235 CT

oped for the purpose of pretraining medi-
cal AL Clontains 2D image instances from
CT. MR and ultrasound (US)

605408 /67267 MR
A50897 /38988 US

COCO-Seg
COCO-Det

Natural mmage dataset with 80 segmenta-
tion and object detection classes,

TI8287 image instances

Reviewer: In Extended Data Table 1, “PPneumo-CXR” should be “Pneumo-CXR”; If UMedPT-A and
UMedPT-affine refer to the same thing, their naming needs to be unified; Is the result “58.2149.50%"
representing the mean and standard deviation? It's not specified in the table header.

Reply: Thank you for the valuable feedback. We corrected the labels, unified the names, and
specified in all extended data tables that the table values refer to mean and standard deviations. For
example:

Page 36: “The left pair of columns shows results with a frozen encoder, while the right pair shows
results with fine-tuning. F1-scores are reported as mean * standard deviation in percentage. P-
values...” 23
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Reviewer: In line 239 and 304, SemiCOL challenge daotaset should be classification task, not tumor
detection subtask.

Reply: Thank you for pointing out this point of confusion. We clarified the respective results section
by describing the task as “classifying colorectal cancer histopathology images into tumor and
healthy™:

Page 9, lines 237-239: “[...] it was applied in the classification task of the SemiCOL challenge. This task
required the classification of colorectal cancer histopathology images into tumor and healthy.”
And in the discussion:

Page 13, lines 368-371: "We tested this using the SemiCOL challenge [...] in the task of classifying
colorectal cancer histopathology images into tumor and healthy™

Reviewer: Lack of clarity due to lack of README.

The absence of instructions on project structure, environment setup, required packages, and
reproduction steps is a major obstacle. Yet, the presence of many test files is o positive sign, showing
extensive testing of the code blocks.

Reply: We appreciate the positive remark regarding our extensive testing strategy. We also think that
simple code reuse and reproducibility is a cornerstone of valuable research. For this reason, we have
extended the original README file (located in code/readme.md) and will release the training
framework on Github: https://github.com/FraunhoferMEVIS/UMedPT.

For reproducibility, we also published a Docker image (docker pull hub.cc-asp.fraunhofer.de/mtl-
torch/mtl-torch-stack:main) that already contains all the requirements to train the latest open source
version of UMedPT.
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Reviewer 2

Reviewer: Training models with scarce data is a major problem in the field of image analysis. In
addition, combining multimodal datasets (eg imaging, pathology) is another major challenge for
precision medicine and it is not usually the case that image analysis solutions at the tissue level can
successfully be applied to in vivo imaging. The authors have used a multi-task foundational model to
overcome these issues by using simultaneous training of a single model that generalizes across
multiple tasks. This could therefore be applied to the many small datasets that are currently available
given the absence of larger datasets. The approach used here included three supervised label types:
object detection, segmentation, and classification. The authors developed a fully supervised
foundational model for biomedical imaging which they termed UMedPT, using 17 tasks based on 15
datasets and their original annotations.

Reply: We thank the reviewer for the thoughtful assessment of our work and the insightful
comments regarding the challenges that our study aims to address.

Reviewer: The authors divided the assessment in two ways: in-domain benchmark to assess the
applicability of UMedPT to problems closely related to its training database and the out-of-domain
benchmark to evaluate its performance in unfamiliar domains. The UMedPT outperformed the
pretrained ImageNet network in both in and out-of-domain tasks. Their results were impressive with
UMedPT matching the best performance of the ImageNet baseline over all configurations using only
1% of the original training data. Increasing the training data beyond 1% did not enhance performance
and sometimes tended to degrade it — this is counterintuitive, and the authors should provide some
explanation for this result.

Reply: We appreciate the reviewer's insightful feedback and addressed it including additional
experiments. The editor and the other reviewer have adopted this point as well. For convenience, we
will repeat our response from above:

We agree that, intuitively, collecting more data for an unseen clinical target task should improve
performance. The phenomenon of a smaller dataset beating a larger dataset was observed primarily
for fine-tuning, suggesting that the current method of fine-tuning may in some cases lead to
“catastrophic forgetting” of the well generalizing multi-task parameters. Catastrophic forgetting is a
phenomenon in which Al systems lose information from previous tasks as they learn new ones.

In fact, our training schedule used a fixed number of epochs. Consequently, as the size of the fine-
tuning dataset increased, there were naturally more update steps. This gives the training process
more time to overwrite or ‘forget’ the useful features learned during the pretraining phase,
especially as all parameters are allowed to change freely during fine-tuning.

To test the hypothesis, we performed an additional experiment (page 27, lines 879-899):

“In our clinical benchmark, we observed that increasing the amount of data for a target task could
paradoxically lead to a decrease in performance during the fine-tuning phase. To explore the
potential role of catastrophic forgetting, where neural networks lose previously learned information
as they acquire new knowledge, we designed an experiment focused on the fine-tuning phase of our
model.

We pretrained a multi-task deep learning network on the MedMNIST database. From this, we
selected four tasks (SynapseMNIST3D, VesselMNIST3D, BreastMNIST, PneumoniaMNIST) that had
shown improved performance with multi-task learning compared to single-task learning. Our aim
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was to analyse how further training of these tasks, individually with their full datasets, would affect
their test accuracy.

For the experiment, we first measured the test accuracy for the four selected tasks after multi-task
learning with with 12 MedMNIST tasks for 100 epochs. We then continued to train the selected tasks
individually using 100% of their respective training data for 100 epochs, after which we recorded the
test accuracy again.

If, after this further individual fine-tuning, test accuracy fell to levels comparable to those achieved
by single-task training, this would indicate that catastrophic forgetting had occurred.”

Our experiments revealed that it depended on the dataset whether catastrophic forgetting occurred
during fine-tuning or not. We present the findings in page 11, lines 282-296:

“[...] The resuits varied between datasets, suggesting that whether catastrophic forgetting affects
fine-tuning is not consistent across datasets and may be task-dependent:

- SynapseMNIST3D: 83.81+0.31% -> 82.90+0.66% (decrease)

- VesselMNIST3D: 93.6620.31% -> 93.77+0.87% (no decrease)

- BreastMNIST: 86.92+1.04% -> 85.90+0.91% (decrease)

- PneumoniaMNIST: 91.5440.48% -> 91.70£0.49% (no decrease)”

Unfortunately, at the moment we do not have a solution to predict the appearance of catastrophic
forgetting.

The phenomenon of catastrophic forgetting could be addressed by tools developed for language
models. In this context, parameter-efficient fine-tuning techniques could be BitFit (where only the
bias-terms are fine-tuned) and LoRA (where a small number of additional parameters are fine-tuned).
We discuss these potential future improvements on our approach in page 12, lines 353-363:

“Investigating catastrophic forgetting in target tasks

In some cases we observed that the performance of UMedPT decreased as the size of the training
dataset increased. This could be due to catastrophic forgetting of the well generalizing features
learned during pretraining. However, this effect was not consistent, suggesting that it may be dataset
dependent.

Recently, more sophisticated fine-tuning strategies have been proposed for foundational models in
natural language processing, such as BitFit [33], where only the bias-terms are fine-tuned, or LoRA
[34], where a small number of additional parameters are fine-tuned. A training configuration
targeted specifically to foundational vision models might combine the strengths of frozen and fine-
tuned training configurations, and could improve on the problem of catastrophic forgetting [25]."

Reviewer: The examples given include classification of colorectal and breast cancer on pathological
slides, diagnosing pneumonia/TB on chest X-ray, and brain tumours/organ segmentation on MRI. It is
important to understand how all of these were validated: there is mention of two expert pathologists
annotating the breast cancer slides but it is not clear how the diagnoses were confirmed on some of
the other datasets (eg TB).

Reply: Thank you for your feedback and inquiry about the validation process for the datasets. We
revised the respective paragraphs about each dataset and now describe the authors’ annotation and 26
verification procedure:
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Regarding the tuberculosis task “Tuber-CXR”, the labels of a subset of 68 images were verified by
consensus annotations of two radiologists:

Page 23, lines 734-737: “The images were collected from routine hospital practice over a period of
one month. For a subset of 68 images, two radiologists provided consensus annotations to confirm
the established ground truth of the dataset.”

For CNS neoplasia diagnosis, three experienced radiologists annotated the imaging studies:

Page 24, lines 741-743: “The slices originate from T1, T2 and FLAIR sequences and were selected by
the authors of the dataset following manual annotation by three experienced radiologists.”

For CRC-WSI, the annotation team included pathologists and only clear regions were included:

Page 23, lines 700-703: “The authors of the dataset [3], including pathologists, manually delineated
regions corresponding to pure tissue textures to generate |labels and extract image patches. Images
with artefacts such as tissue folds or without tumor components were excluded.”

In the task of predicting the presence of pneumonia in a pediatric cohort, the dataset was cleaned
up, graded by two physicians, and the test data was reviewed by another expert:

Page 23, lines 712-717: “The images were acquired as part of the routine clinical care of the patients.
To generate a high quality dataset for model training, the authors performed an initial screening on
the dataset to exclude poor quality or unreadable scans. Then, two expert physicians annotated the
remaining images and classified them for the presence of pneumonia. As an additional quality
measure, a third expert reviewed the test set to verify the accuracy of the diagnoses.”

For BreakHis (BC-BHis-MIC), the dataset creators mentioned the additional verification using
immunohistochemistry:

Page 24, lines 770-773: “To determine the labels, initial identification of tumor regions within each
slide was performed by an anatomopathologist. Then, final diagnoses were made by experienced
pathologists, with additional validation provided by other methods of analysis such as
immunohistochemistry.”

The labels of OrganSeg-MRI were refined and validated through an iterative process involving eight
radiologists:

Page 24, lines 780-783: “The segmentation labels were created through a coliaborative effort
involving 5 junior radiologists and 3 senior radiologists, who iteratively reviewed and refined the
labels using semi-automated tools.”

Reviewer: The approach for the colorectal cancer slide was applied to data acquired from multiple
separate sites showing its applicability on data not from the primary training set. Was this multi-site
approach also performed on the X-ray and MRI data? The authors state that these foundational
models should be robust to multi-center variances, thereby improving generalizability, but appear to
provide the evidence for this from histological analysis only.

Reply: With this exploratory experiment, we wanted to answer the question why deep learning
systems often do not generalize well outside their training data and often fail due to subtle multi-site
variances. As the experiment was part of a challenge, it provided a unique opportunity of an
unbiased evaluation of the proposed method but is difficult to conduct timely for the other
modalities.
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We were not able to perform such an evaluation for x-ray and MRI data and now discuss this in the
manuscript:

Page 13, lines 379-383: “However, the challenge evaluation was limited to a single histological
imaging task, while multi-center robustness is a major obstacle for deep learning systems in
tomographic and X-ray imaging as well [36]. A systematic assessment of UMedPT for multi-center
robustness including the use of MRI and X-ray data as well as training speed poses a task for future
studies.”

Reviewer: In summary, the authors have presented some very interesting work on how a novel
multitask training strategy can be used for unseen target tasks and scarce data. It would be
interesting to understand the authors views on how far this approach could be extended to other out-
of-domain tasks: what are the limits of how this approach could be applied to new data and what are
the factors affecting these limits?

Reply: We appreciate the reviewer's insightful inquiry on the scalability and limitations of our multi-
task training strategy when applied to new, out-of-domain tasks.

Our transfer performance to target tasks is limited by the similarity between training data and new
target tasks. The more similar the pretraining and target tasks are, the smaller the amount of training
data required for high performance. Consequently, we believe that the extensibility of UMedPT is
limited by its training database.

Encouragingly, we did not observe any saturation with respect to the data, the variety of tasks, or the
number of different label types that we can include in the pretraining of a single universal model.
Consequently, we do not believe that there are any practical limits to the scalability of the method to
new data. Nevertheless, incorporating additional data into the pre-training requires a collaborative
effort involving clinicians, software engineering expertise, and compliance with regulatory
requirements.

Ultimately, we envision a system that is pretrained on virtually all medical tasks in clinical practice,
including non-imaging label types such as language and time-series signals, allowing clinicians to
rapidly experiment with custom Al solutions. A preliminary version of this system, which integrates
UMedPT with a widely used open-source annotation tool capable of handling diverse data and label
types, will be made available in the code repository associated with this publication.

These aspects are now discussed on page 11, lines 306-312:

“However, the performance advantage of UMedPT in in-domain tasks compared to out-of-domain
tasks indicates that it is not entirely universal for all biomedical imaging applications yet,
necessitating a broader scale of training.

The extent to which such pretraining should be scaled remains an open question as we did not
observe any saturation with respect to the data, the variety of tasks, or the number of different label
types that can be included into a single multi-task training.”
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Decision Letter, first revision:

Date: 9th March 24 12:29:08
Last Sent: 9th March 24 12:29:08
Triggered By: Ananya Rastogi
From: ananya.rastogi@nature.com
To: fkiessling@ukaachen.de

BCC: ananya.rastogi@nature.com
Subject: Decision on Nature Computational Science manuscript NATCOMPUTSCI-23-1256A

Message: ** Please ensure you delete the link to your author homepage in this e-mail if you
wish to forward it to your co-authors. **

Dear Professor Kiessling,

Your manuscript "Overcoming Data Scarcity in Biomedical Imaging with a
Foundational Multi-Task Model" has now been seen by 3 referees, whose comments
are appended below. You will see that while they find your work of interest, they have
raised points that need to be addressed before we can make a decision on
publication.

While we ask you to address all of the points raised, the following points need to be
substantially worked on:

- It has been mentioned by Reviewer #1 that several paragraphs that have been
added to the manuscript in response to referees' comments seem abrupt and lack
explicit motivation. Please revise these parts to ensure better integration into the
manuscript.

- The method allocates a fixed computational budget for all evaluations and used the
last model state which implicitly treats the test set as a validation set. This could
inadvertently lead to an overestimation of the model's performance. Therefore, the
strategy to mitigate potential biases should be re-evaluated.

- Please include CNN backbone results on UMedPT.

- It should be assessed whether or not UMedPT's pre-trained weights are crucial for a
thorough analysis.

- Some methodological contributions have been overstated. Please address this.

- The default implementation of layer norm in PyTorch and in the original paper
includes learnable bias and scaling factors. Therefore, please update the language
used to ensure that readers don’t confuse this as a new contribution.

- All downstream tasks are classification tasks, except for one segmentation task
where the baseline is not too strong. Therefore, please include an ablation study that
assesses how much the segmentation and object detection pretraining tasks actually
benefit downstream performance on various task types.

Please use the following link to submit your revised manuscript and a point-by-point
response to the referees’ comments (which should be in a separate document to any
cover letter):
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[REDACTED]

** This url links to your confidential homepage and associated information about
manuscripts you may have submitted or be reviewing for us. If you wish to forward
this e-mail to co-authors, please delete this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy
of your manuscript files that indicates your revisions by making use of Track Changes
or similar mark-up tools. Please also ensure that all correspondence is marked with
your Nature Computational Science reference number in the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your
text, to assist us in the editorial stage.

To improve transparency in authorship, we request that all authors identified as
‘corresponding author’ on published papers create and link their Open Researcher and
Contributor Identifier (ORCID) with their account on the Manuscript Tracking System
(MTS), prior to acceptance. ORCID helps the scientific community achieve
unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature
account’. For more information please visit please

visit www.springernature.com/orcid.

We hope to receive your revised paper within three weeks. If you cannot send it
within this time, please let us know.

We look forward to hearing from you soon.
Best regards,

Ananya Rastogi, PhD
Senior Editor
Nature Computational Science

Reviewers comments:
Reviewer #1 (Remarks to the Author):

I appreciate the authors' efforts in addressing my previous concerns and providing
detailed clarifications. The modifications made in response to these concerns have
notably enhanced the manuscript's quality. Nevertheless, I still have some concerns:

1. Integration of New Paragraphs: The authors' detailed responses and
comprehensive experiments are commendable for their clarity, particularly given their
organization around specific queries. However, I observed that several paragraphs
newly added to the manuscript seem abrupt and lack explicit motivation. The
necessity of these sections is not immediately clear. I recommend revising these
parts to ensure better integration into the manuscript.
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2. Evaluation Strategy Regarding the Validation Set: The authors state, "We allocated
a fixed computational budget for all evaluations and used the last model state". This
approach, however, implicitly treats the test set as a validation set. Such a
methodology could inadvertently lead to an overestimation of the model's
performance in a machine learning context. I suggest that the authors re-evaluate
their strategy to mitigate potential biases.

3. CNN Backbone Results on UMedPT: The addition of results using a CNN backbone
is noted; however, these were only conducted on MedMNIST and not on UMedPT.
Given that recent works in medical imaging have found transformer-based methods
not to outperform CNNs, it would be beneficial to include CNN backbone results on
UMedPT as well.

4. Generalization Experiments on MedMNIST: Concerning the added generalization
experiments on MedMNIST, an important setting seems to be missing. The analysis
only distinguishes between MTL and ST differences without examining the impact of
pre-trained weights from UMedPT. Assessing whether or not UMedPT's pre-trained
weights are loaded is crucial for a thorough analysis.

Minor Points:

a. UMedPT-affine: The explanation regarding UMedPT-affine, which mentions
"UMedPT used layernorms without parameters," is still somewhat confusing to me.
Layer normalization typically includes parameters by default, so I am curious about
the rationale behind this specific analysis by the authors.

b. Formatting of "revised_manuscript.pdf": Many tables appear to be incompletely
formatted.

Reviewer #2 (Remarks to the Author):

The authors have adequately addressed my queries.

Reviewer #3 (Remarks to the Author):
Summary:

The authors propose a supervised pretraining strategy that leverages a multitude of
medical datasets and tasks to reach ImageNet scale medical supervised pretraining.
After they pretrain their model using their dataset, they evaluate their model on 2 in
domain tasks and 5 out of domain tasks. They show that their method significantly
outperforms an ImageNet pretrained model on the in domain tasks, and also
outperforms the ImageNet baseline on the out of distribution tasks. Furthermore, the
authors compare their model performance to external baselines, demonstrating
significantly improved data efficiency.

Strengths:
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- The authors aggregate a large number of tasks (15 datasets/17 tasks)

- The authors demonstrate how these heterogeneous tasks can be leveraged to
enhance downstream classification performance

- The authors show how their method significantly outperforms ImageNet pretraining,
as well as external baselines

- This paper is a nice demonstration that supervised pretraining is beneficial for
medical imaging. As more medical imaging datasets come online with associated
labels, this method could continue to improve.

Major Weaknesses:

- Overall, the major weaknesses are that the authors may overstate some
methodological contributions and use language that risks leading the reader to think
that they generated new contributions/insights, which were in fact
developed/observed previously. The authors can successfully address these by
modifying how they describe their contributions. Below are several examples:

- Page 14, line 435: The authors claim “To address this challenge, we developed a
novel training strategy for UMedPT that mostly decouples the number of training
tasks from the memory requirements.” The authors further state “Our strategy
achieved this by establishing an independent architecture or ‘computational graph’ for
each task. The graph is dynamically constructed and stored only during the active
computation stage of each task. To combine the individual graphs, we implement
gradient accumulation before the optimization step.” Could the authors clarify what
they mean by “Our strategy achieved this by establishing an independent architecture
or ‘computational graph’ for each task”? It appears that the authors are using
PyTorch, which would generate a single computational graph for the full model,
including multiple task-specific heads. Furthermore, the language should not confuse
the reader into thinking that implementing the computational graphs is a part of the
author’s contribution, when this is how Pytorch operates under the hood.

- The authors further state, “We ensure that the model’s weights and gradients are
stored only once, rather than duplicating them for each task. Additionally, only the
activations for one task are kept in memory at a time.” The language may be a bit
strong and overclaim contributions here. Gradient accumulation as implemented in
the code below is used routinely, with all handling of the computational graph by
PyTorch. GA implementation requires simply not calling loss.backward() at every step
in PyTorch. The contribution here is sampling all tasks within a global GA step. I
would recommend that the authors soften their language in this section, and make
more clear what they contributed versus previous methods implemented by others
that they are explaining for the education of the reader.

for i, (batch, task) in enumerate(task_.iterator):
batch_extraction_ms = time.perf_counter() - iteration_start_time

# is_last_step =i >=self.__len_ () -1
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is_update_step = (

self.has_len() and (i >=self.__len_ () - 1)
) or (

i % self.accumulate_losses_for_steps ==

)

is_update_step = self.training_mode and is_update_step and (i > 0)

assert task.training == self.training_mode

# Set active task for all shared blocks

for block in self.shared_blocks.module.shared_modules.values(): # type: ignore
block: SharedBlock

block.set_active_task(task.get_name())

if self.training_mode and is_update_step and (self.sync_on is not None):

# the forward step needs to know if a sync will happen, so turn on sync here already
self.sync_on()

# with Join([self.shared_blocks], enable=False):

try:

task_step_result = self.task_step(batch, task)

- Layer norm is typically used in vision transformers, including in the
SwinTransformer architecture. Therefore, the authors should make sure that their
language does not risk confusing the author into thinking that this is a new
finding/contribution. As the default SwinTranformer uses layernorm, the following
language should be softened - “To address this problem, we recursively replaced the
original normalization layers in all shared blocks with layer normalization, which by
design do not require inter-task computation”.

- The authors state - “We empirically analysed the effect of using layer norms with
affine parameters on our approach using an adaptation of UMedPT(UMedPT-affine). *
..."UMedPT-affine added trainable parameters including a bias and a scaling factor y in
the form y=yx—pu o +B for each channel.” The default implementation of layernorm in
PyTorch and in the original paper includes learnable bias and scaling factors.
Therefore, I would update the language used to ensure that readers don’t confuse
this as a new contribution.

Minor Weaknesses:

- Page 9, line 226 “A comparison for the OrganSeg-MRI task could not be performed,
because no results specific to the MRI-only subtask of the challenge were reported”. I
would request that the authors train a baseline nnUNet or other state of the art
baseline for comparison. Otherwise, it is difficult to understand the segmentation
performance on this dataset.

- If I am not mistaken, all downstream tasks are classification tasks, except for one
segmentation task where the baseline is not too strong. Therefore, something that
would really strengthen this work, perhaps as future work, is an ablation study that
assesses how much the segmentation and object detection pretraining tasks actually
benefit downstream performance on various task types. The latents in the encoder
decoder architecture trained for segmentation or object detection need to retain
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geometrical information but may not require pixel intensity information. On the other
hand, performing well on downstream classification tasks does not require encoding
precise geometrical information. It could in fact be the case that these are at odds
and requiring capacity for precise geometric information reduces embedding quality
for classification tasks. Investigating which types of tasks should actually be included
during pretraining would be a nice contribution that would put this paper into better
context.

- I understand that this study has been for the most part limited to supervised
pretraining. However, this method will need to compete with self-supervised
pretraining which could potentially scale more easily. A comparison to such methods,
like MAE and DINO (i.e. RAD-DINO), would be a nice to have.

- Page 14, line 439: Can the authors clarify what this means: “This graph is
dynamically constructed and stored only during the active computation stage of each
task”?

- Page 17, line 527 - What does “recursively replaced” mean here? The norm layers
should not be nested so what does recursing mean here?

- Page 18, line 570: could the authors make it more clear what “the need for pre-
extraction of images” means?

- Page 21, line 622 - if “flips and mirroring” are applied as augmentations, the
network could lose the ability to differentiate left sided vs right sided diseases, which
is an area of study for medical foundation models. Can the authors justify the
inclusion of these augmentations?

- Page 21, line 614 - what are the “standard 3D augmentations”? Can the authors
include those in the paper?

- Page 23, line 712 - The authors should make it clearer that the 1%, 5%, 10%,
25%, 50%, and 100% corresponds to the downstream datasets, not the pretraining
dataset, if that is in fact the case.

The authors should clarify whether there is any overlap in the downstream datasets
and the pretraining datasets. It seems that CRC-WSI may be present in pretraining
(Extended Table 4) and was also used for downstream validation in the comparison
with ImageNet. If this is the case, it may not be fair to claim that finetuning with 1%
of downstream data compared to ImageNet pretraining, as the training dataset was
seen during pretraining. Could the authors clarify whether this is a typo in Extended
Data Table 4?

- Page 23, line 705 - The authors state “In the frozen scenario, we directly extracted
image representations from the shared blocks, thereby showing the usefulness of the
learned representations. Both frozen and fine-tuning were trained for epochs each.”
Does training in the frozen case mean training a linear probe for classification tasks?
If so, I would use this common terminology.

- Page 23, line 723 - What does “re-discovery” and “re-identification” mean here?
Would like to clarify that this does not mean that downstream datasets were used
during pretraining. If a downstream dataset was used during pretraining, it does not
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seem fair to claim that fine tuning on 1% of downstream data yielded similar
performance to ImageNet baseline.

- Extended Data Table 3: Which version of the model are you using for your results in
the main paper? Can you add this to the caption?

- The authors should add more details about how inference is done with 3D data. Are
predictions averaged across slices? Is the following method applied to the origin
UMedPT model as well? “For the 3D tasks, we used a simple strategy based on a
learned weighted average across slices with the classification task described in
section.”

- Could the authors add a bit more explanation for their choices in normalization
factors in equations (1) and (2)?

Point of Discussion:

Without validation sets, it may be difficult to understand whether catastrophic
forgetting is the main culprit for decreasing performance with increasing dataset size
or if the authors are overfitting to the downstream task, with the number of
optimization steps increasing along with the fraction of the downstream dataset used
for fine-tuning. Inevitably, some forgetting is happening when adapting to a specific
downstream dataset. However, a somewhat related issue could be overfitting with
100 epochs of fine-tuning. I understand the challenge here where the authors want to
be able to make the claim that truly 1% of the dataset was used for training, vs a
larger fraction of training dataset size + validation dataset size. It may be necessary
to have a larger validation set to get a clear signal about model performance. I
commend the authors for truly using 1% of data for training, versus using a small
training dataset but then a much larger validation dataset. A nice to have ablation to
include in this work or future work would be investigating performance if you use full
validation sets and modulate only the training dataset size. If using a validation set
actually causes model performance to increase with training dataset size, then you
can be confident that the performance decrease is only coming from suboptimal
checkpoint selection. This would add additional support for the efficacy of the method.

Grammatical/Syntactical Errors:
- Extended Data Table 4: the authors should specify in the caption what */” means.
In, for example, the third column of the CRC-WSI row, where 100,000/7,000 is

written. Is this train/test data?

- Fig. 2 - In the caption: is Tuber-CXR the same dataset as Pneumo-CXR in the plot
titles? BC-Bach-WSI referenced in caption, as opposed to CRC-WSI.

- Page 1, line 29 - maybe consider updating “required not more than 50%" to
“required only 50% of the original training data”.

- Page 1, line 19 - I'm not sure that I would consider medical dataset to be more
heterogenous than natural domain datasets that can comprise any scene/object.
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Medical images generally look similar globally with differences coming from finer grain
features.

- Would the authors mind justifying this description or revising it?

- Page 2, line 48 - for clarity, I would consider updating “increasingly large
pretrainings” to “increasingly large pretraining datasets”

- Page 2, line 53 - May want to add LAION, in addition to ImageNet.
- Page 9, Table 1. Should there be a citation for CNS-MRI?

- Page 23, line 696 - what does “synthetic dataset” mean here? Usually it refers to
data which isn’t real, but generated.

- Page 23, line 708 - What does subsequently refer to here? “After frozen and fine-
tuning for 100 epochs, subsequently fine-tuning stage enabled training of shared
blocks”. Is the order implied by the word subsequently significant here?

- Extended Data Table 5 extends beyond the page width

- Would encourage the authors to remove commented code from their codebase and
also add comments within most functions/classes that describe their purpose, along
with descriptions of arguments, their types, and any outputs.

Reviewer #3 (Remarks on code availability):

Overall the code seems modular and it seems as though lots of effort was put into
making the code robust.

A few suggestions are:

- There are currently two subfolders in the top level directory and no readme. I would
put a readme in the top level directory so that users know what the two subfolders
are for. This readme should describe the code within each subfolder on a high level. It
should tell the user why code is split into two subfolders and what is different about
each code base.

- I would change the name of the “code” subdirectory to be more descriptive.
- In the readmes within each subdirectory, I would include a description of the
organization of the code. What are each of the “neural”, “optimization”, “trainer”,

“logging”, “interactive”, and “data_loading” folders for?

- Also within these readmes, I would use code blocks to demonstrate to the user how
to run the code, as opposed to “use universal_pretraining.py”.

- If possible, I would add links to all datasets that the user needs to download to the
readme. This would make it significantly easier for others to collect the datasets and
reproduce the results in this paper.
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- The specific wheels in the requirements.txt file are not supported by certain
systems. Instead of including the wheel links, I would instead specify versions. I had
to remove these to install the code.

- Would encourage the authors to remove commented code from their codebase.
- Would encourage the authors to add comments within most functions/classes that

describe their purpose, along with descriptions of arguments, their types, and any
outputs.

‘ Author Rebuttal, first revision:
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Dear Editor and Reviewers,

Thank you for your time, valuable comments and contributions to improve our work. We have
addressed all your concerns and revised the manuscript accordingly. Our direct replies are shown in
this document, and the actual changes in the manuscript are highlighted in green.

We have also uploaded additional material at this link: Additional Review Materials. The uploaded
material includes a confidentially attached follow-up paper that we included for its comparison
between CNN and Swin Transformer, the network weights for the revised version of the current
manuscript, and a description of the files and how to load the weights.

Editor: It has been mentioned by Reviewer #1 that several paragraphs that have been added to the
manuscript in response to referees' comments seem abrupt and lack explicit motivation. Please
revise these parts to ensure better integration into the manuscript.

Reply: We revised the manuscript to improve the text flow. For better continuity, we integrated the
MedMNIST experiments into the introductory paragraph of the results section (page 5, lines 125-),
and moved the complementary experiments to the supplement:

"We evaluated our maodels in three benchmarks. The first, the ‘in-domain benchmark’, aimed
to determine UMedPT's performance on tasks closely related to its pretraining database. The
second, the "out-of-domain benchmark’, aimed to assess how well UMedPT adapted to new
tasks outside its immediate training domain. The third, the MedMNIST benchmark [16], was
used to evaluate the proposed multi-task training strategy on a separate training database
and, independently, to test UMedPT.”

The UMedPT ablation studies have also grown with the new label type ablation study. For this
reason, we have provided better integration by moving the detailed description to the supplement
and just embedded a short description and the key results into the main text on page 5, lines 141-
152:

“For our in-domain and out-of-domain clinical benchmarks, we conducted ablation studies
for UMedPT to investigate the effects of the variable input image size of UMedPT compared
to the fixed input image size of 224 x 224 with UMedPT-fixed, and whether to include
trainable parameters in the Layernormalizations within its architecture with UMedPT-affine,
which are detailed in Extended Data Section S1. We found that a variable input size was
beneficial for the performance of UMedPT, while UMedPT-affine had a minor impact on the
results. In addition, we compared the performance of UMedPT with a variant that was
trained only with the classification tasks UMedPT-clf, as described in Extended Data Section
S2. This showed a great benefit of including segmentation and object detection tasks,
especially for other similar tasks.”

As discussed below in this letter, we applied UMedPT to MedMNIST to investigate the model’s
generalizability. The obtained results have been integrated into Table 1 (cropped in this letter).

Table 1 Amount of data required by UMedPT to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (*)
were compared across different test splits,

UMedPT
Task Reference results Frozen Fine-Tuning
MedMNIST mean AUC  See Ext. Data Figure 3 [16 100% 10% 38

MedMNIST mean ACC  See EExt. Data Figure 3 [16 - 10%
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The outcome of the comparison with external reference results is presented in page 9, lines 246-248:

“[...] UMedPT surpassed the external reference results in [...] and the average AUC in the
MedMNIST database [16]."

While we have moved the results of the architectural comparison, the training schemes, and from
the catastrophic forgetting investigation to the supplement, we have chosen to keep the MedMNIST
3D contextual preservation experiment in the main body of the manuscript and added context to
keep the integration seamless (page 10, lines 266-292):

“2D multi-task learning outperforms single-task 3D CNNs

Independently of our training database, we evaluated the training strategy on MedMNIST.
MedMNIST contains a variety of standardized and downscaled biomedical image datasets,
including both 2D and 3D images. To assess the impact of transforming inherently 3D medical
image data into 2D slices for pretraining, we evaluated single-task learning with 2D data,
single-task learning with original 3D data [15] and multi-task learning with 2D data. For our
multi-task and single-task trainings, we converted the 3D data into 2D slices by slicing
through the last dimension and applied a multiple-instance learning classification task that
was based on a weighted averaging operation across slices. When only the 3D tasks were
considered, the average accuracies were:

- 83.22 +1.61% for single-task learning pretrained using Imagenet;
- 83.76% for the single-task MedMNIST 3D CNN [15);
- 86.46 + 1.13% for multi-task learning.

The results showed that single-task 3D CNNs performed better than single-task 2D CNNs
pretrained using Imagenet. However, multi-task 2D networks outperformed the single-task
3D CNNs. We present the details in Extended Data Table 5.

In this context, we also investigated the performance difference between CNN and
Transformer architectures for our multi-task learning strategy, as presented in Extended Data
Section S3 and aspects of the training algorithm in Extended Data Section S4. We found that
the Swin Transformer architecture has a minimal positive impact, as shown in Extended Data
Figure 4a. Regarding training schemes, we found that without gradient accumulation, both
convergence and performance were worse with our training strategy, as shown in Extended
Data Figure 4b. *

As the sections regarding architecture and training schemes were moved to the supplement, we
improved their coherent organization around specific queries:

“S3 Comparing convolutional networks and transformer

For quantifying the effect of the encoder’s architecture, we used the MedMNIST database
including two-dimensional and three-dimensional classification tasks. We chose the ResNet-
50 as convolutional neural network (CNN) and the tiny variant of the Swin Transformer
because they are similar in size. The Swin Transformer has 27,582,570 trainable parameters
compared to 23,508,032 for the ResNet-50 CNN.

The comparison of the Swin Transformer and ResNet-50 CNN architectures showed a
minimal impact on model performance for the MedMNIST database. The Swin Transformer
achieved an average test accuracy of 86.76 + 0.79% over 5 repetitions, while the ResNet-50
CNN achieved an accuracy of 86.34 £ 1.01%. In addition, a discrepancy in training
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convergence rates was observed between the two architectures, as shown in Extended Data
Figure 4a.

$4 Investigating training schemes

We performed an analysis of training schemes on the MedMNIST database, including the
two- and three-dimensional tasks. All datasets in MedMNIST have a fixed number of cases.
This distinction enabled us to conduct ablation studies comparing infinite task sampling with
balanced sampling based on dataset size. Besides this, we used the same training schedule
and hyperparameters as in the main study, and accumulated the gradients of as many steps
as there were tasks. In addition, for comparison with traditional training schemes, we used
the same setting without gradient

accumulation and also with the SGD optimizer instead of Adam. The exploration of training
schemes showed that balanced (by dataset size) and cyclic sampling (as in UMedPT)
exhibited similar behaviour in terms of convergence. However, balanced sampling
occasionally showed reduced stability; it yielded a standard deviation of 1.81+1.79% in
validation accuracy over the previous ten epochs, across five different experiments. In
comparison, cyclic sampling showed a more stable training process, achieving a
comparatively lower standard deviation of 1.17+1.09%. When gradient accumulation was
excluded, the resulting performance deteriorated, accompanied by longer convergence
times. These results are shown in Extended Data Figure 4b.”

Editor: The method allocates a fixed computational budget for all evaluations and used the last
model state which implicitly treats the test set as a validation set. This could inadvertently lead to an
overestimation of the model's performance. Therefore, the strategy to mitigate potential biases
should be re-evaluated.

Reply: We appreciate the concern about the potential overestimation of our model's performance. In
response, we would like to clarify that no test data were used for validation in our study.
Consequently, the risk associated with our method, whenever we have not used a validation set, is
an underestimation of model performance rather than an overestimation.

However, it is still of great importance to examine the best way to apply pretrained foundational
models to tiny and large target datasets. For this reason, we appreciate the feedback and conducted
the experiment suggested by reviewer 3, and integrated it with the previous experiments regarding
this topic on page 50, lines 1327-1351:

“Inverse relationship between performance and dataset size

Our evaluation within the dinical benchmark revealed an unexpected trend in some
datasets: increasing the dataset size for fine-tuning sometimes led to a decrease in model
performance,

To investigate the potential influence of catastrophic forgetting [37] or overfitting during
fine-tuning, we first evaluated this phenomenon using four MedMNIST tasks that had shown
improved performance with multi-task learning compared to single-task learning. We first
measured the test accuracy of these tasks after multi-task learning, followed by further
individualised training with the full dataset of each task, and assessed the test accuracy
again. The results varied between datasets, suggesting that whether datasets are affected by
forgetting the well generalizing state from multi-task learning is inconsistent and may be
task-dependent:
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e SynapseMNIST3D: 83.8140.31% —> 82.90+0.66% (decrease)

o VesselMNIST3D: 93.66£0.31% - 93.77+0.87% (no decrease)

¢ BreastMNIST: 86.92+1.04% -» 85.90+0.91% (decrease)

e PneumoniaMNIST: 91.5440.48% -» 91.70£0.49% (no decrease)

For our in-domain and out-of-domain target tasks, we always used 100 epochs.
Consequently, larger datasets used more optimization steps and could overfit more easily.
We investigated by keeping large validation sets (30% of the full training data) in one in-

domain and one out-of-domain task where the phenomenon occurred and performed model

selection using the validation set. Extended Data Figure 5 shows that for one task the model
selection with the validation set was better, for the other task it was worse.”
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Extended Data Fig. 5 Model selection with and without validation sets. For the
target tasks in our clinical benchmark. we did not use validation sets to really only use the
given percentage of training data (UMedPT). This could lead to overfitting on the training
data, which is usnally solved by using a validation set, as done with UMedPT-Val. We
investigated this using a representative out-of-domain data set, Tuber-CXR (a), and an in-
domain target task., Pneumo-CXR (b).
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We reference the key findings in the main text on page 6, lines 175-179:

“We further investigated whether this could be due to catastrophic forgetting of the well
generalizing pretrained features or overfitting to the training data and found that the
phenomenon is dataset specific, as detailed in Extended Data Section S5.”

Additionally, when applying UMedPT to MedMNIST we followed the standard protocol that was set
out by the authors of the MedMNIST database. As opposed to the original experiments with
UMedPT, these new results included the use of a validation set. The results of the model selection
with validation set, together with the selection of the final model, are presented in the new Extended
Data Figure 3 of our paper. This figure shows that the model selected by the top F1 score on the
validation set performs slightly better than the final model, but at the cost of acquiring additional
validation data:
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Extended Data Fig. 3 UMedPT’s application to MedMNIST. First, UMedPT was
applied to MedMNIST [15] with the shared encoder frozen and a randomly initialized linear
head (linear probing) and evaluated on the test set using area under the curve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for cach
task. Blue and green lines represent the test performances when the model was selected
using the validation set provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theoretically best performance when the best reference method is selected
for each task and metric independently {red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT with 1%, 10% and 100% of the training data. Details
are given in Extended Data Table 6.

From these four findings, we see that there is no clear winning training strategy across all target
tasks. The need for further in-depth evaluation is now motivated in the discussion section on page
12, lines 356-372:

“In some cases we observed that the performance of UMedPT decreased as the size of the
training dataset increased. We investigated both, catastrophic forgetting [35] of the well
generalizing features learned during pretraining and overfitting to the training set due to
using all data for training instead of a validation set for model selection in Extended Data
Section $6. The inconsistency of the results raises questions about the best practices for
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using foundational models in tasks with varying data sizes and varying degrees of similarity to
the pretraining database. There were tasks that performed best with model selection using a
validation set, and tasks that performed best with all the data used for training. Similarly,
some tasks performed best with the frozen training setting, and others with fine-tuning of all
pretrained parameters of UMedPT. Recently, more sophisticated fine-tuning strategies have
been proposed for foundational models in natural language processing, such as BitFit [36],
where only the bias-terms are fine-tuned, or LoRA [37], where a small number of additional
parameters are fine-tuned. A training configuration targeted specifically to foundational
vision models could combine the strengths of the different training configurations.”

Editor: Please include CNN backbone results on UMedPT.

Reply: We did not include CNN backbone results on UMedPT because we already included CNN
backbone results with MedMNIST and the inclusion for UMedPT would be costly and not provide
substantial new insights due to the following reasons:

e In the context of follow-up work on a specialized pretraining for histology, we used the
presented training method with full-scale data within a modern CNN known as "ConvNeXt".
Preliminary results show a negligible difference between the two architectures, with a small
preference for the Swin Transformer. This will be reported as part of the confidentially attached
follow-up paper.

e Furthermore, in the revised version of the current manuscript, we included the MedMNIST
database for pretraining and evaluation separately from UMedPT. These MedMNIST pretrainings,
which are already included in this study, used a traditional CNN. The performance of the two
architectures was similar, although the Swinformer backbone had a slight advantage. This finding
is consistent with the results of our follow-up work on specialized pretraining for histology.

In summary, our study and preliminary results from the follow-up work show a negligible difference
between the results of the two architectures. We have elaborated on this point in the discussion (p.
13, lines 399-407):

“In addition to the ability to handle arbitrary image sizes, for the UMedPT encoder we
needed a general base architecture capable of generating multi-scale feature maps, a feature
found in both convolutional neural networks (CNNs) and swin transformers [37). Our
experiments with MedMNIST showed a minimal difference between CNN and Swin
Transformer, slightly in favour of the latter. This suggests that the proposed pretraining
strategy can be implemented with both convolutional and transformer-based encoders, with
literature showing that CNNs can also work well with large datasets of full-size images [38]."

And we improved the integration of the CNN backbone results on MedMNIST within the methods
section on page 17, lines 524-529:

“"UMedPT's decoders are compatible with any encoder that can generate multi-scale feature
maps [...] We also investigated the compatibility of the CNNs with the proposed multitask
training loop and included an additional comparison in Extended Data Section 54.”

Editor: It should be assessed whether or not UMedPT's pre-trained weights are crucial for a thorough
analysis.

Reply: We assessed whether UMedPT's pre-trained weights are crucial by comparing the pretrained
weights of the ImageNet pretrained weights with the pretrained weights of UMedPT on an in-domain
benchmark, an out-of-domain benchmark, the separate MedMNIST database and an external
evaluation.
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The main contribution of our work is the multi-task pretraining strategy. While two independent
multi-task databases and evaluations ensured that the pretraining strategy was not database specific,
reviewer 1 correctly pointed out that an interesting setting was missing for the MedMNIST database:
UMedPT pretrained weights.

We added a description of this setting to the Methods section “Comparison of benchmark results”
(page 26, lines 855-859):

“We compared our results with the best previously reported study results for the target tasks
and the mean performance for the MedMNIST database [15]. From the MedMNIST database,
we only considered tasks that were available in the largest spatial size (224 x 224) and were
not part of the UMedPT pretraining or clinical benchmark.”

Corresponding results are also reported in Table 1 (cropped):

Table 1 Amount of data required by UMedPT to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (¥)
were compared across different test splits.

UMedPT
Task Reference results Frozen Fine-Tuning
MedMNIST mean AUC  See Ext. Data Figure 3 [16 100% 10%
MedMNIST mean ACC  See Ext. Data Figure 3 [16 - 10%
The results are presented in Extended Data Figure 2:
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Extended Data Fig. 2 UMedPT’s application to MedMNIST. First, UMedPT was
applied to MedMNIST [15] with the shared encoder frozen and a randomly initialized linear
head (linear probing) and evaluated on the test set using arca under the eurve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for each
task., Blue and green lines represent the test performances when the model was selected
using the validation set. provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theoretically best performance when the best reference method is selected
for each task and metric independently (red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT with 1%, 10% and 100% of the training data. Details
are given in Extended Data Table 6.
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Extended Data Table 6 Detailed Performance of UMedPT on MedMNIST. Comparison of accuracy {ACC) and area ander the curve
(AUC) at different stages of tralning UMedPT on the MedMNIST database: using the frozen encoder and fine-tuning the whole model. Porformance
107 and 10068 of the training data. Refereace results are included (rom ResNet-50 (Rel. CNN) or the
theoretical best results obtained by =sclecting the method with the strongest test performance for each dataset and metric independeatly (Ref,

metrics are provided for UMedPT with 1%,

Cherrypick).
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Editor: Some methodological contributions have been overstated. Please address this.

Reply: We clarified that we used PyTorch and implementing computational graphs is not part of our
contribution (page 15, lines 450-451):

“"We used PyTorch [39] to create an independent architecture, or ‘computational graph’, for
each task. [...]"

In this way we clarified that by "an independent architecture or 'computational graph' for each task"
we meant the PyTorch computational graph, and made the implication for our training strategy clear
(page 15, lines 457-461):

“GA allowed [...] a single update step could consist of heterogeneous tasks in any order. This
allowed the training strategy to use an adaptive architecture, where each type of label can
be solved by a specialized combination of model components, such as a UNet for
segmentation labels [45].”

Regarding our application of gradient accumulation, in our view, the simplicity of this part of the
multi-task training strategy is an advantage. We softened the language, clarified that we did not
propose gradient accumulation, and made it clearer that, unlike previous methods, we have
implemented a way to appropriately apply gradient accumulation to multitask learning. (page 15,
lines 462-465):

“GA is a common method for incorporating more data into a single optimization step. In the
case of our multi-task learning strategy, unlike traditional deep multi-task learning, GA
allowed the weights and gradients of the shared part of the model to be stored only once,
rather than duplicated for each task. [...]"

Editor: The default implementation of layer norm in PyTorch and in the original paper includes
learnable bias and scaling factors. Therefore, please update the language used to ensure that readers
don’t confuse this as a new contribution.
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Reply: We updated the language to make clear that using Layernorm including learnable bias and
scaling factors within Swin Transformer is not a new scientific methodology developed in this work
(page 17, lines 548-549):

“Notably, the Swin Transformer encoder used in UMedPT already used layer normalization,
which comes with trainable parameters by default.”

And later on page 18, lines 557-560:

“To empirically assess the impact of excluding such trainable parameters in UMedPT, we
compared it to a variant of our model UMedPT-affine that included trainable bias and scaling
layer normalization parameters, which is the default for the Swin Transformer, the UMedPT
encoder. [...]"

Editor: All downstream tasks are classification tasks, except for one segmentation task where the
baseline is not too strong. Therefore, please include an ablation study that assesses how much the
segmentation and object detection pretraining tasks actually benefit downstream performance on
various task types.

Reply: We added another segmentation task with coloscopy data, consisting of data that did not
occur within the UMedPT’s pretraining database and is more closely related to natural images on
which the ImageNet baseline was trained with.

We added the out-of-domain task Polyp-RGB, which was used to train a model for polyp
segmentation in coloscopy data. It was included in the methods section (page. 26, lines 845-853):

“Polyp segmentation in coloscopy (PolypSeg-RGB):

The PolypSeg-RGB task [25] focused on segmenting polyps from the background in coloscopy
images. Since polyps can be precursors to colorectal cancer, coloscopy is an important
diagnostic tool. Early detection and removal of polyps is essential to prevent the
development of colorectal cancer. However, the effectiveness of coloscopy is often
hampered by high miss rates; studies have found that polyp miss rates during coloscopy can
range from 14 to 30%, depending on the type of polyp [54]. We randomly divided the dataset
into 700 training images and 300 test images.”

Consistent with the other results, we find further evidence that pretraining with UMedPT does not
impair learning, even in cases where UMedPT was not pretrained for: (page 9, lines 233-243):

“Polyp segmentation in coloscopy (PolypSeg-RGB):

The PolypSeg-RGB target task focused on the segmentation of polyps in coloscopy images.
When using the entire dataset for fine-tuning, ImageNet achieved its best average result,
demonstrating a mean Intersection over Union (mloU) of 0.905. Here, UMedPT achieved an
mloU of 0.911. The ImageNet pretrained model showed better results when the encoder was
frozen, as presented in Extended Data Figure 1c. The best performance across all fractions
was achieved by UMedPT with fine-tuning. In addition, while UMedPT with fine-tuning
outperformed ImageNet for all fractions, the biggest difference accurred with 1% of the data
(0.797 £ 0.09 compared to 0.683 + 0.144 of ImageNet).”

The details are presented within the out-of-distribution plots in the supplement (cropped here):
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Extended Data Fig. 1 Results of remaining out-of-distribution tasks. a BC-Bllis-
MIC b CNS-MRIL ¢ PolypSeg-RGB,

The strong results of both ImageNet and UMedPT are further evidenced by the fact that they
outperform i) the original baseline provided by the dataset authors, and ii) in the case of UMedPT,
even recent approaches developed specifically for polyp segmentation. This is now shown in our
comparison with external reference results (shown here cropped):

Table 1 Amount of data required by UMedPT' to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (¥)
were compared across different test splits.

UMedPT
Task Reference results Frozen Fine-Tuning
" PolypSeg-RGB 0.778 mlolU [24] 50% 1%
PolypSeg-RGB 0.9051 mlol [25] - 100%

Additionally, we added a detection task for nuclei counting. While it used tissue types that were not
part of the pretraining database, we still classified it as in-domain due to its similarity to one of the
histological pretraining detection tasks.

In the methods section (page 25, lines 780-788):

“Detection of nuclei in whole slide images (NucleiDet-WSI):

In oncology, the distribution and appearance of nuclei are important for the diagnosis and
study of cancer. To assess the ability of UMedPT to detect these nuclei, the NucleiDet WSI
dataset [52] was used, This dataset consists of whole slide images (WSI) and covers ten
cancer types. In the pretraining database, only prostate and colon cancer were included. We
randomly divided the dataset into 950 images for training and 406 images for testing. The
authors of the dataset created the annotations with the help of two pathologists and three
graduate students, using an Al tool.”

The results show that only 50% of the training data is required to outperform ImageNet (page 6, lines

187-196): 47

“Detection of nuclei in whole slide images (NucleiDet-WSI):
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We used the NucleiDet-WSI dataset [18] to detect nuclei in 10 different cancer types from
whole slide images (WSI). The best ImageNet performance was achieved using 100% of the
data together with fine-tuning, resulting in a mean average precision (mAP) of 0.71. UMedPT
was able to replicate this performance with 50% of the training data and no fine-tuning.
However, fine-tuning tended to improve the results for both models. Interestingly, compared
to ImageNet, UMedPT showed superior performance across all data fractions with both fine-
tuning and a frozen pre-trained model. This resulted in a maximum performance of 0.792
mAP when using the full training data set and fine-tuning.”

We present the results as part of Figure 2:
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Fig. 2 Results for in-domain tasks. a In diagnosing pnenmonia (Pneumo-CXR),
UMedPT' matched the full fine-tuned performance of ImageNet, even with a frozen encoder
and a reduced dataset size (1%). b For CRC-WSL, the only target task for which its train-
ing dataset was also part of the pretraining, performance was stable with a frozen encoder.
When the encoder was fine-tuned, performance decreased to the result obtained with Ima-
geNet pretraining. ¢ For NucleiDet-WSI, an object detection task for counting nuclei in
whole slide images, UMedPl' outperformed ImageNet across all training settings. Best per-
formance was achieved with 100% of the training data and fine-tuning.

Now that we have added a segmentation task where the baseline is strong and another detection
task, we can evaluate a new ablation that excluded segmentation and detection tasks from its pre-
training "UMedPT-clf". We introduced this in the Methods section, integrated into the section about
the pretraining tasks (page 21, lines 622-627):

“To further understand the importance of pretraining diversity, we conducted an ablation
study focusing only on classification tasks. We trained an ablation UMedPT-clf using only the
classification pretraining tasks. We evaluated UMedPT-clf on one representative task from
classification (Pneumo-CXR), segmentation (PolypSeg-RGB) and object detection (NucleiDet-
WSI) and compared it to the full model UMedPT.”

We integrated the key finding alongside the results of the other pretraining ablation studies (page 5,
lines 148-152):

“In addition, we compared the performance of UMedPT with a variant that was trained only
with the classification tasks UMedPT-clf, as described in Extended Data Section S2. This
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showed a great benefit of including segmentation and object detection tasks, especially for
other similar tasks.”

The detailed results of the label type ablation were added to the supplement:

“S2 Benefit of segmentation and object detection in pretraining

To quantify the effect of including multiple label types in the pretraining, we compared
UMedPT with a model trained on our classification pretraining tasks only, which we call
UMedPT-clf. The results are shown in Extended Data Figure 2. There is a large average
difference and consistently better performance of UMedPT for tasks requiring high spatial
resolution features. For the object detection task NucleiDet-WS1, UMedPT achieved a 0.282
higher mean Average Precision (mAP), and for the segmentation task Coloscopy-RGB, it
outperformed UMedPT-clf by 0.057 mloU. Interestingly, although the difference was smaller
for Pneumo-CXR (classification), a clear positive knowledge transfer between the |abel types
was found, with an advantage of 2.42% F1-score in favour of UMedPT.”
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Extended Data Fig. 2 Results of label type ablation study with UMedPT-clf.
UMedPT-clf was trained with the same classification tasks as UMedPT, but excluded seg- 50
mentation and object detection tasks. a Pneumo-CXR (classification}). b NucleiDet-WSI
(object detection). e PalypSeg-RGB (segmentation).
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Reviewer #1

Reviewer: | appreciate the authors' efforts in addressing my previous concerns and providing
detailed clarifications. The modifications made in response to these concerns have notably enhanced
the manuscript's quality. Nevertheless, | still have some concerns:

1. Integration of New Paragraphs: The authors' detailed responses and comprehensive experiments
are commendable for their clarity, particularly given their organization around specific queries.
However, | observed that several paragraphs newly added to the manuscript seem abrupt and lack
explicit motivation. The necessity of these sections is not immediately clear. | recommend revising
these parts to ensure better integration into the manuscript.

Reply: Thank you for the kind words. We revised the manuscript to improve the text flow. For better
continuity, we integrated the MedMNIST experiments into the introductory paragraph of the results
section (page 5, lines 125-), and moved the complementary experiments to the supplement:

“We evaluated our models in three benchmarks. The first, the ‘in-domain benchmark’, aimed
to determine UMedPT's performance on tasks closely related to its pretraining database. The
second, the "out-of-domain benchmark’, aimed to assess how well UMedPT adapted to new
tasks outside its immediate training domain. The third, the MedMNIST benchmark [16], was
used to evaluate the proposed multi-task training strategy on a separate training database
and, independently, to test UMedPT.”

The UMedPT ablation studies have also grown with the new label type ablation study. For this
reason, we have provided better integration by moving the detailed description to the supplement
and just embedded a short description and the key results into the main text on page 5, lines 141-
152:

“For our in-domain and out-of-domain clinical benchmarks, we conducted ablation studies
for UMedPT to investigate the effects of the variable input image size of UMedPT compared
to the fixed input image size of 224 x 224 with UMedPT-fixed, and whether to include
trainable parameters in the Layernormalizations within its architecture with UMedPT-affine,
which are detailed in Extended Data Section S1. We found that a variable input size was
beneficial for the performance of UMedPT, while UMedPT-affine had a minor impact on the
results. In addition, we compared the performance of UMedPT with a variant that was
trained only with the classification tasks UMedPT-clf, as described in Extended Data Section
$2. This showed a great benefit of including segmentation and object detection tasks,
especially for other similar tasks.”

As discussed below in this letter, we applied UMedPT to MedMNIST to investigate the model’s
generalizability. The obtained results have been integrated into Table 1 (cropped in this letter).

Table 1 Amount of data required by UMedPT to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (¥)
were compared across different test splits.

UMedPT
Task Reference results Frozen Fine-Tuning
MedMNNIST mean AUC  See Ext. Data Figure 3 [16 100% 109%
MedMNIST mean ACC  See [Ext. Data Figure 3 [16 - 10%

The outcome of the comparison with external reference results is presented in page 9, lines 246-248:
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“[...] UMedPT surpassed the external reference results in [...] and the average AUC in the
MedMNIST database [16]."

While we have moved the results of the architectural comparison, the training schemes, and from
the catastrophic forgetting investigation to the supplement, we have chosen to keep the MedMNIST
3D contextual preservation experiment in the main body of the manuscript and added context to
keep the integration seamless (page 10, lines 266-292):

“2D multi-task learning outperforms single-task 3D CNNs

Independently of our training database, we evaluated the training strategy on MedMNIST.
MedMNIST contains a variety of standardized and downscaled biomedical image datasets,
including both 2D and 3D images. To assess the impact of transforming inherently 3D medical
image data into 2D slices for pretraining, we evaluated single-task learning with 2D data,
single-task learning with original 3D data [15] and multi-task learning with 2D data. For our
multi-task and single-task trainings, we converted the 3D data into 2D slices by slicing
through the last dimension and applied a multiple-instance learning classification task that
was based on a weighted averaging operation across slices. When only the 3D tasks were
considered, the average accuracies were;

- B3.22 + 1.61% for single-task learning pretrained using Imagenet;
- B3.76% for the single-task MedMNIST 3D CNN [15};
- 86.46 + 1,13% for multi-task learning.

The results showed that single-task 3D CNNs performed better than single-task 2D CNNs
pretrained using Imagenet. However, multi-task 2D networks outperformed the single-task
3D CNNs, We present the details in Extended Data Table 5.

In this context, we also investigated the performance difference between CNN and
Transformer architectures for our multi-task learning strategy, as presented in Extended Data
Section S3 and aspects of the training algorithm in Extended Data Section S4. We found that
the Swin Transformer architecture has a minimal positive impact, as shown in Extended Data
Figure 4a. Regarding training schemes, we found that without gradient accumulation, both
convergence and performance were worse with our training strategy, as shown in Extended
Data Figure 4b. “

As the sections regarding architecture and training schemes were moved to the supplement, we
improved their coherent organization around specific queries:

“S3 Comparing convolutional networks and transformer

For quantifying the effect of the encoder’s architecture, we used the MedMNIST database
including two-dimensional and three-dimensional classification tasks. We chose the ResNet-
50 as convolutional neural network (CNN) and the tiny variant of the Swin Transformer
because they are similar in size. The Swin Transformer has 27,582,570 trainable parameters
compared to 23,508,032 for the ResNet-50 CNN.

The comparison of the Swin Transformer and ResNet-50 CNN architectures showed a
minimal impact on model performance for the MedMNIST database. The Swin Transformer
achieved an average test accuracy of 86.76 + 0.79% over 5 repetitions, while the ResNet-50
CNN achieved an accuracy of 86.34 + 1.01%. In addition, a discrepancy in training
convergence rates was observed between the two architectures, as shown in Extended Data
Figure 4a.

52



natureresearch

S4 Investigating training schemes

We performed an analysis of training schemes on the MedMNIST database, including the
two- and three-dimensional tasks. All datasets in MedMNIST have a fixed number of cases.
This distinction enabled us to conduct ablation studies comparing infinite task sampling with
balanced sampling based on dataset size. Besides this, we used the same training schedule
and hyperparameters as in the main study, and accumulated the gradients of as many steps
as there were tasks. In addition, for comparison with traditional training schemes, we used
the same setting without gradient

accumulation and also with the SGD optimizer instead of Adam. The exploration of training
schemes showed that balanced (by dataset size) and cyclic sampling (as in UMedPT)
exhibited similar behaviour in terms of convergence. However, balanced sampling
occasionally showed reduced stability; it yielded a standard deviation of 1.8141.79% in
validation accuracy over the previous ten epochs, across five different experiments. In
comparison, cyclic sampling showed a more stable training process, achieving a
comparatively lower standard deviation of 1.17+1.09%. When gradient accumulation was
excluded, the resulting performance deteriorated, accompanied by longer convergence
times. These results are shown in Extended Data Figure 4b.”

Reviewer: 2. Evaluation Strategy Regarding the Validation Set: The authors state, "We allocated a
fixed computational budget for all evaluations and used the last model state". This approach,
however, implicitly treats the test set as a validation set. Such a methodology could inadvertently
lead to an overestimation of the model's performance in a machine learning context. | suggest that
the authors re-evaluate their strategy to mitigate potential biases.

Reply: We appreciate the concern about the potential overestimation of our model's performance. In
response, we would like to clarify that no test data were used for validation in our study.
Consequently, the risk associated with our method, whenever we have not used a validation set, is
an underestimation of model performance rather than an overestimation.

However, it is still of great importance to examine the best way to apply pretrained foundational
models to tiny and large target datasets. For this reason, we appreciate the feedback and conducted
the experiment suggested by reviewer 3, and integrated it with the previous experiments regarding
this topic on page 50, lines 1327-1351:

“Inverse relationship between performance and dataset size

Our evaluation within the dinical benchmark revealed an unexpected trend in some
datasets: increasing the dataset size for fine-tuning sometimes led to a decrease in model
performance.

To investigate the potential influence of catastrophic forgetting [37] or overfitting during
fine-tuning, we first evaluated this phenomenon using four MedMNIST tasks that had shown
improved performance with multi-task learning compared to single-task learning. We first
measured the test accuracy of these tasks after multi-task learning, followed by further
individualised training with the full dataset of each task, and assessed the test accuracy
again. The results varied between datasets, suggesting that whether datasets are affected by
forgetting the well generalizing state from multi-task learning is inconsistent and may be
task-dependent:

e SynapseMNIST3D: 83.81+0.31% -» 82.90+0.66% (decrease)
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o VesselMNIST3D: 93.66£0.31% > 93.77+0.87% (no decrease)
o BreastMNIST: 86.92+1.04% - 85.90+0.91% (decrease)
¢ PneumoniaMNIST: 91.54+0.48% - 91.70+0.49% (no decrease)

For our in-domain and out-of-domain target tasks, we always used 100 epochs.
Consequently, larger datasets used more optimization steps and could overfit more easily.
We investigated by keeping large validation sets (30% of the full training data) in one in-

domain and one out-of-domain task where the phenomenon occurred and performed model

selection using the validation set. Extended Data Figure 5 shows that for one task the model
selection with the validation set was better, for the other task it was worse.”
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Extended Data Fig. 5 Model selection with and without validation sets. For the
target tasks in our clinical benchmark. we did not use validation sets to really only use the
given percentage of training data (UMedPT). This could lead to overfitting on the training
data, which is usnally solved by using a validation set, as done with UMedPT-Val. We
investigated this using a representative out-of-domain data set, Tuber-CXR (a), and an in-
domain target task, Pneuma-CXR (b).

We reference the key findings in the main text on page 6, lines 175-179:
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“We further investigated whether this could be due to catastrophic forgetting of the well
generalizing pretrained features or overfitting to the training data and found that the
phenomenon is dataset specific, as detailed in Extended Data Section 55.”

Additionally, when applying UMedPT to MedMNIST we followed the standard protocol that was set
out by the authors of the MedMNIST database. As opposed to the original experiments with
UMedPT, these new results included the use of a validation set. The results of the model selection
with validation set, together with the selection of the final model, are presented in the new Extended
Data Figure 3 of our paper. This figure shows that the model selected by the top F1 score on the
validation set performs slightly better than the final model, but at the cost of acquiring additional
validation data:

MadMNIST - AUC MadMNIST - ACC
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Extended Data Fig. 3 UMedPT's application to MedMNIST. First, UMedPT was
applied to MedMNIST [15] with the shared encoder frozen and a randomly initialized lincar
head (linear probing) and evaluated on the test set using area under the curve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for each
task. Blue and green lines represent the test performances when the model was selected
using the validation set provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theorctically best performance when the best reference method is selected
for each task and metric independently (red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT' with 1%, 10% and 100% of the training data. Details
are given in EKxtended Data Table 6.

From these four findings, we see that there is no clear winning training strategy across all target
tasks. The need for further in-depth evaluation is now motivated in the discussion section on page
12, lines 356-372:

“In some cases we observed that the performance of UMedPT decreased as the size of the
training dataset increased. We investigated both, catastrophic forgetting {35] of the well
generalizing features learned during pretraining and overfitting to the training set due to
using all data for training instead of a validation set for model selection in Extended Data
Section S6. The inconsistency of the results raises questions about the best practices for
using foundational models in tasks with varying data sizes and varying degrees of similarity to
the pretraining database. There were tasks that performed best with model selection using a
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validation set, and tasks that performed best with all the data used for training. Similarly,
some tasks performed best with the frozen training setting, and others with fine-tuning of all
pretrained parameters of UMedPT. Recently, more sophisticated fine-tuning strategies have
been proposed for foundational models in natural language processing, such as BitFit [36],
where only the bias-terms are fine-tuned, or LoRA [37], where a small number of additional
parameters are fine-tuned. A training configuration targeted specifically to foundational
vision models could combine the strengths of the different training configurations.”

Reviewer: 3. CNN Backbone Results on UMedPT: The addition of results using a CNN backbone is
noted; however, these were only conducted on MedMNIST and not on UMedPT. Given that recent
works in medical imaging have found transformer-based methods not to outperform CNNs, it would
be beneficial to include CNN backbone results on UMedPT as well.

Reply: We did not include CNN backbone results on UMedPT because we already included CNN
backbone results with MedMNIST and the inclusion for UMedPT would be costly and not provide
substantial new insights due to the following reasons:

e Inthe context of follow-up work on a specialized pretraining for histology, we used the
presented training method with full-scale data within a modern CNN known as "ConvNeXt".
Preliminary results show a negligible difference between the two architectures, with a small
preference for the Swin Transformer. This will be reported as part of the confidentially attached
follow-up paper.

e Furthermore, in the revised version of the current manuscript, we included the MedMNIST
database for pretraining and evaluation separately from UMedPT. These MedMNIST pretrainings,
which are already included in this study, used a traditional CNN. The performance of the two
architectures was similar, although the Swinformer backbone had a slight advantage. This finding
is consistent with the results of our follow-up work on specialized pretraining for histology and
recent literature.

In summary, our study and preliminary results from the follow-up work show a negligible difference
between the results of the two architectures. We have elaborated on this point in the discussion (p.
13, lines 399-407):

“In addition to the ability to handle arbitrary image sizes, for the UMedPT encoder we
needed a general base architecture capable of generating multi-scale feature maps, a feature
found in both convolutional neural networks (CNNs) and swin transformers [37]. Our
experiments with MedMNIST showed a minimal difference between CNN and Swin
Transformer, slightly in favour of the latter. This suggests that the proposed pretraining
strategy can be implemented with both convolutional and transformer-based encoders, with
literature showing that CNNs can also work well with large datasets of full-size images [38].”

And we improved the integration of the CNN backbone results on MedMNIST within the methods
section on page 17, lines 524-529:

“UMedPT’s decoders are compatible with any encoder that can generate multi-scale feature
maps [...] We also investigated the compatibility of the CNNs with the proposed multitask
training loop and included an additional comparison in Extended Data Section S4.”

Reviewer: 4. Generalization Experiments on MedMNIST: Concerning the added generalization
experiments on MedMNIST, an important setting seems to be missing. The analysis only distinguishes
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between MTL and ST differences without examining the impact of pre-trained weights from UMedPT.
Assessing whether or not UMedPT's pre-trained weights are loaded is crucial for a thorough analysis.

Reply: We agree that this important setting was missing and applied UMedPT pretrained weights to
the MedMNIST database.

We added a description of this setting to the Methods section “Comparison of benchmark results”
(page 26, lines 855-859):

“We compared our results with the best previously reported study results for the target tasks
and the mean performance for the MedMNIST database [15]. From the MedMNIST database,
we only considered tasks that were available in the largest spatial size (224 x 224) and were
not part of the UMedPT pretraining or clinical benchmark.”

Corresponding results are also reported in Table 1 (cropped):

Table 1 Amount of data required by UMedPT to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (*)
were compared across different test splits.

UMedPT
Task Reference results Frozen Fine-Tuning
MedMNIST mean AUC  See Ext. Data Figure 3 [16 100% 10%
Med MNIST mean ACC  See Ext. Data Figure 3 [16 - 10%
The results are presented in Extended Data Figure 2:
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Extended Data Fig. 2 UMedPT’s application to Med MNIST. First, UMedPT" was
applied to MedMNIST [15] with the shared encoder frozen and a randomly initialized linear
head (linear probing) and evaluated on the test set using arca under the eurve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for each
task, Blue and green lines represent the test performances when the model was selected
using the validation set provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theoretically best performance when the best reference method is selected
for cach task and metric independently (red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT with 1%, 10% and 100% of the training data. Details

are given in Extended Data Table 6.

Further results are reported in Extended Data Table 6 (rotated for readability in the paper):
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Extended Data Table 6 Detailed Performance of UMedPT on MedMNIST. Comparison of accuracy {ACC) and area ander the curve
(AUC) at different stages of tralning UMedPT on the MedMNIST database: using the frozen encoder and fine-tuning the whole model. Porformance
metrics are provided for UMedPT with 1%, 10% and 1008 of the training data. Refereace results are included (rom ResNet-50 (Rel. CNN) or the
theorotical best results obtained by sclecting the method with the strongest test performance for each dataset and metric independently (Ref,
Cherrypick).

stuge UMedPT - Prozen UMedPT - Pinetune Ref. Cherrypick Ref. CNN

metric ACC AUC ACC AUC ACC AuC ACC AUC
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Reviewer: (Minor Points) a. UMedPT-affine: The explanation regarding UMedPT-affine, which
mentions "UMedPT used layernorms without parameters,” is still somewhat confusing to me. Layer
normalization typically includes parameters by default, so | am curious about the rationale behind
this specific analysis by the authors.

Reply: Several networks in this study, or parts of them, use Batchnorm by default. Batchnorm with
trainable parameters did not work as found in preliminary experiments (results not shown). We have
clarified the rationale to test both the inclusion (UMedPT-affine) and the exclusion of learnable
parameters in its normalization layers (UMedPT) on page 17, lines 535-556:

"However, in our experiments, batch normalization led to poor performance (results not
shown). One assumption when using batch normalization is that all input batches follow the
same distribution. When combining different tasks and datasets, this assumption no longer
holds.

While we observed that normalization layers improved training speed, we believed that they
would underperform similarly in layer normalization due to the ineffectiveness of trainable
parameters in batch normalization. [...] As a result, the default configuration of UMedPT
excludes trainable parameters in its normalization layers. First, previous studies have shown
that trainable parameters such as bias and gain within layer normalization layers increase the
risk of overfitting and generally do not contribute to improved performance {45). Second,
given the ineffectiveness of trainable parameters in batch normalization, we hypothesized
that they might similarly underperform with layer normalization.”

Reviewer: (Minor Points) b. Formatting of "revised_manuscript.pdf": Many tables appear to be
incompletely formatted.

Reply: Thank you for the feedback, we fixed the table formatting.
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Reviewer #2
Reviewer: The authors have adequately addressed my queries.

Reply: Thank you for your positive feedback. We appreciate the time you took to provide a valuable
review of our work, which significantly helped us to improve our manuscript.
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Reviewer #3
Reviewer: Summary:

The authors propose a supervised pretraining strategy that leverages a multitude of medical datasets
and tasks to reach ImageNet scale medical supervised pretraining. After they pretrain their model
using their dataset, they evaluate their model on 2 in domain tasks and 5 out of domain tasks. They
show that their method significantly outperforms an ImageNet pretrained model on the in domain
tasks, and also outperforms the ImageNet baseline on the out of distribution tasks. Furthermore, the
authors compare their model performance to external baselines, demonstrating significantly
improved data efficiency.

Strengths:
- The authors aggregate a large number of tasks (15 datasets/17 tasks)

- The authors demonstrate how these heterogeneous tasks can be leveraged to enhance
downstream classification performance

- The authors show how their method significantly outperforms ImageNet pretraining, as well as
external baselines

- This paper is a nice demonstration that supervised pretraining is beneficial for medical imaging. As
more medical imaging datasets come online with associated labels, this method could continue to
improve.

Reply: Thank you for your summary and thoughtful comments on our manuscript. We appreciate the
time, effort, and expertise you have invested in reviewing our work.

Reviewer: Overall, the major weaknesses are that the authors may overstate some methodological
contributions and use language that risks leading the reader to think that they generated new
contributions/insights, which were in fact developed/observed previously. The authors can
successfully address these by modifying how they describe their contributions. Below are several
examples:

- Page 14, line 435: The authors claim “To address this challenge, we developed a novel training
strategy for UMedPT that mostly decouples the number of training tasks from the memory
requirements.” The authors further state “Our strategy achieved this by establishing an independent
architecture or ‘computational graph’ for each task. The graph is dynamically constructed and stored
only during the active computation stage of each task. To combine the individual graphs, we
implement gradient accumulation before the optimization step.” Could the authors clarify what they
mean by “Our strategy achieved this by establishing an independent architecture or ‘computational
graph’ for each task”? It appears that the authors are using PyTorch, which would generate a single
computational graph for the full model, including multiple task-specific heads. Furthermore, the
language should not confuse the reader into thinking that implementing the computational graphs is
a part of the author’s contribution, when this is how Pytorch operates under the hood.

Reply: Thank you for pointing out this possible point of confusion. We clarified that we used PyTorch
and implementing computational graphs is not part of our contribution (page 15, lines 450-451):

“We used PyTorch [39] to create an independent architecture, or ‘computational graph’, for

each task, [...]" 60
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In this way we clarified that by "an independent architecture or 'computational graph' for each task"
we meant the PyTorch computational graph, and made the implication for our training strategy clear
(page 15, lines 457-461):

“GA allowed [...] a single update step could consist of heterogeneous tasks in any order. This
allowed the training strategy to use an adaptive architecture, where each type of label can
be solved by a specialized combination of model components, such as a UNet for
segmentation labels [45])."

Reviewer: The authors further state, “We ensure that the model’s weights and gradients are stored
only once, rather than duplicating them for each task. Additionally, only the activations for one task
are kept in memory at a time.” The language may be a bit strong and overclaim contributions here.
Gradient accumulation as implemented in the code below is used routinely, with all handling of the
computational graph by PyTorch. GA implementation requires simply not calling loss.backward() at
every step in PyTorch. The contribution here is sampling all tasks within a global GA step. | would
recommend that the authors soften their language in this section, and make more clear what they
contributed versus previous methods implemented by others that they are explaining for the
education of the reader.

[Code]

Reply: Regarding our application of gradient accumulation, in our view, the simplicity of this part of
the multi-task training strategy is an advantage. We softened the language, clarified that we did not
propose gradient accumulation, and made it clearer that, unlike previous methods, we have
implemented a way to appropriately apply gradient accumulation to multitask learning. (page 15,
lines 462-465):

“GA is a common method for incorporating more data into a single optimization step. In the
case of our multi-task learning strategy, unlike traditional deep multi-task learning, GA
allowed the weights and gradients of the shared part of the model to be stored only once,

rather than duplicated for each task. [...]

Reviewer: Layer norm is typically used in vision transformers, including in the SwinTransformer
architecture. Therefore, the authors should make sure that their language does not risk confusing the
author into thinking that this is a new finding/contribution. As the default SwinTranformer uses
layernorm, the following language should be softened - “To address this problem, we recursively
replaced the original normalization layers in all shared blocks with layer normalization, which by
design do not require inter-task computation”.

The authors state - “We empirically analysed the effect of using layer norms with affine parameters
on our approach using an adaptation of UMedPT(UMedPT-affine). “ ...“UMedPT-affine added
trainable parameters including a bias and a scaling factor y in the form y=yx-p o +p for each
channel.” The default implementation of layernorm in PyTorch and in the original paper includes
learnable bias and scaling factors. Therefore, | would update the language used to ensure that
readers don’t confuse this as a new contribution.

Reply: Besides the encoder, we added decoders to the shared part of the architecture of UMedPT
which by default come with Batchnorm. Batchnorm was found to be incompatible with our training
strategy and thus we made sure that users of the training framework do not have to manually adapt
their architectures to make them compatible.
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MedMNIST benchmark [16], UMedPT’s segmentation decoder [44] and UMedPT’s
objectdetection decoder [47]"

The respective part of the Methods section now ensures that readers do not consider the use of
Layernorm within swin transformers as a new contribution (page 17, lines 548-549):

“Notably, the Swin Transformer encoder used in UMedPT already used layer normalization,
which comes with trainable parameters by default.”

And later on page 18, lines 557-560:

“To empirically assess the impact of excluding such trainable parameters in UMedPT, we
compared it to a variant of our model UMedPT-affine that included trainable bias and scaling
layer normalization parameters, which is the default for the Swin Transformer, the UMedPT
encoder. [...]"

Reviewer: (minor weakness) Page 9, line 226 “A comparison for the OrganSeg-MRI task could not be
performed, because no results specific to the MRI-only subtask of the challenge were reported”. |
would request that the authors train a baseline nnUNet or other state of the art baseline for
comparison. Otherwise, it is difficult to understand the segmentation performance on this dataset.

Reply: We appreciate the suggestion and agree that nnU-Net provides a strong baseline to
understand the performance of our method in 3D segmentation. For this analysis, we replaced
OrganSeg-MRI with a lung nodule segmentation task with documented state-of-the-art performance.
We describe the application of the proposed multi-task training method to this task on page 50, lines
1352-1380:

“Investigating the Applicability to 3D Segmentation Tasks

To evaluate the application of a stacked 2D segmentation approach to 3D images, we
examined a lung nodule segmentation task from the medical segmentation decathlon [28].
For compatibility with the benchmark’s results, we retrained UMedPT with the nine
remaining tasks from the decathlon’s dataset in addition to UMedPT’s training database. We
refer to this version of the model as UMedPT-large.

The pretraining methodology for UMedPT-large was the same as for UMedPT. To adapt to
the target task, we then trained a linear task-specific head on the output of the frozen
UMedPT-large. The model was trained using full slices. For inference, we used 2D inference
on full slices and stacked the results to create a 3D prediction.

We compared with nnU-Net [53), as a baseline for medical 3D segmentation, While we used
whole slices (512 x 512) for training, nnU-Net used a patch size of 128 x 128 x 128. Our
evaluation strategy followed the baseline’s approach of 5-fold cross validation. For
evaluation, we adopted the 3D Dice from [52], reporting only the foreground class. In terms
of results, UMedPT-large achieved a Dice score of 71.96%, while for non-pretrained nnU-Net
52.68% and 66.85% are reported for 2D and 3D, respectively [53]. However, at the time of
writing, the online leaderboard of the Medical Segmentation Decathlon reports higher
metrics (using different test data).

For future work, we suggest following the workflow that was successful with the external
evaluation of a colorectal cancer classifier in gigapixel image classification. In this process, we
first used UMedPT-large to extract features, followed by the application of a smaller
specialized CNN to the whole gigapixel image at once. For 3D segmentation, this specialized
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network could be a 3D CNN. Alternatively, the pretraining segmentation task could be
extended to incorporate 3D spatial context as we did for 3D classification with MedMNIST.”

We integrated the key findings into the results section for 3D classification on page 11, lines 293-297:

“In addition to 3D classification, we also investigated the direct applicability of our training
method to 3D lung nodule segmentation in CT scans {28). The experiments showed that a
large 2D pretraining and the larger 2D spatial context it enables can compensate for the loss
of 3D context, as detailed in the extended data section 56.”

Reviewer: (minor weakness) If | am not mistaken, all downstream tasks are classification tasks,
except for one segmentation task where the baseline is not too strong. Therefore, something that
would really strengthen this work, perhaps as future work, is an ablation study that assesses how
much the segmentation and object detection pretraining tasks actually benefit downstream
performance on various task types. The latents in the encoder decoder architecture trained for
segmentation or object detection need to retain geometrical information but may not require pixel
intensity information. On the other hand, performing well on downstream classification tasks does
not require encoding precise geometrical information. It could in fact be the case that these are at
odds and requiring capacity for precise geometric information reduces embedding quality for
classification tasks. Investigating which types of tasks should actually be included during pretraining
would be a nice contribution that would put this paper into better context.

Reply: We appreciate the feedback and have replaced the segmentation task where the baseline is
not too strong with a more appropriate one with coloscopy data, consisting of data that did not occur
within the UMedPT’s pretraining database and is more closely related to natural images on which the
ImageNet baseline was trained with.

We added the out-of-domain task Polyp-RGB, which was used to train a model for polyp
segmentation in coloscopy data. It was included in the methods section (page. 26, lines 845-853):

“Polyp segmentation in coloscopy (PolypSeg-RGB):

The PolypSeg-RGB task [25] focused on segmenting polyps from the background in coloscopy
images. Since polyps can be precursors to colorectal cancer, coloscopy is an important
diagnostic tool. Early detection and removal of polyps is essential to prevent the
development of colorectal cancer. However, the effectiveness of coloscopy is often
hampered by high miss rates; studies have found that polyp miss rates during coloscopy can
range from 14 to 30%, depending on the type of polyp [54]. We randomly divided the dataset
into 700 training images and 300 test images.”

Consistent with the other results, we find further evidence that pretraining with UMedPT does not
impair learning, even in cases where UMedPT was not pretrained for: (page 9, lines 233-243):

“Polyp segmentation in coloscopy (PolypSeg-RGB):

The PolypSeg-RGB target task focused on the segmentation of polyps in coloscopy images.
When using the entire dataset for fine-tuning, ImageNet achieved its best average result,
demonstrating a mean intersection over Union (mloU) of 0.905. Here, UMedPT achieved an
mloU of 0.911. The ImageNet pretrained model showed better results when the encoder was
frozen, as presented in Extended Data Figure 1c. The best performance across all fractions
was achieved by UMedPT with fine-tuning. In addition, while UMedPT with fine-tuning 63
outperformed ImageNet for all fractions, the biggest difference occurred with 1% of the data
(0.797 £ 0.09 compared to 0.683 + 0.144 of ImageNet).”
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The details are presented within the out-of-distribution plots in the supplement (cropped here):
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Extended Data Fig. 1 Results of remaining out-of-distribution tasks. a BC-Bllis-
MIC b CNS-MRI. ¢ PolypSeg-RGB.

The strong results of both ImageNet and UMedPT are further evidenced by the fact that they
outperform i) the original baseline provided by the dataset authors, and ii) in the case of UMedPT,
even recent approaches developed specifically for polyp segmentation. This is now shown in our
comparison with external reference results (shown here cropped):

Table 1 Amount of data required by UMedPT to match state-of-the-art performance on
classification tasks from different imaging domains. Datasets marked with an asterisk (¥)
were compared across different test splits.

UMedPT
Task Reference results Frozen Fine-Tuning
" PolypSeg-RGB 0.778 mlolU [24] 50% 1%
PolypSeg-RGB 0.9051 mloll [25] - 100%

Additionally, we added a detection task for nuclei counting. While it used tissue types that were not
part of the pretraining database, we still classified it as in-domain due to its similarity to one of the
histological pretraining detection tasks.

In the methods section (page 25, lines 780-788):
“Detection of nuclei in whole slide images (NucleiDet-WSI):

In oncology, the distribution and appearance of nuclei are important for the diagnosis and
study of cancer. To assess the ability of UMedPT to detect these nuclei, the NucleiDet WSI
dataset [52) was used. This dataset consists of whole slide images (WSI) and covers ten
cancer types. In the pretraining database, only prostate and colon cancer were included. We
randomly divided the dataset into 950 images for training and 406 images for testing. The
authors of the dataset created the annotations with the help of two pathologists and three
graduate students, using an Al tool.”

The results show that only 50% of the training data is required to outperform ImageNet (page 6, lines
187-196):
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“Detection of nuclei in whole slide images (NucleiDet-WSI):

We used the NucleiDet-WSI dataset [18] to detect nuclei in 10 different cancer types from
whole slide images (WSI). The best ImageNet performance was achieved using 100% of the
data together with fine-tuning, resulting in a mean average precision (mAP) of 0.71. UMedPT
was able to replicate this performance with 50% of the training data and no fine-tuning.
However, fine-tuning tended to improve the results for both models. Interestingly, compared
to ImageNet, UMedPT showed superior performance across all data fractions with both fine-
tuning and a frozen pre-trained model. This resulted in a maximum performance of 0.792
mAP when using the full training data set and fine-tuning.”

We present the results as part of Figure 2:
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Fig. 2 Results for in-domain tasks., a In diagnosing pnenmonia (Pneumo-CXR),
UMedPT" matched the full fine-tuned performance of ImageNet, even with a frozen encoder
and a reduced dataset size (1%). b For CRC-WSL, the only target task for which its train-
ing dataset was also part of the pretraining, performance was stable with a frozen encoder.
When the encoder was fine-tuned. performance decreased to the result obtained with Ima-
geNet pretraining. ¢ For NucleiDet-WSI, an object detection task for counting nuclei in
whole slide images, UMedPl' outperformed ImageNet across all training settings. Best per-
formance was achieved with 100% of the training data and fine-tuning.

Now that we have added a segmentation task where the baseline is strong and another detection
task, we can evaluate a new ablation that excluded segmentation and detection tasks from its pre-
training "UMedPT-clf". We introduced this in the Methods section, integrated into the section about
the pretraining tasks (page 21, lines 622-627):

“To further understand the importance of pretraining diversity, we conducted an ablation
study focusing only on classification tasks. We trained an ablation UMedPT-clf using only the
classification pretraining tasks. We evaluated UMedPT-clf on one representative task from
classification (Pneumo-CXR), segmentation (PolypSeg-RGB) and object detection (NucleiDet-
WSI) and compared it to the full model UMedPT.”

We integrated the key finding alongside the results of the other pretraining ablation studies (page 5,
lines 148-152):
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“In addition, we compared the performance of UMedPT with a variant that was trained only
with the classification tasks UMedPT-clf, as described in Extended Data Section S2. This
showed a great benefit of including segmentation and object detection tasks, especially for
other similar tasks.”

The detailed results of the label type ablation were added to the supplement:
“S2 Benefit of segmentation and object detection in pretraining

To quantify the effect of including multiple label types in the pretraining, we compared
UMedPT with a model trained on our classification pretraining tasks only, which we call
UMedPT-clf. The results are shown in Extended Data Figure 2. There is a large average
difference and consistently better performance of UMedPT for tasks requiring high spatial
resolution features. For the object detection task NucleiDet-WS!, UMedPT achieved a 0.282
higher mean Average Precision (mAP), and for the segmentation task Coloscopy-RGB, it
outperformed UMedPT-clf by 0.057 mloU. Interestingly, although the difference was smaller
for Pneumo-CXR (classification), a clear positive knowledge transfer between the label types
was found, with an advantage of 2.42% F1-score in favour of UMedPT.”

66



Pneumo-CXR - Frozen

natureresearch

Pneumo-CXR - Finetune

.
o4 ‘ N
o i 0 . -
* D i
090 4 .
4 . . -
S| @ &
&
0.86 4 ¢
RLUE
082 _-—UMedrT -— T
L] . UMedPT-OFf - UeedPTCH
n:!l. O'OS 0')0 o'so X& 01’31 n:)s n‘ln o'so 130
Fraction of Dataset used Fraction of Dataset used
NucleiDet-WS| - Frozen NucleiDet-WS| - Finetune
oe - -
- -
. 074 - -
3 : E
= 06 4 il
c .
2 s ¢ . &
H
04e 4 .
- - *
3 03+ b
o
c ard o
-
il &
aad
_— _— . UMeoFT - _ UMedPT
00 4 e . UMedPT-Of - UNedPTCH
a0l a0 a10 0% 100 001 005 010 0% 100
Fraction of Dataset used Fraction of Dataset used
Coloscopy-RGB - Frozen Coloscopy-RGS - Finetune
er - oy
-
- -
i e +
08 Fon ! =
- -
3 o i
c
=
o
E .
o6 9
08 4
. UMedT W UNedPT
- N UMedPTOF . UMedPTCH
T T T T T T T T T T
ool aos 010 oso 100 aet aos ol ose 100
Fraction of Dataset used Fraction of Dataset used
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Reviewer: (minor weakness) | understand that this study has been for the most part limited to
supervised pretraining. However, this method will need to compete with self-supervised pretraining
which could potentially scale more easily. A comparison to such methods, like MAE and DINO (i.e.
RAD-DINO), would be a nice to have.

Reply: This is an interesting point, especially as our method also enables including both supervised
and self-supervised tasks into the same pretraining. However, for a meaningful evaluation multiple
methods should be included as part of a broader follow-up project. We included the suggestion into
the discussion (page 12, lines 322-331):

“[...] Alternatively, self-supervised pretraining can be used to improve the data-efficiency for
target tasks, as demonstrated with RAD-DINO [30). However, recent literature suggests that
label-supervised pretraining for imaging typically outperforms self-supervised pretraining
empirically [10, 31] and theoretically [32]. Nonetheless, it offers great value in regularizing
models and might help in further reducing the required volume of |abelled data. Our
approach can be extended to include an arbitrary number of self-supervised tasks into the
pretraining, which may further enhance the generalizability of UMedPT, especially in
domains where abundant data are available but labelling is difficult or costly.”

Reviewer: (minor weakness) Page 14, line 439: Can the authors clarify what this means: “This graph
is dynamically constructed and stored only during the active computation stage of each task”?

Reply: We improved the structure of the paragraph and improved the text on page 15, lines 451-:

"“This graph was dynamically constructed so that each label type could be solved by a
different architecture, but still shares almost all model parameters. For example, in the case
of UMedPT, a UNet [44] for segmentation labels was assembled by combining the shared
Swin Transformer encoder with the shared pixel-dense decoder and a small task-specific

part. To combine the individual graphs, we used gradient accumulation (GA) [...]. It also made
the tasks independent, so that the dynamic sub-graph of a task only needed to be loaded
into memory during the active computation stage of that task.”

Reviewer: (minor weakness) Page 17, line 527 - What does “recursively replaced” mean here? The
norm layers should not be nested so what does recursing mean here?

Reply: The proposed training strategy can be used with a wide range of architectures. We used the
PyTorch'’s capability to enumerate children of a module for replacing the original normalization with
normalization layers that are compatible with the gradient-accumulation-based training strategy (see
mmm.torch_ext.replace_childen_recursive). We have clarified this on page 17, lines 542-544:

“Consequently, we took advantage of the tree-like property of PyTorch neural networks and
recursively replaced the original normalization layers in all shared blocks with layer
normalization [...]"

Reviewer: (minor weakness) Page 18, line 570: could the authors make it more clear what “the need
for pre-extraction of images” means?

Reply: For faster convergence, batches should contain diverse image instances (e.g., patches etc.)
from multiple images. Loading entire images for the extraction of image instances is time- and
memory-intensive. In this context, “pre-extraction” means the storage of extracted image instances
to disk before training. Here, we propose a strategy to enable training with a large number of
medical images where each image potentially consists of many image instances. We have explained
this on page 19, lines 596-599:
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“[...] to load whole slide images and 3D volumes. It is common practice to pre-extract image
instances to disk or memory to minimize loading times, but this requires a lot of memory and
loses the ability of perform augmentation on the original data. The proposed caching
component [...]"

Reviewer: (minor weakness) Page 21, line 622 - if “flips and mirroring” are applied as augmentations,
the network could lose the ability to differentiate left sided vs right sided diseases, which is an area
of study for medical foundation models. Can the authors justify the inclusion of these
augmentations?

Reply: We apologize for the incomplete explanation in the text. Flips and mirroring were used for
histological images. We clarified this on page 21, lines 636-640:

“For X-ray images, we added image inversion with a probability of 30%. For histological
images, flipping and mirroring were used to improve orientation invariance, and channel
shuffling was used to improve the model's robustness to stain and color variations.”

Reviewer: (minor weakness) Page 21, line 614 - what are the “standard 3D augmentations”? Can the
authors include those in the paper?

Reply: We included those on page 21, lines 629-630:

“For 3D tomographic images, we applied standard 3D augmentations using the MONAI
library [S0] (3D rotations, scale and crop), followed by slicing [...]"

Reviewer: (minor weakness) Page 23, line 712 - The authors should make it clearer that the 1%, 5%,
10%, 25%, 50%, and 100% corresponds to the downstream datasets, not the pretraining dataset, if
that is in fact the case.

Reply: Thanks, we clarified this on page 24, lines 740-743:

“To simulate data-scarcity and evaluate sample efficiency, we took multiple samples from the
original training set of target tasks at sizes of 1%, 5%, 10%, 25%, 50%, and 100%. For

pretraining, we always used the full pretraining data sets.”

Reviewer: (minor weakness) The authors should clarify whether there is any overlap in the
downstream datasets and the pretraining datasets. It seems that CRC-WSI may be present in
pretraining (Extended Table 4) and was also used for downstream validation in the comparison with
ImageNet. If this is the case, it may not be fair to claim that finetuning with 1% of downstream data
compared to ImageNet pretraining, as the training dataset was seen during pretraining. Could the
authors clarify whether this is a typo in Extended Data Table 4?

Reply: WSI-CRC was included as both a pretraining and downstream data set to test for the
recoverability of pretraining knowledge, while making sure that the test images are strictly kept out
of all trainings. However, the task-specific pretrained part was discarded and had to be relearned
from a new random initialization during the downstream training. We clarified that in the caption of
Figure 2 (results):

"CRC-WSI was the only target task where the training dataset was also part of the
pretraining. Here, performance was stable across dataset fractions with a frozen encoder.
When the encoder was fine-tuned, [...]"”

And in the methods on page 24, lines 754-756: 69



natureresearch

“The training images of one of the target tasks, CRC-WSI, were included in both pretraining and

benchmarking.

Reviewer: (minor weakness) Page 23, line 705 - The authors state “In the frozen scenario, we directly
extracted image representations from the shared blocks, thereby showing the usefulness of the
learned representations. Both frozen and fine-tuning were trained for epochs each.” Does training in
the frozen case mean training a linear probe for classification tasks? If so, | would use this common
terminology.

Reply: Training in the frozen case means training a linear probe for all tasks, not just classification.
We have clarified this on page 23, lines 730-733:

“In the frozen scenario, [...] we used a single linear layer for all target tasks (including

segmentation and object detection), also known as linear probing. Subsequently [...]

Reviewer: (minor weakness) Page 23, line 723 - What does “re-discovery” and “re-identification”
mean here? Would like to clarify that this does not mean that downstream datasets were used
during pretraining. If a downstream dataset was used during pretraining, it does not seem fair to
claim that fine tuning on 1% of downstream data yielded similar performance to ImageNet baseline.

Reply: We used the training images from CRC-WSI in both pretraining and downstream, and refer to
the answer two points above.

Reviewer: (minor weakness) Extended Data Table 3: Which version of the model are you using for
your results in the main paper? Can you add this to the caption?

Reply: When not stated otherwise, we obtained our results in the main paper with UMedPT. We
added this to the caption of Table 1 and Extended Data Table 1:

“Unless otherwise stated, all results in the main paper were obtained with UMedPT.”

Reviewer: (minor weakness) The authors should add more details about how inference is done with
3D data. Are predictions averaged across slices? Is the following method applied to the origin
UMedPT model as well? “For the 3D tasks, we used a simple strategy based on a learned weighted
average across slices with the classification task described in section.”

Reply: For 3D classification the neural representations were averaged (not the predictions).
Subsequently, linear probing was applied as in the 2D classification.

We clarified this procedure on page 11, lines 274-276 (results) and on page 28, lines 926-931
(methods):

“We then applied a multiple-instance learning classification task that was based on a

weighted averaging operation over the neural representations of the slices.”

“For the 3D tasks, we used a simple strategy based on a learned weighted average over the
neural representations of the slices. This results in a single feature vector per 3D case,
allowing the use of the same linear classification head as in 2D, as described in section 5.
Intuitively, this allows the network to learn focusing on the most relevant slices of a 3D case
before a prediction.”

Reviewer: (minor weakness) Could the authors add a bit more explanation for their choices in
normalization factors in equations (1) and (2)?

Reply: The normalization factors were determined based on random weights and random inputs
such that the normalization factors
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- prevent one task from dominating the others during training.
- allow meaningful model selection based on average loss (not all tasks can use the same
metric for meaningful averaging).

We have extended and moved the explanation into the respective section (page 21, lines 642-947):

“We have included classification, segmentation, and detection tasks. These have different
loss functions with different magnitudes. We normalized the respective loss functions for
each task type so that the observed value for random inputs for reinitialized weights was

close to one. This strategy prevented the loss of one task from dominating the combined

loss. In addition, this allows model selection based on the average loss.”

Reviewer: Point of Discussion:

Without validation sets, it may be difficult to understand whether catastrophic forgetting is the main
culprit for decreasing performance with increasing dataset size or if the authors are overfitting to the
downstream task, with the number of optimization steps increasing along with the fraction of the
downstream dataset used for fine-tuning. Inevitably, some forgetting is happening when adapting to
a specific downstream dataset. However, a somewhat related issue could be overfitting with 100
epochs of fine-tuning. | understand the challenge here where the authors want to be able to make
the claim that truly 1% of the dataset was used for training, vs a larger fraction of training dataset
size + validation dataset size. It may be necessary to have a larger validation set to get a clear signal
about model performance. | commend the authors for truly using 1% of data for training, versus
using a small training dataset but then a much larger validation dataset. A nice to have ablation to
include in this work or future work would be investigating performance if you use full validation sets
and modulate only the training dataset size. If using a validation set actually causes model
performance to increase with training dataset size, then you can be confident that the performance
decrease is only coming from suboptimal checkpoint selection. This would add additional support for
the efficacy of the method.

Reply: We appreciate the idea and investigated if the decreasing performance happens due to
checkpoint selection as suggested. We sampled a validation set from the training data and used the
same test set, making the large training splits smaller than before. We selected one in-domain and
one out-of-domain target task where we observed the decrease.

We integrated the experiment with the previous experiments regarding this topic on page 50, lines
1327-1351:

“Inverse relationship between performance and dataset size

Our evaluation within the clinical benchmark revealed an unexpected trend in some
datasets: increasing the dataset size for fine-tuning sometimes led to a decrease in model

performance,

To investigate the potential influence of catastrophic forgetting [37] or overfitting during
fine-tuning, we first evaluated this phenomenon using four MedMNIST tasks that had shown
improved performance with multi-task learning compared to single-task learning. We first
measured the test accuracy of these tasks after multi-task learning, followed by further
individualised training with the full dataset of each task, and assessed the test accuracy
again. The results varied between datasets, suggesting that whether datasets are affected by
forgetting the well generalizing state from multi-task learning is inconsistent and may be
task-dependent:
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e SynapseMNIST3D: 83.8140.31% —> 82.90+0.66% (decrease)

o VesselMNIST3D: 93.66£0.31% - 93.77+0.87% (no decrease)

¢ BreastMNIST: 86.92+1.04% -» 85.90+0.91% (decrease)

e PneumoniaMNIST: 91.5440.48% -» 91.70£0.49% (no decrease)

For our in-domain and out-of-domain target tasks, we always used 100 epochs.
Consequently, larger datasets used more optimization steps and could overfit more easily.
We investigated by keeping large validation sets (30% of the full training data) in one in-

domain and one out-of-domain task where the phenomenon occurred and performed model

selection using the validation set. Extended Data Figure 5 shows that for one task the model
selection with the validation set was better, for the other task it was worse.”
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Extended Data Fig. 5 Model selection with and without validation sets. For the
target tasks in our clinical benchmark. we did not use validation sets to really only use the
given percentage of training data (UMedPT). This could lead to overfitting on the training
data, which is usnally solved by using a validation set, as done with UMedPT-Val. We
investigated this using a representative out-of-domain data set, Tuber-CXR (a), and an in-
domain target task., Pneumo-CXR (b).
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We reference the key findings in the main text on page 6, lines 175-179:

“We further investigated whether this could be due to catastrophic forgetting of the well
generalizing pretrained features or overfitting to the training data and found that the
phenomenon is dataset specific, as detailed in Extended Data Section S5.”

Additionally, when applying UMedPT to MedMNIST we followed the standard protocol that was set
out by the authors of the MedMNIST database. As opposed to the original experiments with
UMedPT, these new results included the use of a validation set. The results of the model selection
with validation set, together with the selection of the final model, are presented in the new Extended
Data Figure 3 of our paper. This figure shows that the model selected by the top F1 score on the
validation set performs slightly better than the final model, but at the cost of acquiring additional
validation data:
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Extended Data Fig. 3 UMedPT’s application to MedMNIST. First, UMedPT was
applied to MedMNIST [15] with the shared encoder frozen and a randomly initialized linear
head (linear probing) and evaluated on the test set using area under the curve (AUC, left)
and accuracy (ACC, right). The whole model was then fine-tuned independently for cach
task. Blue and green lines represent the test performances when the model was selected
using the validation set provided by the authors. Red and orange lines represent the test
performance when the last model state was selected (validation data not used). Horizontal
lines represent the theoretically best performance when the best reference method is selected
for each task and metric independently {red) or when the best method is selected for all
tasks (grey). We evaluated UMedPT with 1%, 10% and 100% of the training data. Details
are given in Extended Data Table 6.

From these four findings, we see that there is no clear winning training strategy across all target
tasks. The need for further in-depth evaluation is now motivated in the discussion section on page
12, lines 356-372:

“In some cases we observed that the performance of UMedPT decreased as the size of the
training dataset increased. We investigated both, catastrophic forgetting [35] of the well
generalizing features learned during pretraining and overfitting to the training set due to
using all data for training instead of a validation set for model selection in Extended Data
Section $6. The inconsistency of the results raises questions about the best practices for
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using foundational models in tasks with varying data sizes and varying degrees of similarity to
the pretraining database. There were tasks that performed best with model selection using a
validation set, and tasks that performed best with all the data used for training. Similarly,
some tasks performed best with the frozen training setting, and others with fine-tuning of all
pretrained parameters of UMedPT. Recently, more sophisticated fine-tuning strategies have
been proposed for foundational models in natural language processing, such as BitFit [36],
where only the bias-terms are fine-tuned, or LoRA [37], where a small number of additional
parameters are fine-tuned. A training configuration targeted specifically to foundational
vision models could combine the strengths of the different training configurations.”

Reviewer: Extended Data Table 4: the authors should specify in the caption what “/” means. In, for
example, the third column of the CRC-WSI row, where 100,000/7,000 is written. |s this train/test
data?

Reply: We clarified this in the caption of Extended Data Table 4:

“For the dataset splits provided by the respective publishers, we marked them as train/test
and included only the training set in the pretraining.”

Reviewer: Fig. 2 - In the caption: is Tuber-CXR the same dataset as Pneumo-CXR in the plot titles? BC-
Bach-WSI referenced in caption, as opposed to CRC-WSI.

Reply: Thank you for pointing this out. The caption now describes the results of the in-domain
datasets instead of describing the wrong plot:

“Fig. 2 Results for in-domain tasks. a In the diagnosis of pneumonia (Pneumo-CXR), UMedPT
matched the full fine-tuned performance of ImageNet, even with a frozen encoder and a
reduced dataset size [...]"

Reviewer: Page 1, line 29 - maybe consider updating “required not more than 50%” to “required only
50% of the original training data”.

Reply: We appreciate the suggestion and implemented it in the abstract.

Reviewer: Page 1, line 19 - I'm not sure that | would consider medical dataset to be more
heterogenous than natural domain datasets that can comprise any scene/object. Medical images
generally look similar globally with differences coming from finer grain features.

Would the authors mind justifying this description or revising it?
Reply: We agree and revised it in the abstract:

“However, training these models typically requires large, comprehensive datasets, which
contrasts with the smaller and more specialized datasets common in biomedical imaging.”

Reviewer: Page 2, line 48 - for clarity, | would consider updating “increasingly large pretrainings” to
“increasingly large pretraining datasets”

Reply: We agree and changes it in the Introduction section.
Reviewer: Page 2, line 53 - May want to add LAION, in addition to ImageNet.

Reply: We appreciate the suggestion and added LAION, in addition to ImageNet, to the introduction
in line 38: “such as ImageNet-1K [1] or LAION [2]”, and in line 53: “in the biomedical domain, there is
no single pretraining dataset comparable to ImageNet or LAION.”
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Reviewer: Page 9, Table 1. Should there be a citation for CNS-MRI?
Reply: Thank you for pointing out that issue. We added the citation.

Reviewer: Page 23, line 696 - what does “synthetic dataset” mean here? Usually it refers to data
which isn’t real, but generated.

Reply: Yes, we used generated data to avoid over-fitting the hyperparameters to any of the real data
sets. We briefly clarified that on page 23, lines 718-721:

“We developed the downstream training schedule and tuned the hyperparameters using a
simple synthetic dataset based on simple, two-dimensional, geometric shapes for all labe!
types. We then performed |[...]"

Reviewer: Page 23, line 708 - What does subsequently refer to here? “After frozen and fine-tuning
for 100 epochs, subsequently fine-tuning stage enabled training of shared blocks”. Is the order
implied by the word subsequently significant here?

Reply: The fine-tuning stage was initialized by the task head from the frozen stage. This ensured that
all evaluations were completed in time for a fair comparison. Furthermore, in the fine-tuning phase,
this may have helped to ensure that the pre-trained features are not destroyed from either UMedPT
or ImageNet if the first steps generate large gradients due to a randomly initialized head. However,
we did not quantify the benefits of this evaluation scheme and ran it only once. We added a
clarification on page 24, lines 733-736:

“Subsequently, the fine-tuning stage enabled the training of the shared blocks such that the
parameters learned during the frozen training setting were used to initialize the task-specific
head.”

Reviewer: Extended Data Table 5 extends beyond the page width
Reply: We appreciate the comment and decreased the font size of the table.

Reviewer: Would encourage the authors to remove commented code from their codebase and also
add comments within most functions/classes that describe their purpose, along with descriptions of
arguments, their types, and any outputs.

- Would encourage the authors to remove commented code from their codebase.

- Also within these readmes, | would use code blocks to demonstrate to the user how to run the
code, as opposed to “use universal_pretraining.py”.

- Would encourage the authors to add comments within most functions/classes that describe their
purpose, along with descriptions of arguments, their types, and any outputs.

- In the readmes within each subdirectory, | would include a description of the organization of the
code. What are each of the “neural”, “optimization”, “trainer”, “logging”, “interactive”, and
“data_loading” folders for?

- The specific wheels in the requirements.txt file are not supported by certain systems. Instead of
including the wheel links, | would instead specify versions. | had to remove these to install the code.

Reply: We appreciate your feedback on the code. The submission only included preliminary code
that will be uploaded to Zenodo for the purpose of reproducing the study. There, we have removed
the commented code and improved the associated readme files as suggested.
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In preparation for the open source release associated with this paper, we have added comments to
most functions/classes describing their purpose, described the structure of the repo in the readme
and improved the cleanliness. The dependency management has been reworked to use a
pyproject.toml file and optional dependency groups to simplify the installation process. We also
improved the code for training the latest version of UMedPT. Future incremental improvements will
be made to the open-source repositories. We have added the current progress as a third directory in
the code folder.

Reviewer: Overall the code seems modular and it seems as though lots of effort was put into making
the code robust.

Reply: Thank you. We appreciate the positive feedback on the code.

Reviewer: There are currently two subfolders in the top level directory and no readme. | would put a
readme in the top level directory so that users know what the two subfelders are for. This readme
should describe the code within each subfolder on a high level. It should tell the user why code is
split into two subfolders and what is different about each code base.

- l'would change the name of the “code” subdirectory to be more descriptive.

Reply: We added a readme to the top-level directory explaining to reviewers that these are two
versions of the same code base, one used for UMedPT training and one used for the MedMNIST
benchmark. We have added the current state of the code intended for publication as a third folder
and named each folder after its purpose.

Reviewer: If possible, | would add links to all datasets that the user needs to download to the
readme. This would make it significantly easier for others to collect the datasets and reproduce the
results in this paper.

Reply: Thank you for the valuable suggestion, we duplicated and extended the list from the
respective paper section into the Readme of the UMedPT code repository.
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Decision Letter, second revision:

Date

Last Sent
Triggered By
From

To

CC

BCC
Subject
Message

: 6th May 24 13:13:49

: 6th May 24 13:13:49

: Ananya Rastogi

: ananya.rastogi@nature.com

: fkiessling@ukaachen.de

: computationalscience@nature.com

: ananya.rastogi@nature.com
: AIP Decision on Manuscript NATCOMPUTSCI-23-1256B
: Our ref: NATCOMPUTSCI-23-1256B

6th May 2024
Dear Dr. Kiessling,

Thank you for submitting your revised manuscript "Overcoming Data Scarcity in
Biomedical Imaging with a Foundational Multi-Task Model" (NATCOMPUTSCI-23-
1256B). It has now been seen by the original referees and their comments are below.
The reviewers find that the paper has improved in revision, and therefore we'll be
happy in principle to publish it in Nature Computational Science, pending minor
revisions to satisfy the referees' final requests and to comply with our editorial and
formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist
detailing our editorial and formatting requirements in about a week. Please do not
upload the final materials and make any revisions until you receive this additional
information from us.

TRANSPARENT PEER REVIEW

Nature Computational Science offers a transparent peer review option for original
research manuscripts. We encourage increased transparency in peer review by
publishing the reviewer comments, author rebuttal letters and editorial decision
letters if the authors agree. Such peer review material is made available as a
supplementary peer review file. Please remember to choose, using the
manuscript system, whether or not you want to participate in transparent
peer review.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the
interest of confidentiality. If you are concerned about the release of confidential data,
please let us know specifically what information you would like to have removed.
Please note that we cannot incorporate redactions for any other reasons. Reviewer
names will be published in the peer review files if the reviewer signed the comments
to authors, or if reviewers explicitly agree to release their name. For more
information, please refer to our FAQ page.
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Thank you again for your interest in Nature Computational Science. Please do not
hesitate to contact me if you have any questions.

Sincerely,

Ananya Rastogi, PhD
Senior Editor
Nature Computational Science

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are
encouraged to do so. Please note that it will not be possible to add/modify ORCIDs at
proof. Thus, please let your co-authors know that if they wish to have their ORCID
added to the paper they must follow the procedure described in the following link
prior to acceptance: https://www.springernature.com/gp/researchers/orcid/orcid-for-
nature-research

Reviewer #1 (Remarks to the Author):

I have reviewed the revisions to the manuscript and am satisfied with the changes
made. I recommend acceptance.

Reviewer #2 (Remarks to the Author):

I have no additional comments - the authors have done an excellent job in addressing
the queries.

Reviewer #3 (Remarks to the Author):

I appreciate the authors' thorough responses to the my comments and the comments
of the other reviewers and believe that the authors have addressed all of the points.

‘ Final Decision Letter:

Date:

Last
Sent:
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From:
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BCC:
Subject:

17th June 24 10:52:43
17th June 24 10:52:43

Ananya Rastogi
ananya.rastogi@nature.com
fkiessling@ukaachen.de

ananya.rastogi@nature.com,fernando.chirigati@us.nature.com,computationalscience@nat
ure.com,rijsproduction@springernature.com

Decision on Nature Computational Science manuscript NATCOMPUTSCI-23-1256C
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Message Dear Professor Kiessling,

We are pleased to inform you that your Article "Overcoming Data Scarcity in Biomedical
Imaging with a Foundational Multi-Task Model" has now been accepted for publication in
Nature Computational Science.

Once your manuscript is typeset, you will receive an email with a link to choose the
appropriate publishing options for your paper and our Author Services team will be in
touch regarding any additional information that may be required.

Please note that Nature Computational Science is a Transformative Journal (TJ). Authors
may publish their research with us through the traditional subscription access route or
make their paper immediately open access through payment of an article-processing
charge (APC). Authors will not be required to make a final decision about access to their
article until it has been accepted. Find out more about Transformative Journals

Authors may need to take specific actions to achieve compliance with funder and
institutional open access mandates. If your research is supported by a funder that
requires immediate open access (e.g. according to Plan S principles) then you should
select the gold OA route, and we will direct you to the compliant route where possible. For
authors selecting the subscription publication route, the journal’s standard licensing terms
will need to be accepted, including self-archiving policies. Those licensing terms will
supersede any other terms that the author or any third party may assert apply to any
version of the manuscript.

If you have any questions about our publishing options, costs, Open Access requirements,
or our legal forms, please contact ASJournals@springernature.com

Acceptance of your manuscript is conditional on all authors' agreement with our
publication policies (see https://www.nature.com/natcomputsci/for-authors). In particular
your manuscript must not be published elsewhere and there must be no announcement of
the work to any media outlet until the publication date (the day on which it is uploaded
onto our web site).

Before your manuscript is typeset, we will edit the text to ensure it is intelligible to our
wide readership and conforms to house style. We look particularly carefully at the titles of
all papers to ensure that they are relatively brief and understandable.

Once your manuscript is typeset, you will receive a link to your electronic proof via email
with a request to make any corrections within 48 hours. If, when you receive your proof,
you cannot meet this deadline, please inform us at rjsproduction@springernature.com
immediately.

If you have queries at any point during the production process then please contact the
production team at rjsproduction@springernature.com.

You may wish to make your media relations office aware of your accepted publication, in
case they consider it appropriate to organize some internal or external publicity. Once
your paper has been scheduled you will receive an email confirming the publication
details. This is normally 3-4 working days in advance of publication. If you need additional
notice of the date and time of publication, please let the production team know when you
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receive the proof of your article to ensure there is sufficient time to coordinate. Further
information on our embargo policies can be found here:
https://www.nature.com/authors/policies/embargo.html

An online order form for reprints of your paper is available

at https://www.nature.com/reprints/author-reprints.html. All co-authors, authors'
institutions and authors' funding agencies can order reprints using the form appropriate to
their geographical region.

We welcome the submission of potential cover material (including a short caption of
around 40 words) related to your manuscript; suggestions should be sent to Nature
Computational Science as electronic files (the image should be 300 dpi at 210 x 297 mm
in either TIFF or JPEG format). We also welcome suggestions for the Hero Image, which
appears at the top of our home page; these should be 72 dpi at 1400 x 400 pixels in JPEG
format. Please note that such pictures should be selected more for their aesthetic appeal
than for their scientific content, and that colour images work better than black and white
or grayscale images. Please do not try to design a cover with the Nature Computational
Science logo etc., and please do not submit composites of images related to your work. I
am sure you will understand that we cannot make any promise as to whether any of your
suggestions might be selected for the cover of the journal.

You can now use a single sign-on for all your accounts, view the status of all your
manuscript submissions and reviews, access usage statistics for your published articles
and download a record of your refereeing activity for the Nature journals.

To assist our authors in disseminating their research to the broader community, our
SharedIt initiative provides you with a unique shareable link that will allow anyone (with or
without a subscription) to read the published article. Recipients of the link with a
subscription will also be able to download and print the PDF.

As soon as your article is published, you will receive an automated email with your
shareable link.

We look forward to publishing your paper.
Best regards,
Ananya Rastogi, PhD

Senior Editor
Nature Computational Science

P.S. Click on the following link if you would like to recommend Nature Computational
Science to your librarian: https://www.springernature.com/gp/librarians/recommend-to-

your-library

** Visit the Springer Nature Editorial and Publishing website
at www.springernature.com/editorial-and-publishing-jobs for more information about our
career opportunities. If you have any questions please click here.**
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