
nature computational science

https://doi.org/10.1038/s43588-024-00749-7Resource

A programmable environment for shape 
optimization and shapeshifting problems

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s43588-024-00749-7


1

I. USABILITY

The Morpho project aims to support usability, con-
sistent with recommendations from an evaluation of en-
gineering software for mesh generation [1]: The code is
supplied with a 132 page manual hosted on a separate
GitHub repository [2] that incorporates elementary tu-
torials aimed at new users and a reference manual; a
separate developer guide [3] provides documentation of
advanced features. The main git repository [4] also in-
cludes numerous additional examples beyond those re-
ported in the present paper, but fully described in the
manual. Additional support mechanisms include a Slack
channel[5] and a Youtube channel [6].

Morpho can be installed in two lines from the terminal
via the homebrew package manager

brew tap Morpho-lang/Morpho
brew install Morpho Morpho-cli

Morpho-Morphoview

Installation procedures with different package managers
are in development. Morpho also aims to integrate into
the surrounding environment; it can be run from the com-
mand line and includes an interactive mode similar to
Surface Evolver and languages like Perl or Python; the
reference manual is available and searchable in interac-
tive mode as online help.

Advanced users who have created useful Morpho pro-
grams can package these for distribution, and are sup-
ported in coding for Morpho by a separate developer
manual that is being continuously developed [3]. Morpho
can be extended both through packages written in Mor-
pho and external libraries written in C or C++. These
facilities enhance the attractiveness of the package by
promoting reusability of the code. External packages are
provided to promote interoperability with relevant scien-
tific software, including through VTK and JSON files,
and to work with software like Paraview, Gmsh, etc. For
those interested in contributing to Morpho, a contribu-
tor’s guide is provided in the git repository [4]. A full
unit-testing suite is also provided, incorporating more
than 830 separate tests to enable the user to test the
correctness of an installation or to assist developers in-
terested in modifying the source.

II. PERFORMANCE COMPARISON WITH
SURFACE EVOLVER

We briefly compare performance on a set of problems
that can be solved both in Morpho and Surface Evolver
2.70 using the same optimization algorithm, either gra-
dient descent with line search or conjugate gradient, in
both codes. In Supplementary Table I we display run-
times for these examples using the same testing method-
ology and machine as above; note that we recompiled
Surface Evolver for the ARM architecture (on the M2
Pro chip of the Macbook Pro) as the most recent binary

Time (s)
Problem Morpho Evolver

Cube 1.34 2.61
Catenoid 0.37 0.46
Mound 0.96 0.68

Supplementary Table I: Comparison of runtimes for se-
lected problems in Morpho and Surface Evolver.

provided is for the x86 architecture. The results demon-
strate that our implementation is competitive with that
of Surface Evolver. Note that these examples do not nec-
essarily represent the fastest way to solve these problems
in either code but are intended to test the overall imple-
mentation, e.g. mesh updates, force and energy calcula-
tions, etc. In Surface Evolver, for example, a specialized
version of the Newton algorithm is available that often
provides quadratic convergence when the solution is close
to optimal. Morpho, on the other hand, provides explicit
convergence tests that often lead to faster runtimes. We
also have recently demonstrated that quasi-Newton algo-
rithms lead to an order-of-magnitude speedup in perfor-
mance on some problems [7].

III. STEP-BY-STEP EXAMPLES

We present three step-by-step examples with the pro-
gram listing included. The goal of these is to quickly
give the reader a sense of how Morpho works and what a
typical program looks like; complete Supplementary List-
ings for all these examples are provided in the associated
morpho-paper git repository[8, 9]. Further examples are
to be found in the main github repository and in the
manual[2], which contains extensive tutorials.

All of these programs follow a five step sequence which
is very common in Morpho programs:—

1. Create a Mesh object, which is a discrete represen-
tation of the system.

2. Create subsidiary quantities associated with the
mesh such as Fields and Selections.

3. Set up the optimization problem to be solved.

4. Perform the optimization.

5. Visualize the results.

A. Minimal Surfaces

Our first example is a canonical example of shape op-
timization as discussed in the main text. A minimal sur-
face is one that minimizes its area, i.e. the functional,

F =

∫
∂C

dA.

https://github.com/Morpho-lang/morpho


2

Supplementary Figure 1: Initial cube. (Left) Vertices
specified by the user, labelled by their position in the list.
(Right) Complete mesh. PolyhedronMesh adds additional
vertices so that each face is represented by a sequence of tri-
angles.

In the absence of constraints, the surface would collapse
to a point, and so here we will consider a closed surface
and fix the volume enclosed,∫

C

dV = V0.

Here we will solve the problem in a way that closely fol-
lows an introductory example from the Surface Evolver
software[10]. We start by creating a very coarse initial
mesh, then set up the optimization problem and finally
solve it with a gradient descent method. The complete
Supplementary Listing to do all this is displayed in Sup-
plementary Listing 1; we now discuss it step by step.

1. Initialization

Morpho is a modular piece of software, and hence most
programs begin by “importing” modules or libraries that
provide relevant functionality. It’s necessary to import
a module before using any of the functions or classes
defined in it. In Lines 1-3, therefore, we import:

• meshtools, which provides some tools to help cre-
ate and work with a Mesh.

• plot, which provides visualization capabilities.

• optimize, which contains the optimization pack-
age.

The beginning is also a good place to define variables
that control the overall behavior of the program. In lines
5-6 we create two variables; Nlevels, which controls the
number of levels of refinement the program will perform,
and Nsteps, which sets the maximum number of opti-
mization steps per refinement level.

2. Create initial mesh

We next create the initial Mesh in Supplementary List-
ing 1, lines 8-22 using a function from meshtools, Poly-
hedronMesh, that creates Meshes corresponding to poly-
hedra. To make a cube, for example, we make a list of

1 import meshtools
2 import plot
3 import optimize
4
5 var Nlevels = 4 // Levels of refinement
6 var Nsteps = 1000 // Maximum number of steps

per refinement level
7
8 // Create an initial cube
9 var vertices = [[-0.5, -0.5, -0.5], // Vertex 0

10 [ 0.5, -0.5, -0.5], // Vertex 1
11 [-0.5, 0.5, -0.5], // Vertex 2
12 [ 0.5, 0.5, -0.5], // ...
13 [-0.5, -0.5, 0.5],
14 [ 0.5, -0.5, 0.5],
15 [-0.5, 0.5, 0.5],
16 [ 0.5, 0.5, 0.5]]
17
18 var faces = [ [0,1,3,2], [4,5,7,6],
19 [0,1,5,4], [3,2,6,7],
20 [0,2,6,4], [1,3,7,5] ]
21
22 var m = PolyhedronMesh(vertices, faces)
23
24 // Set up the problem
25 var problem = OptimizationProblem(m)
26 var la = Area()
27 problem.addenergy(la)
28
29 var lv = VolumeEnclosed()
30 problem.addconstraint(lv)
31
32 // Create the optimizer
33 var opt = ShapeOptimizer(problem, m)
34
35 // Perform the optimization
36 for (i in 1..Nlevels) {
37 opt.conjugategradient(Nsteps)
38 if (i==Nlevels) break
39 // Refine
40 var mr=MeshRefiner([m])
41 var refmap = mr.refine()
42 for (el in [problem, opt]) el.update(refmap)
43 m = refmap[m]
44 }
45
46 // Visualize the result and save
47 Show(plotmesh(m, grade=2))
48 m.save("end.mesh")

Supplementary Listing 1: Minimal surface enclosing
a fixed volume.

the eight vertices in lines 9-16 (see Supplementary Fig.
1, left). From these, we then create a list defining the
six faces in lines 18-20, where the integers refer to the re-
spective vertices in the list. Note that the vertices must
be given in order going around each face. Once the ver-
tices and faces are defined, we actually create the mesh
in line 22. PolyhedronMesh automatically creates addi-
tional vertices and generates triangles to complete the



3

mesh, which is shown in Supplementary Fig. 1, right.
This is just one way to create a Mesh in Morpho; many

other ways as described in the “Working with Meshes”
chapter in the manual.

3. Set up the optimization problem

Now that the mesh is defined, we define the optimiza-
tion problem in Supplementary Listing 1, lines 25-30.
The overall problem is contained in an Optimization-
Problem object, which is created in Supplementary List-
ing 1, line 26. We specify the target of the optimization—
the Mesh contained in the variable m—as a parameter
to the OptimizationProblem constructor function. Opti-
mizationProblem is part of the optimize module that we
imported in line 3.

Each term in the optimization problem is represented
by a Functional object. These must be created and then
added to the OptimizationProblem. Some Functionals
are quite general and permit, for example, integration of
arbitrary quantities; others are special purpose or opti-
mized for speed.

Here, we create an Area functional in Supplementary
Listing 1, line 26 and then add it to the Optimization-
Problem in line 27. The method addenergy specifies
that the functional concerned is to be included in the
objective function of the optimization. Because we also
want to preserve the volume enclosed by the mesh, we
create a VolumeEnclosed functional in line 29. We add
the resulting functional to the OptimizationProblem in
line 30 using the addconstraint method. Area and Vol-
umeEnclosed are just two examples of functional objects
that are provided by Morpho for ease of use, with many
more available; further, new functionals can be written in
Morpho or added through an extension. Any functional
object can equally be added as either to the objective
function or used as a constraint. Local constraints are
also available; see the second example.

4. Perform optimization

To perform the optimization, we create a ShapeOpti-
mizer object in Supplementary Listing 1 line 33, passing
it the OptimizationProblem just defined, and the Mesh
object that will be the optimization target. ShapeOp-
timizers provide a number of methods that implement
different algorithms; here we will use the conjugate gra-
dient method[11].

The actual optimization step is performed in
Supplementary Listing 1 line 37 by calling the
conjugategradient method of the ShapeOptimizer.
You’ll notice that this is wrapped in a loop (lines 36-
44) which handles the successive refinement as will be
discussed in the next subsection. When called, optimizer
then performs conjugate gradient steps until one of the
following tests is satisfied:

1. The change in energy ∆E in the iteration satisfies,

|E| < ϵ,

which checks for the (surprisingly common) case
where the optimal value of the objective function
is zero.

2. The change in energy ∆E in the iteration satisfies,∣∣∣∣∆E

E

∣∣∣∣ < ϵ,

where the value of ϵ is by default 1 × 10−8, but
can be changed by setting the etol property of the
Optimizer object like so:

opt.etol = 1e-7

3. The number of iterations exceeds the value passed
to the optimization algorithm. Here we passed
the (intentionally large) value of Nsteps defined
at the start of the program in line 5 to the
conjugategradient method of our ShapeOpti-
mizer.

You can determine whether the convergence check was
passed by calling the method hasconverged on the
ShapeOptimizer.

When developing a program to solve a new problem,
it’s often a good idea to start with one or just a few opti-
mization steps to check that the optimization is proceed-
ing as expected—this helps identify bugs in the specifica-
tion of the problem—and then to crank up the maximum
number of iterations until convergence is achieved.

5. Refinement

In Supplementary Listing 1 lines 36 to 44, we optimize
successive Meshes of increasing refinement. Refinement
can mean a number of things, but in this context, it refers
to creating a new mesh by replacing the triangles with
smaller ones, and adding new vertices as appropriate. Re-
finement can be adaptive, localized to particular triangles
where the shape is poorly resolved, or global, affecting all
triangles equally. Here we will simply perform global re-
finement; the Mesh at each stage of optimization is shown
in Supplementary Fig. 2.

To do so, after optimizing the Mesh, we create a
MeshRefiner object (from the meshtools module) in line
40. We give it the Mesh we want to refine.

Refinement happens by calling the refine method
on our MeshRefiner in line 41, which returns a Dictio-
nary object. The Dictionary maps the old, unrefined,
objects—these are the Dictionary’s keys—to the new, re-
fined, objects created during the refinement process.

Having obtained the refined Mesh, we now need to up-
date various other data structures. The Optimization-
Problem and ShapeOptimizer are updated in line 42 by



4

Supplementary Figure 2: Successively refined meshes by splitting each triangle into four similar triangles shown after
performing optimization at each stage.

Supplementary Figure 3: Optimized minimal surface
enclosing a fixed volume after four levels of refinement, visu-
alized in Morphoview.

calling their update method. These now refer to the up-
dated Mesh. Finally, we update the variable m in line 43
to refer to the new Mesh by looking it up in the dictio-
nary.

Refinement may look quite complicated, but quite
commonly we will want to refine multiple inter-related
objects at once; the MeshRefiner can take care of all of
this for us. We simply have to update our data structures
accordingly.

6. Visualization

Morpho provides a rich visualization capability. In
Supplementary Listing 1, line 47 we use a function from
the plot package, plotmesh, that draws the Mesh for us,
creating a Graphics object. We use Show to display this
in the Morphoview visualization program, which is a sep-
arate application installed along with Morpho. We also
save the final result of the optimization by using the save
method of the Mesh data structure in line 48.

Upon running this code, you should see a window like
that in Supplementary Fig. 3 pop up containing the
fully refined and optimized sphere. It’s often a good idea
to make visualizations and save results at intermediate
steps; we could insert a call to plotmesh after line 38, for
example, to see the optimized mesh at every stage.

B. Filaments

This example, inspired by experiments and calcula-
tions performed by a Prasath et al.[12], concerns an elas-
tic filament strongly confined to the surface of a soap bub-
ble under gravity. The filament is held fixed at the top
and resists elastic deformation, but is forced to deform
from its equilibrium configuration—a straight line—by
the curvature.

The nondimensionalized energy of the filament on the
unit sphere is, as described in the main text,

F̃ =

∫ Φ

0

[Ωgχ
2(s̃) + S(s̃) · ẑ] ds, (1)

where χ2 is the curvature squared, the gravity term acts
along the z direction and the integral is to be taken over
the filament, which has arclength Φ. The quantity Ωg

quantifies the relative influence of curvature and gravity.
As for the first example, we proceed to solve this prob-

lem step by step. The Supplementary Listing is split into
sections for clarity.

1. Initialization

In Supplementary Listing 2, we begin by importing
packages in lines 1-3, and define the parameters in lines
5-10. We also define some metaparameters for the mesh
and optimization process in lines 13-16.

The initial Mesh is created in line 19. The function
LineMesh creates a Mesh given a one parameter function
and a range of values. Hence, we supply an anonymous



5

1 import meshtools
2 import optimize
3 import plot
4
5 var R = 1.0 // Radius of sphere
6
7 // Initialize the filament with a given value

of OmegaInv and Phi,
8 // the two dimensionless parameters explored

in the paper.
9 var OmegaInv = 0.1 // Strength of bending

energy relative to gravity
10 var Phi = 5 // Angular arclength of filament

(2*Pi is a complete circle)
11
12 // Other parameters
13 var regulator = 5 // Strength of mesh

regularizer (set emperically)
14 var N = 20 // Number of elements to discretize

the filament
15 var Nsteps = 10000 // Maximum number of

optimization steps
16 var initialStepSize = 0.002 // Initial

stepsize for the optimizer
17
18 // Generate initial mesh
19 var m = LineMesh(fn (t) [R*sin(t), 0,

R*cos(t)], 0..Phi:Pi/N)
20 var m0 = m.clone() // Keep a copy for

visualization

Supplementary Listing 2: Setup and initial Mesh for
filament example.

function that describes the geodesic,

X(t) =

 R sin t

0

R cos t

 ,

with limits set by the parameters Phi and N defined in
lines 10 and 14 respectively.

We want to display the initial Mesh for visualization
purposes later, so we make a copy by calling the clone
method in line 20.

2. Set up the optimization problem

Having performed initialization, we now set up the op-
timization problem in Supplementary Listing 3. The Op-
timizationProblem object that defines the objective func-
tion is created in line 2. As in the previous example,
each term in the objective functional is represented by a
specific object. We include the curvature squared term
in lines 5-6; note that the perfacter Ωg is specified as
the LineCurvatureSq object is added to the optimization
problem in line 6.

The gravity term is implemented using a LineIntegral
object in Supplementary Listing 3, line 10, which com-

1 // Setup optimization problem
2 var problem = OptimizationProblem(m)
3
4 // Bending energy
5 var linecurv = LineCurvatureSq()
6 problem.addenergy(linecurv, prefactor =

OmegaInv)
7
8 // Gravitational potential energy
9 var up = Matrix([0,0,1])

10 var gravity = LineIntegral(fn (x) x.inner(up))
11 problem.addenergy(gravity) // Default

prefactor is 1
12
13 // Constrain the total length
14 problem.addconstraint(Length())
15
16 // Constraint for the filament to lie on the

sphere
17 var lc = ScalarPotential(fn (x,y,z)

x^2+y^2+z^2-R^2)
18 problem.addlocalconstraint(lc)
19
20 // Regularization penalty function to ensure

similar-sized elements
21 var eq = EquiElement()
22 problem.addenergy(eq, prefactor=regulator)

Supplementary Listing 3: Set up the optimization
problem for the filament example.

putes the integral of a given function—here we supply an
anonymous function—over line elements in a Mesh. We
define a vector giving the “upward” direction in line 9,
and the line integral computed is the dot product of the
position with the up vector.

The length of the element is constrained in Supple-
mentary Listing 3, line 14. We also want to constrain
the filament to lie on the surface of a sphere, which is a
local constraint. We implement this via a level set con-
straint in lines 17-18. A ScalarPotential object is created
in line 17 with the scalar function,

f(x, y, z) = x2 + y2 + z2 −R2

which is zero on the desired feasible region. Once created,
the ScalarPotential is added as a local constraint, i.e. one
that applies to every Mesh degree of freedom.

We will find that it is necessary to add an additional
term in the problem to ensure that line elements remain
similar in size; this is a common strategy to regularize
shape optimization problems and often improves conver-
gence. An EquiElement object is created in Supplemen-
tary Listing 3, line 21 and added to the problem in line
22 to do this.

3. Perform the optimization

As before, the optimization is carried out by a



6

1 // Set up the optimizer
2 var opt = ShapeOptimizer(problem, m)
3
4 // Fix the top end of the filament
5 opt.fix(Selection(m, fn(x,y,z)

x^2+y^2+(z-R)^2<0.0001))
6 opt.stepsize = initialStepSize
7
8 // Function to jiggle vertex positions by a

small amount
9 fn jiggle(m, noise) {

10 for (id in 1...m.count()) { // Skip vertex
0

11 var x = m.vertexposition(id)
12 x += noise*Matrix([randomnormal(),
13 randomnormal(),
14 randomnormal()])
15 m.setvertexposition(id, x)
16 }
17 }
18
19 // Jiggle filament a little to kick it out off

the saddle point
20 jiggle(m, 0.005)
21 opt.conjugategradient(Nsteps)

Supplementary Listing 4: Optimizing the filament
example. Note that since the starting point is a saddle
point, we apply a small amount of gaussian noise to the initial
configuration.

ShapeOptimizer object, which we create in line 2 of Sup-
plementary Listing 4. To fix the top vertex in the fila-
ment, we call the fix method of the ShapeOptimizer in
line 5; this takes a Selection, a collection of elements to
keep fixed.

To create a Selection containing just the top vertex,
we must provide the Selection constructor with the Mesh
of interest, and a function that returns true within the
region of interest. Since the top vertex is at coordinates
(0, 0, R), the inequality x2+y2+(z−R)2 < ϵ2 will locate
it if ϵ is chosen to be smaller than the distance between
vertices. Here we pick a value of ϵ2 = 0.0001.

The ShapeOptimizer object has a number of parame-
ters that we can select before performing the optimiza-
tion. One is the initial stepsize to use, which is a frac-
tion in the interval 0 < stepsize ≤ 1; the upper end
corresponds to taking the full gradient step. Many op-
timization algorithms adjust the stepsize automatically,
but typically need an initial guess. We therefore provide
one in Supplementary Listing 4, line 6.

Before performing the optimization, we pause to note
a peculiarity of this particular problem. The initial solu-
tion we prepared, where the filament lies exactly along a
great circle is actually already an extremum of the func-
tional (1); it’s just not the one we’re interested in (nor is
it stable). If we run the optimizer from this initial guess,
it simply converges on the initial solution. What we need
to do is to perturb the initial guess a little bit.

1 // Visualize the filament and the covering
sphere

2 fn visualize(m, m0) {
3 var gball=Graphics()
4 gball.display(Sphere([0,0,0], R-0.05))
5 gball.display(Arrow([0,0,R], [0,0,R+0.2]))
6 gball.display(Arrow([0,0,-R-0.4],

[0,0,-R-0.2]))
7 return plotmesh(m, grade=[0,1]) + gball +

plotmesh(m0, color=Blue)
8 }
9

10 Show(visualize(m, m0))

Supplementary Listing 5: Visualization code for
filament example.

A function to do so is called jiggle and is defined
in lines 9-17. It loops over the vertex ids in the Mesh
(the number is obtained using the count method in line
10). In each iteration, the loop gets the position of a
particular vertex in line 11, and then adds a random
gaussian motion in lines 12-14 with standard deviation
controlled by the noise parameter. Having calculated
the new position, it is stored in the Mesh using the
setvertexposition method in line 15. Note we skip
the top vertex by starting the loop from id 1 in line 10.

Having defined the jiggle function, we use it in
Supplementary Listing 4, line 20 to jiggle the ini-
tial guess, before performing the optimization using
conjugategradient in line 21. The optimizer then per-
forms conjugate gradient steps until the convergence cri-
teria are satisfied or the maximum number of iterations
is reached as in the previous example.

4. Visualization

Morpho provides rich visualization capabilities that
can be readily customized to a particular problem. Users
can draw Meshes as well as many other graphical ele-
ments. The filament example contains a good example
of a custom visualization shown in Supplementary List-
ing 5. For convenience, in Supplementary Listing 5, lines
2-8 we create a function visualize that makes a visu-
alization given two Mesh objects m (a configuration of
interest) and m0 (a reference configuration).

We first create a Graphics object in Supplementary
Listing 5, line 3, which is an abstract container for graph-
ical elements; this object doesn’t actually draw anything
on the screen or paper, but simply contains all the ob-
jects necessary to describe the scene we want to draw.
The various items to be drawn are added to the Graphics
object using the display method. We draw the sphere
on which the filament is embedded on line 3—notice we
use a slightly smaller radius to make the filament more
visible—and then two arrows to indicate the upward di-
rection in lines 5 and 6.



7

Supplementary Figure 4: Optimized filament embed-
ded on a sphere, visualized in Morphoview. The initial config-
uration is displayed in blue; the final state is in grey.

To display a Mesh object, we must use the plot pack-
age, which contains a number of functions that help vi-
sualize Meshes and associated data. Here we plot both
meshes passed to the function as arguments using the
plotmesh function in line 7; the reference Mesh is colored
blue using an optional argument passed to plotmesh.
Each plotmesh creates its own separate Graphics object;
these are combined into a single Graphics object using
the + operator and returned from the function in line 7.

In the main code, to visualize a configuration we sim-
ply call the visualize function with the Mesh of interest
as well as a reference mesh to display. The Show function
sends the returned Graphics object to the Morphoview
utility, and the visualization appears in a separate win-
dow as shown in Supplementary Fig. 4.

C. Isotropic contact mechanics

The final two examples are closely related to the tac-
toid example presented in the main text, and inspired by
a recent paper by Cousins et al.[13]. The code for the tac-
toid example is extensively discussed in the manual, and
hence here we present something of an extension; how to
determine the configuration of a liquid crystal droplet in
contact with a boundary. This problem will also allow us
to demonstrate some more advanced features of Morpho.
We’ll begin with a simpler problem, finding the shape of
a 2D droplet made from isotropic fluid, and then extend
this to the full nematic case.

A schematic of the domain of interest is displayed in
Supplementary Fig. 5. The droplet occupies the domain
C and is in contact with a substrate on its lower boundary
∂C2 and the air on the upper boundary ∂C1.

Air

Fluid

Substrate

Supplementary Figure 5: Fluid droplet in contact with
a surface.

The energy functional for the droplet is,

σ

∫
∂C1

dl +∆σ

∫
∂C2

dl,

where σ is the surface tension of the air-fluid interface and
∆σ is the difference between the surface tensions of the
fluid-substrate and air-substrate interface. If ∆σ is pos-
itive, the droplet is hydrophobic and the fluid-substrate
contact line will tend to vanish; if negative the droplet is
hydrophilic and the droplet will tend to wet the substrate.

The optimization problem is subject to two con-
straints: first, there is a global constraint on the physical
volume of the droplet,∫

C

dA = A0,

which in 2D is really an area. Further, the lower bound-
ary must lie on the substrate, which is a local constraint.

We pause to note that the formulation of this scenario
as an optimization problem differs from typical presen-
tations using the Young-Dupré equation (which balances
forces at the contact point). The two formulations are
equivalent for isotropic fluids, and the additional com-
plexity of optimization is not required. However, by solv-
ing a simpler problem first, we can use the solution as a
good starting point for the anisotropic problem later.

We will also structure our code a little differently from
the previous two examples, utilizing Morpho’s support
for object oriented programming to better structure the
code. As discussed in the Introduction above, most Mor-
pho shape optimization programs have a similar struc-
ture, accomplishing a defined sequence of tasks. It there-
fore makes sense to create a class that corresponds to a
particular problem, and define methods that accomplish
each task.

An outline for our program’s structure is shown in Sup-
plementary Listing 6. In Supplementary Listing 6, lines
1-3 we import necessary modules. Supplementary Listing



8

1 import meshgen
2 import plot
3 import optimize
4
5 class Droplet {
6 init(sigma=1, deltasigma=0) {
7 // ...
8 }
9

10 initialMesh() {
11 // ...
12 }
13
14 initialSelections() {
15 // ...
16 }
17
18 setupProblem() {
19 // ...
20 }
21
22 optimize(maxiterations=500) {
23 // ...
24 }
25
26 visualize() {
27 // ...
28 }
29 }
30
31 var sim = Droplet(sigma=20,deltasigma=-4)
32
33 sim.initialMesh()
34 sim.initialSelections()
35 sim.setupProblem()
36 sim.optimize()
37
38 Show(sim.visualize())

Supplementary Listing 6: Outline code for isotropic
contact mechanics.

6 lines 5-29 define the Droplet class, which incorporates
a number of methods that we will define in subsequent
sections.

Supplementary Listing 6 lines 31-38 execute the se-
quence of activities necessary to solve the problem: we
create an instance of Droplet with defined parameters in
line 31, and then call appropriate methods in order. Fi-
nally, the visualization is displayed in Morphoview in line
37.

We’ll now define each of the missing methods in turn:

1. Droplet initializer

The init method, shown in Supplementary Listing 7,
is a special method that is always called when an object is
created and should set up the object ready for use. In this
example we define init to take two optional parameters,

1 init(sigma=1, deltasigma=0) {
2 self.sigma = sigma // Isotropic surface

tension fluid-air
3 self.deltasigma = deltasigma // Difference

between surface tension of
air-substrate interface and
fluid-substrate interface

4 }

Supplementary Listing 7: Initializer method for
isotropic contact mechanics.

1 initialMesh() {
2 var c = CircularDomain([0,0], 1)
3 var hs = HalfSpaceDomain(Matrix([0,0]),

Matrix([0,1]))
4 var dom = c.difference(hs)
5 var mg = MeshGen(dom, [-1..1:0.2,

-1..1:0.2], quiet=true)
6 self.mesh = mg.build()
7 }

Supplementary Listing 8: Creating an initial Mesh for
isotropic contact mechanics.

the surface tensions sigma and deltasigma, which are
stored in the Droplet object’s properties in lines 2-3.

More generally, the init method should do the min-
imum necessary to initialize the object. It should not
perform complex or extensive calculations; these should
be reserved for other methods. If an object is complicated
to create, it may be worth defining a second class to ac-
tually build it (the MeshBuilder class in the meshtools
package is a good example).

2. Create the initial mesh

We want to create a Mesh corresponding to the upper
half of the unit disk. To do this, we’ll use the meshgen
module, which allows us to defined a target domain using
simple geometric objects—or more complex regions de-
fined by scalar functions—combine them using set opera-
tions, and then generate a Mesh from the target domain.
Many examples in both two and three dimensions are
provided in the Morpho manual chapter “Working with
Meshes”.

The initialMesh method for the present problem is
shown in Supplementary Listing 8. In line 2 we create
a CircularDomain object with center (0, 0) and radius 1.
In line 3 we define the unit half space with edge including
the point (0, 0) and exterior normal (0, 1); this is equiva-
lent to the region y < 0. The final domain c\hs is created
in line 4 using the difference method.

Having defined the domain, we create a MeshGen ob-
ject in line 5 to build the Mesh. It is necessary to provide
a bounding box in the constructor by giving a Range ob-
ject for each dimension; here we use the box x, y ∈ [−1, 1].



9

Supplementary Figure 6: Initial Mesh created using the
meshgen module.

1 initialSelections() {
2 self.bnd = Selection(self.mesh,

boundary=true)
3 self.upper = Selection(self.mesh, fn (x,y)

x^2+y^2>0.99)
4 self.lower = Selection(self.mesh, fn (x,y)

y<0.01)
5 self.upper.addgrade(1)
6 self.lower.addgrade(1)
7 }

Supplementary Listing 9: Performing the
optimization for isotropic contact mechanics.

The step provided in the Range object is an approximate
spacing for the vertices of the Mesh. By default, Mesh-
Gen emits information about its operations and so we set
quiet=true to suppress this output.

Finally, the Mesh is built by calling the build method
in line 6 and stored in the mesh property of the current
Droplet object (referred to using the keyword self). The
resulting Mesh is displayed in Supplementary Fig. 6

3. Create subsidiary quantities

While this problem doesn’t require any Fields, we will
want to refer to the boundary of the Mesh, and indeed the
upper and lower parts separately. To create the neces-
sary Selection objects, the initialSelections method
is defined in Supplementary Listing 9.

In Supplementary Listing 9, line 2, we create a Se-
lection that represents the boundary of the Mesh. This
selection includes both the line elements on the bound-
ary and the vertex elements attached. In line 3 we cre-
ate a Selection for the upper air-fluid boundary ∂C1 by
finding vertices on the unit circle. Notice the inequal-
ity x2 + y2 > 0.99 which is true for all the boundary
vertices. Line 4 creates a Selection for the lower fluid-
substrate boundary ∂C2 by finding vertices below the line
y < 0.01. Note in both cases, because the Selection con-
structor only finds the vertices, we need to extend each
Selection to include the line elements (grade 1) using the
addgrade method.

Creating Selections can be error prone: it’s important

Boundary

Upper

Lower

Supplementary Figure 7: Selections for different regions
of interest on the initial Mesh.

to check that they include exactly the elements you ex-
pect, or later parts of your problem might fail. A missing
component of a Selection, for example, could cause your
optimization problem to be incorrectly defined and hence
ill-posed, causing the Optimizer to fail to converge.

To help with this, the plot package provides a func-
tion, plotselection, that helps visualizes the selected
elements. You could add the following code,
Show( plotselection (sim.mesh, sim.upper ,
grade =[0,1]) ),
after line 33 in the main code (Supplementary Listing 6)
to check that the Selection held in the upper property
is correct, for example. Plots for all three Selections
produced in this way are shown in Supplementary Fig.
7.

4. Set up the optimization problem

The optimization problem is set up in the
setupProblem method reusing the same concepts
from other examples: An OptimizationProblem object
is created in Supplementary Listing 10 line 2 using the
Droplet’s mesh. We create a Length functional in line 4,
which is then applied to the upper and lower boundary
separately in lines 5 and 6; notice that each of these
uses the optional parameters selection and prefactor
to set the correct region and prefactor appropriately.
Also note that only one Length object is required; the



10

1 setupProblem() {
2 var problem=OptimizationProblem(self.mesh)
3
4 var llength = Length()
5 problem.addenergy(llength,

selection=self.upper,
prefactor=self.sigma)

6 problem.addenergy(llength,
selection=self.lower,
prefactor=self.deltasigma)

7
8 var larea = Area()
9 problem.addconstraint(larea)

10
11 var lcons = ScalarPotential(fn (x,y) y)
12 problem.addlocalconstraint(lcons,

selection=self.lower)
13
14 self.problem = problem
15 }

Supplementary
Listing 10: Performing the optimization for isotropic
contact mechanics.

1 optimize(maxiterations=500) {
2 var opt = ShapeOptimizer(self.problem,

self.mesh)
3 opt.conjugategradient(maxiterations)
4 }

Supplementary
Listing 11: Performing the optimization for isotropic
contact mechanics.

optimizer uses it for each Selection separately.
The global area constraint is enforced in Supple-

mentary Listing 10, lines 8-9 by creating an Area ob-
ject and adding it to the OptimizationProblem using
addconstraint. The local constraint that the lower
boundary be confined to the line y = 0 is enforced in
lines 11-12 using a ScalarPotential object with an appro-
priate anonymous function; the ScalarPotential created
is added to the problem using addlocalconstraint.

Once the OptimizationProblem has been successfully
defined, it’s stored in the Droplet object’s problem prop-
erty in Supplementary Listing 10, line 14.

5. Perform the optimization

The optimize method for this problem is shown in
Supplementary Listing 11. We define it to take an op-
tional parameter maxiterations so that the number of
iterations can be easily adjusted; the default value of 500
is a reasonable start. A ShapeOptimizer is created in
Supplementary Listing 11 line 2, and then conjugate gra-
dient steps are performed in line 3 using the standard
convergence criteria as used in the previous problems.

1 visualize() {
2 return plotmesh(self.mesh, grade=[0,1])
3 }

Supplementary Listing 12: Visualization method for
isotropic contact mechanics.

Supplementary Figure 8: Optimized iostropic fluid
droplet in contact with substrate.

6. Visualize results

The visualize method for the isotropic contact mechan-
ics problem, shown in Supplementary Listing 12, is very
simple; we simply use the plotmesh function from the
plot package to display the Mesh. Here we have chosen
to display the vertices and line elements (grades 0 and 1
of the Mesh) for clarity.

7. Running the code

With the complete code, defined by a inserting the
method definitions in Supplementary Listings 7-12 into
the outline Supplementary Listing 6, is complete, it can
be run which will produce the final configuration shown
in Supplementary Fig. 8. Try adjusting the value of
∆σ—how does this change the resulting configuration?

D. Nematic contact mechanics

We will now extend our code to solve the analogous
problem for a nematic droplet in contact with the sub-
strate. In addition to the shape of the droplet, we must
also find the associated director field n(x) that minimizes
the energy functional, which is given by,



11

1 class NematicDroplet is Droplet {
2 init(...) {}
3
4 initialField() {}
5 importData(obj) {}
6
7 setupProblem() {}
8 optimize(...) {}
9

10 visualizeDirector() {}
11 visualize() {}
12 }

Supplementary Listing 13: Class outline for nematic
contact mechanics.

F =
K

2

∫
C

(∇ · n)2 dA

+ σ

∫
∂C1

dl +∆σ

∫
∂C2

dl

− w1

∫
∂C1

(∇ · t)2 dl − w2

∫
∂C1

(∇ · t)2 dl. (2)

The first term is the elasticity of the liquid crystal that
favors spatially uniform alignment in the so-called one-
constant approximation; the second and third terms
are the isotropic surface tension as in the earlier prob-
lem; the final terms are the anisotropic—i.e. orienta-
tion dependent—part of the surface tension often referred
to as anchoring terms in the liquid crystal community.
These latter terms favor alignment of the nematic with
with the local tangent vector to the boundary. The func-
tional (2) is to be minimized with respect to the droplet
shape C and the configuration of the liquid crystal n
subject to the area constraint,∫

C

dA = A0,

and local constraint on the boundary,

y = 0∀∂C2,

together with a new local constraint on the director field,

n · n = 1.

Because this new problem extends the isotropic case
above, we would like to reuse the isotropic code already
developed. A natural way to do so is to exploit Morpho’s
support for inheritance by defining a new class, Nemat-
icDroplet that extends the Droplet class already defined.

An outline for the new class is displayed in Supplemen-
tary Listing 13, showing the new methods we need to de-
fine. NematicDroplet inherits all the method definitions
from Droplet—they are copied into the class definition

1 init(initialState=nil, sigma=1, deltasigma=0,
k=1, wupper=1, wlower=1) {

2 super.init(sigma=sigma,
deltasigma=deltasigma)

3
4 self.k = k
5 self.wupper = wupper
6 self.wlower = wlower
7
8 if (initialState)

self.importData(initialState)
9 }

10
11 importData(obj) {
12 self.mesh = obj.mesh
13 self.upper = obj.upper
14 self.lower = obj.lower
15 self.bnd = obj.bnd
16 }
17
18 initialField() {
19 self.director = Field(self.mesh,

Matrix([1,0,0]))
20 }

Supplementary Listing 14: Initialization for nematic
contact mechanics.

before we define new methods—and we will reuse many
of these. Any new methods we define in NematicDroplet
that have the same name as one in Droplet replace the
old method, but we can still call that method using the
keyword super as we shall see below.

1. Initializing a NematicDroplet

Our NematicDroplet initialization methods are shown
in Supplementary Listing 14. We begin by calling
Droplet’s initializer in line 2. The keyword super is used
to indicate that it’s the superclass’s method that should
be called, not the method defined on the current Nemat-
icDroplet class. It’s a common practice to do this in the
init method of a subclass to ensure any initialization the
superclass expects has been done correctly.

The init method is a little more complicated because
we now have additional parameters. Defining these us-
ing the optional parameter syntax is helpful to the user
because, first, default values can be provided and hence
the user may not need to always specify them; moreover
they can be specified in the method call in arbitrary or-
der. Lines 4-6 copy the values provided by the user in
the constructor, or the default values as appropriate, into
the NematicDroplet’s properties.

To assist the user, we also provide an optional pa-
rameter initialState. If this is specified by the user,
in Supplementary Listing 14, line 8 we call a method
importData defined in lines 11-15 that copies the mesh
and selections from a supplied object to this one. This in-



12

Supplementary Figure 9: Initial configuration for ne-
matic droplet, starting from a uniform director field.

terface allows the user to prepare and minimize a Droplet
and then use it as the initial configuration for the nematic
optimization. Of course, if they wish, they could still use
the initialMesh and initialSelections methods that
are copied from Droplet into NematicDroplet by inheri-
tance.

Since we now have a director field to consider as well as
the droplet, we will accordingly need to create an initial
Field object; hence we define a method initialField
that simply creates a uniform configuration n = (1, 0, 0).
Even though the problem here is two dimensional—the
droplet should really be viewed as a prism extruded into
the paper—we define a 3D director, because we may wish
to examine scenarios where n points out of the plane. We
could constrain the director to lie in plane by creating
a 2D Field, n = (1, 0); we would need to mildly change
the visualization code below if so since this assumes a 3D
director. The initial configuration of the system, starting
from the a droplet shaped obtained from the isotropic
problem, is displayed in Supplementary Fig. 9 using the
visualization code described in subsection III D 4 below.

2. Setting up the problem

Supplementary Listing 15 displays the code for the
new setupProblem method. Since the nematic prob-
lem encapsulates the isotropic droplet problem, we
reuse the old setupProblem method by calling Droplet’s
setupProblem method in line 2 using super. After this
line is executed, the isotropic problem has been correctly
set up, and we can simply append the new Functionals
to it.

We prepare and add nematic elasticity in Supplemen-
tary Listing 15, lines 4-5 using a Nematic functional.
The anchoring energies are more complicated. We de-
fine a LineIntegral object in line 12 that will compute
the anchoring energy, and give it the director as a pa-
rameter. We also need to provide an integrand function,
which here is defined as a local function, anchintegrand
in Supplementary Listing 15, lines 7-10. Functions de-
fined within a method or function are only visible within
the function, and hence are a good alternative where an
anonymous function would be too long.

The integrand function, anchintegrand, obtains the
local tangent vector by calling the special tangent func-

1 setupProblem() {
2 super.setupProblem() // Initialize the

problem with the isotropic part
3
4 var lnem = Nematic(self.director) //

Nematic elasticity
5 self.problem.addenergy(lnem, prefactor =

self.k)
6
7 fn anchintegrand(x, n) { // Integrand for

anchoring energy
8 var t = tangent() // Gets the local

tangent vector
9 return (n[0]*t[0]+n[1]*t[1])^2

10 }
11
12 var lanch = LineIntegral(anchintegrand,

self.director) // Anisotopic surface
tension (anchoring)

13 self.problem.addenergy(lanch,
selection=self.lower,
prefactor=-self.wlower)

14 self.problem.addenergy(lanch,
selection=self.upper,
prefactor=-self.wupper)

15
16 var lnorm = NormSq(self.director)

// Unit vector
constraint

17 self.problem.addlocalconstraint(lnorm,
field=self.director, target=1)

18 }

Supplementary Listing 15: Problem setup for nematic
contact mechanics.

tion, and then computes the dot product. The local value
of the director is computed from the Field by interpola-
tion and passed to the integrand function as a parameter.
Because n is a three dimensional vector and the tangent
is two dimensional, we compute the dot product manu-
ally and return it in line Supplementary Listing 15, 9.

Once this apparatus is set up, the anchoring energies
are added to the problem in Supplementary Listing 15,
lines 13-14. Notice that the domain of each is specified
using the selection parameter to addenergy, and the
appropriate coefficient is also provided.

The unit length constraint on the director is imposed in
Supplementary Listing 15, lines 16-17 using the NormSq
functional, and the desired target value of 1 specified as
a parameter to the addlocalconstraint method.

3. Performing the optimization

Since we must optimize the energy functional both
with respect to shape and the director, we must incor-
porate the additional optimization. We construct an
Alternating Optimization scheme in the new optimize
method displayed in Supplementary Listing 16. As in



13

1 optimize(maxiterations=500, altiterations=10) {
2 var opt = ShapeOptimizer(self.problem,

self.mesh)
3 var fopt = FieldOptimizer(self.problem,

self.director)
4
5 for (i in 1..maxiterations) { //

Alternating optimization scheme for
Shape and Field

6 fopt.conjugategradient(altiterations)
7 opt.conjugategradient(altiterations)
8 if (opt.hasconverged() &&

fopt.hasconverged()) break
9 }

10 }

Supplementary Listing 16: Optimization method for
nematic contact mechanics.

the isotropic case, we create a ShapeOptimizer in Sup-
plementary Listing 16, line 2, but now we also create
a FieldOptimizer in line 3, and give it the Field to be
optimized as a parameter.

Having created the optimizers, the alternate between
performing conjugate gradient steps on the shape and the
field respectively in Supplementary Listing 16, lines 5-9.
The optional parameter altiterations specifies how many
iterations of each to perform. Whether each optimizer
has converged according to the standard criteria defined
above in Subsection III A 4 is checked in line 8 and the
loop terminated if so using the break keyword.

Performance of the alternating optimization scheme
may depend on the relative number of optimization steps
taken on the field and mesh; you are encouraged to in-
vestigate the effect of changing this. By design, Mor-
pho gives you the ability to control how optimization is
performed because this is strongly problem dependent.
Nonetheless, even without tuning the optimization the
present code overall runs in a fraction of a second on a
macBook Pro M2.

Note that the optimize package is under very ac-
tive development and we expect improved optimizers to
be available in future releases.

4. Visualization

We now need to visualize the director field n
in addition to the Mesh, so we create a method
visualizeDirector to do so. This gives a valuable illus-
tration of Morpho’s custom visualization capabilities; it’s
shown in Supplementary Listing 17. The method gener-
ates a Graphics object by drawing a cylinder at every
vertex in the Mesh oriented locally along the direction of
n. We choose a cylinder not an arrow because the physics
does not depend sign of n.

One question is how large should the cylinder be? We
could leave this as a user specified parameter, but it’s nice

1 visualizeDirector() {
2 // Estimate scale from mean mesh separation
3 var scale = 0.7*Length.total(self.mesh)/
4 self.mesh.count(1)
5
6 var g = Graphics()
7 for (id in 0...self.mesh.count()) {
8 var x = self.mesh.vertexposition(id)

// Get the position of vertex id
9 var xx = Matrix([x[0], x[1], 0])

// Promote it to a 3D vector
10 var nn = self.director[0,id]

// Get the corresponding director
11 g.display(Cylinder(xx-scale*nn,

xx+scale*nn, aspectratio=0.2,
color=White))

12 }
13 return g
14 }
15
16 visualize() {
17 return plotmesh(self.mesh, grade=1) +

self.visualizeDirector()
18 }

Supplementary Listing 17: Visualization method for
nematic contact mechanics.

to calculate this automatically from the Mesh itself. We
compute the average length of an edge Supplementary
Listing 17, lines 3-4 as follows: First, we can compute
the total length of all line elements in the mesh using the
total method of the Length functional. Note we can call
this directly on the class; we don’t need to instantiate a
Length object. We then obtain the number of line ele-
ments using the count method of the Mesh. The average
length is the ratio of these two quantities. The scaling of
0.7 was chosen arbitrarily to ensure the cylinders don’t
overlap.

Having created an empty Graphics object in line 6, we
loop over all Mesh vertex ids in Supplementary Listing
17, lines 6-11. For each vertex, we obtain its position in
line 8 and convert this from a 2D vector to a 3D vec-
tor in line 9. The value of n at the appropriate vertex
is obtained in line 9 (note that the index takes two val-
ues, the first, 0, indicates grade zero or vertices, and the
second is the vertex id. We then draw the cylinder from
x−scalen to x+scalen with an aspect ratio of 0.2 and
color set to White in line 11. The completed Graphics
object is returned in line 13.

A separate method, visualize, displays both Mesh
and Field together in Supplementary Listing 17, lines
16-18. The visualize method from the Droplet superclass
was so simple it’s not necessary to reuse it, and in any
case we prefer not to display the vertices now that di-
rectors are being drawn. The new visualize class draws
the Mesh with plotmesh, calls the visualizeDirector
method and combines the two Graphics objects.



14

1 var nsim = NematicDroplet(sigma=20,
2 deltasigma=-4, k=1,
3 wupper=1, wlower=1,
4 initialState=sim)
5
6 nsim.initialField()
7 nsim.setupProblem()
8 nsim.optimize()
9

10 Show(nsim.visualize())

Supplementary Listing 18: Using the NematicDroplet
class to determine the equilibrium droplet shape and director
configuration.

Supplementary Figure 10: Optimized configuration
for the nematic droplet.

5. Running the code

Now that the new NematicDroplet class is defined, the
code to use it is very short indeed as shown in Supplemen-
tary Listing 18. We assume the NematicDroplet code in
Supplementary Listing 13 is inserted after Supplemen-
tary Listing 6, with all method definitions filled out in
both classes and the minimization code for the Droplet
in place. In 18, line 1-4, we create an instance of the
NematicDroplet class.

To use the results of the earlier minimization, stored
in the variable sim, as an the initial configuration for
our NematicDroplet, we pass it to the NematicDroplet
constructor using the initialState optional argument
that we created especially for this task.

Having set up a NematicDroplet, to obtain the solution
we need to add an initial field, construct the problem and
then perform the optimization which is done in 18, lines
6-8. The resulting configuration, shown in Supplemen-
tary Fig. 10, is produced by our new visualize method
and displayed with Show in line 10.

We pause to observe the value of using an object-
oriented approach to writing a Morpho program for this
task. We directly reused more than half of the code al-
ready defined in Droplet in our NematicDroplet; the re-
sulting definition was therefore significantly shorter. Be-
cause it’s typically desirable to start optimization from a
good guess, we reused the result of a Droplet calculation
for our new problem. Further, what the code is doing is
much simpler and clearer to the reader than if we had

1 refine() {
2 var mr = MeshRefiner([self.mesh,

self.director, self.bnd, self.upper,
self.lower])

3 var refmap = mr.refine()
4
5 // Now refinement is done update the

problems and optimizers
6 for (el in [self.problem])

el.update(refmap)
7
8 // Update our references
9 self.mesh = refmap[self.mesh] // There

are tidier ways to do this!
10 self.director = refmap[self.director]
11 self.bnd = refmap[self.bnd]
12 self.lower = refmap[self.lower]
13 self.upper = refmap[self.upper]
14 }

Supplementary Listing 19: Refinement method for the
NematicDroplet class.

written our program without classes. Because the meth-
ods were named to reflect the activities performed, the
code is self-documenting and requires less commenting.

One can imagine further refinements. It’s possible to
define the Droplet and NematicDroplet classes in sepa-
rate files from the “driver” code, for example, and in-
corporate them using import. This would make them
reusable in other contexts: They could even be dis-
tributed as a Morpho package, a public git repository
with a well-defined structure that can incorporate Mor-
pho help files and other supporting material as desired.
Further details are supplied as part of the Morpho de-
veloper’s guide available from the Morpho Github repos-
itory.

E. Refinement

While the code is elegantly written, the solution ob-
tained so far (Supplementary Fig. 10) can be improved
upon considerably. We might like to refine the solu-
tion, to obtain a better approximation to the solution
to the continuous problem. We might also be interested
in changing the parameters. Both of these possibilities
will be explored in this section.

1. Refinement

The mesh refinement process follows the same struc-
ture as that in Subsection III A 5 for the minimal surface
example, but is a bit more complicated due to the addi-
tional Field and Selection objects that must be refined.
To facilitate it, we’ll add a new method to the Nematic-
Droplet class called refine, displayed in Supplementary



15

1 var nsim = NematicDroplet(sigma=20,
2 deltasigma=-4, k=1,
3 wupper=1, wlower=1,
4 initialState=sim)
5
6 nsim.initialField()
7 nsim.setupProblem()
8 nsim.optimize()
9

10 for (i in 1..2) {
11 nsim.refine()
12 nsim.optimize()
13 }
14
15 Show(nsim.visualize())

Supplementary Listing 20: Driver code for refinement
following optimization.

Listing 19.
In Supplementary Listing 19, line 2, we create a

MeshRefiner object, which is initialized with an list of
objects that are to be refined. The actual refinement
happens in line 3, which returns a Dictionary that maps
the coarse Mesh to the newly refined Mesh, as well as all
subsidiary objects.

Once we have this Dictionary, we must update objects
that depend on these data structures. The only one that
does is the OptimizationProblem object; we therefore call
the update method on this object in Supplementary List-
ing 19, line 6. We use a loop so that the list of objects to
be updated can be readily extended if the code is modi-
fied.

Note that, in the code presented, fresh ShapeOptimizer
and FieldOptimizer objects are created every time the
optimize method is called. Creation of objects is very
cheap in Morpho, and creating the optimizers as needed
obviates the need to update them following refinement
making coding less error prone. It’s nonetheless quite
possible to re-use optimizer objects, and if this is done
they should be updated here.

Finally, in Supplementary Listing 19, lines 9-13 we up-
date the properties of the current NematicDroplet object
by looking up new values in the Dictionary.

Now the new refine method is implemented, we can
adapt the driver code to perform refinement. The code to
do so is shown in Supplementary Listing 20; this replaces
the previous driver code from Supplementary Listing 18.
The only difference is the addition of Supplementary List-
ing 20, lines 10-13, which is a loop that successively re-
fines and optimizes the solution. This process is often
referred to as Nested Iteration, and greatly improves the
performance of the code relative to optimizing a fine so-
lution on a fixed Mesh. The resulting set of solutions
obtained are displayed in Supplementary Fig. 11.

Again, the benefits of the object oriented structure are
apparent: the driver code (Supplementary Listing 20)
needed to be only very mildly changed and a new method

Supplementary Figure 11: Successively refined and
optimized solutions for the nematic droplet.

1 updateParameters(sigma=nil, deltasigma=nil,
k=nil, wupper=nil, wlower=nil) {

2 if (sigma) self.sigma=sigma
3 if (deltasigma) self.deltasigma=deltasigma
4 if (k) self.k = k
5 if (wupper) self.wupper = wupper
6 if (wlower) self.wlower = wlower
7
8 self.setupProblem() // Regenerate problem
9 }

Supplementary Listing 21: Method to update system
parameters for the NematicDroplet class.

defined to accommodate what is a large improvement in
the program. If we wanted to further adjust how the op-
timization was performed, or the sequence of operations,
we would only have to change a few relevant lines.

2. Continuation

A common goal in simulation is to explore the range of
possible solutions, and how they depend on the system
parameters. Continuation is an approach to explore the
solution space that involves slowly changing a parame-
ter of interest and following how the optimized solution
evolves. Within the object oriented approach, it’s very
easy to implement continuation. To assist, we’ll begin



16

1 for (w in 1..5:1) {
2 print "===Wupper=${w}"
3 nsim.updateParameters(wupper=w)
4 nsim.optimize()
5 }

Supplementary Listing 22: Continuation driver loop
for the NematicDroplet class, which slowly increased the
anchoring energy on the upper boundary.

1 regularize(maxiterations=10) {
2 var reg=OptimizationProblem(self.mesh) //

Create an ancillary regularization
problem

3
4 var leq = EquiElement() // Function to

equalize elements
5 reg.addenergy(leq)
6
7 var lcons = ScalarPotential(fn (x,y) y) //

Level set constraint for lower boundary
8 reg.addlocalconstraint(lcons,

selection=self.lower)
9

10 var ropt = ShapeOptimizer(reg, self.mesh)
11 ropt.stepsize = 0.001
12 ropt.fix(self.upper) // Fix upper boundary
13
14 ropt.conjugategradient(maxiterations)
15 equiangulate(self.mesh) // Edge flips
16 }

Supplementary Listing 23: Regularization method
for the NematicDroplet class. This should be called during
continuation to improve the quality of the Mesh

by adding a method to NematicDroplet that allows us
to easily change parameters (see Supplementary Listing
21).

Notice the design of the optional parameters: their de-
fault value is nil, which is the Morpho keyword that
indicates the absence of a quantity and always evaluates
as false when used in a condition. In the method’s
implementation, Supplementary Listing 21 lines 2-6, pa-
rameters are only updated if they are not nil. Hence,
the user need only provide parameters they wish to set
in a call to updateParameters.

To perform continuation, we simply need to include a
loop in the driver code that traverses the desired trajec-
tory in parameter space. An example is shown in Supple-
mentary Listing 22, which slowly increases the anchoring
energy on the upper surface, and re-optimizes after each
step. This loop should be inserted after the first loop in
Supplementary Listing 20, i.e. after line 13. In this par-
ticular case, we are able to use a large stepsize in line 1,
but it’s quite common that the stepsize be significantly
smaller for more challenging problems. Optimized con-
figurations for selected parameters are shown in Figure
12.

Supplementary Figure 12: Nematic droplet solutions
for different values of anchoring parameter W ∈ 1, 3, 5 (in-
creasing downwards) on the upper boundary.

3. Further improvements

The nematic contact mechanics code presented here
could be developed even further. Rather than the global
refinement performed here, it may be valuable to per-
form adaptive refinement. Parameter studies where the
droplet shape changes significantly usually require some
form of regularization, where the internal vertices are pe-
riodically moved to render the elements equal in size, or
equal in energy. An example of a method that tries to do
this is shown in Supplementary Listing 23; it should be
added to the NematicDroplet class definition and called
in the continuation driver loop before each optimization
step (e.g. between lines 1 and 2 in Supplementary Listing
22).

IV. STABILITY ANALYSIS

We close with a more advanced topic: It’s often desir-
able to determine whether solutions obtained with Mor-
pho are stable, i.e. whether we are at a minimum of the
energy or, as is quite common, at a saddle point. In this
section we’ll re-examine the minimal surfaces from the
previous section to assess their stability.

Before doing so, let us consider the problem of stability
more generally. Imagine that we perturb the solution in
an arbitrary feasible direction δx. If the problem were
unconstrained, we can model the energy (we’ll refer to
this as the objective function in the remainder of this



17

1 // Returns the inertia (N+, N-, N0) of a
2 // matrix given the list of eigenvalues.
3 // tol is the tolerance below which an
4 // eigenvalue will be considered as zero.
5 fn inertia(ev, tol) {
6 var np=0, nz=0, nn=0
7 for (e in ev) {
8 if (e>tol) np+=1
9 else if (e<-tol) nn+=1

10 else nz+=1
11 }
12 return (np, nn, nz)
13 }
14
15 var Ha = la.hessian(m) // Hessian Area
16 var Hv = lv.hessian(m) // Hessian

VolumeEnclosed
17
18 var ga = la.gradient(m)
19 var gv = lv.gradient(m)
20
21 var dim = Ha.dimensions()
22 ga.reshape(dim[0],1)
23 gv.reshape(dim[0],1)
24
25 var lambda = ga.inner(gv)/gv.inner(gv)
26
27 var KKT = Matrix([[Ha - lambda*Hv, gv],
28 [gv.transpose(), 0]])
29
30 var es = Matrix(KKT).eigensystem() // Compute

eigenvalues and eigenvectors
31 var ev = es[0]
32
33 var tol = 1e-4 // Tolerance for zero

eigenvalues
34 print inertia(ev, tol)

Supplementary Listing 24: Testing the stability of a
minimal surface

section) using a MacLaurin series,

f = f0 +∇f · δx+
1

2
δx ·H · δx+ . . . ,

where Hij = ∂2

∂xi∂xj
is the Hessian matrix of the objec-

tive function. Since we are at a optimized solution, the
linear term f1 = ∇f ·δx is identically zero, and hence the
leading term characterizing the change in the objective
function is the quadratic term f2 = 1

2δx · H · δx. We’d
therefore like to know if the quadratic term f2 is positive,
no matter what direction δx we pick, or whether there
are any directions for which the quadratic term could be
zero or negative.

A natural way to determine whether f2 is positive is to
compute the eigenvalues hi and an orthonormal basis of
eigenvectors ξi from the Hessian matrix. Any arbitrary
direction δx can be expanded onto the basis of eigenvec-

Supplementary Figure 13: Zero modes of the minimal
surface. Each panel visualizes an eigenvector associated with
a zero eigenvalue; arrows indicate the direction of motion for
each vertex along the eigenvector. The top row corresponds
to three independent translational motions; the bottom three
are rotations about orthogonal axes.

tors,

δx =
∑
i

aiξi,

where ai are real coefficients, and the change in energy
written,

f2 =
1

2
δx ·H · δx =

1

2

∑
i

a2ihi,

where we exploited the orthonormality of the eigenvec-
tors. Hence f2 is positive definite if all of the eigenvalues
hi are positive, and our solution is indeed a minimum.
If they are not all positive, we can choose a direction
that lies within the subspace spanned by the eigenvec-
tors associated with negative eigenvalues, and moving in
that direction will reduce the objective function; we have
found a solution that corresponds to a saddle point of f .

In principle, we do not even need to know the values of
the eigenvalues of the Hessian matrix, simply their sign.
This information is encoded in a quantity called the iner-
tia, which is a triplet of integers (N+, N−, N0) counting
the number of positive, negative and zero eigenvalues of
a matrix. According to Sylvester’s law of inertia, the
inertia is invariant under a change of basis.

If the optimization problem is constrained, as is the
case for the minimal surface example, we cannot simply
examine the Hessian of the objective function, but must
instead consider the Lagrangian,

L = f −
∑
i

λici,

where ci = 0 are the constraint functions and λi are the
Lagrange multipliers associated with the corresponding



18

constraints. The hessian of the Lagrangian, referred to
as the KKT matrix[14], has the following structure,

KKT =

(
∇2L ∇c

∇T c 0

)
,

where the notation ∇ and ∇2 denote the gradient and
Hessian with respect to the original variables of the prob-
lem (i.e. excluding the Lagrange multipliers). The sta-
bility of the solution can be determined by computing
the inertia of the KKT matrix. In contrast to the con-
strained case, we should expect negative eigenvalues, but
the system is stable if the number of negative eigenvalues
N− ≤ Nc the number of constraints.

Returning to the minimal surfaces produced in Section
IIIA, the code to perform stability analysis is shown in
Supplementary Listing 24 and can be inserted directly
after Supplementary Listing 1. Supplementary Listing
24, lines 1-13 define a function, inertia, that calculates
the inertia from list of eigenvalues. Numerical diagonal-
ization does not yield exact values, so a tolerance must
be given. If an eigenvalue ei < tol, then the eigenvalue is
considered zero. In lines 15-19 we compute the gradient
and hessian of the Area and VolumeEnclosed functionals.
The gradient is returned as a dim × Nv matrix, where
dim is the dimension of the space (here 3) and Nv is the
number of vertices. Hence in lines 21-23 we reshape these
matrices into a column vector.

Since we didn’t explicitly use Lagrange multipliers to
find the optimized surface, we have to calculate them. To
do so, we use the first order optimality criterion,

∇L = ∇f −
∑
i

λi∇ci = 0,

and, by taking inner products of this equation with ∇cj
arrive at the linear system,∑

i

(∇ci · ∇cj)λi = (∇f · ∇cj) ,

which can be solved to find the Lagrange multipliers λi.
Since only one constraint is present, the calculation to

do so is particularly simple and occurs in Supplementary
Listing 24, line 25.

In Supplementary Listing 24, line 27 we build the
KKT matrix, noting that the upper left block ∇2L =
∇2f −

∑
i λi∇2ci. Line 30 computes the eigenvalues and

eigenvectors of the KKT matrix, which are returned in a
List object: the first component is a List of eigenvalues
(we extract this in line 31) and the second is a dense Ma-
trix whose columns are the eigenvectors. In lines 33-34
we then compute the inertia from the list of eigenvalues.

If we apply this analysis to the first unrefined cube, we
get the result (36, 1, 6). There are 14 vertices, for a total
of 42 degrees of freedom. Since the one constraint is bal-
anced by one negative eigenvalue of the KKT matrix, the
system is stable. But what are the six zero eigenvalues?
In Supplementary Fig. 13 we visualize the eigenvectors
associated with these modes by placing an arrow at each
vertex pointing in the direction along the eigenvector[15].
As can be seen, three of these correspond to translating
the mesh in 3D in any of three orthogonal directions.
The second trio correspond to rotations about three per-
pendicular axes. These zero modes arise because we can
arbitrarily translate and rotate the mesh without chang-
ing either its surface area or its enclosed volume—they
don’t affect the stability.

Refining the mesh successively, we obtain the inertia
(144, 1, 6) after refining once, and (576, 1, 6) after refining
twice. In each case, the single negative eigenvalue is bal-
anced by the one constraint, and the six residual degrees
of freedom of 3D space yield six zero eigenvalues.

Stability analysis of other, more complicated problems
can be performed in Morpho analogously. While here we
have computed the necessary quantities manually, future
releases of Morpho will automate this process. There are
other optimizations that could be performed: Here we
computed the inertia from the eigenvalues, but this scales
poorly with problem size. Alternative approaches include
calculating the LDLT factorization or another suitable
matrix decomposition of the Hessian of the Lagrangian.

[1] Smith, W. S., Lazzarato, D. A. & Carette, J. State of
the practice for mesh generation and mesh processing
software. Advances in Engineering Software 100, 53–71
(2016).

[2] Morpho manual. https://github.com/morpho-lang/
morpho-manual. Accessed: 4-23-2024.

[3] Morpho developer guide. https://github.com/
Morpho-lang/morpho-devguide. Accessed: 4-23-2024.

[4] Morpho code. https://github.com/Morpho-
lang/morpho.

[5] To join the slack channel, please follow the link pro-
vided on the project github. https://github.com/
morpho-lang/morpho.

[6] Morpho youtube channel. https://www.youtube.com/
@Morpho-lang. Accessed: 6-26-2024.

[7] Adler, J. H., Andrei, A. S. & Atherton, T. J. Nonlin-
ear Methods for Shape Optimization Problems in Liquid
Crystal Tactoids. arXiv:2310.04022 [Mathematics - Nu-
merical Analysis] (2023). arXiv:2310.04022.

[8] Example code. https://github.com/Morpho-
lang/morpho-paper.

[9] Example code. https://doi.org/10.5281/zenodo.14193814.
[10] For those familiar with Surface Evolver, the relevant file

is cube.fe.
[11] For a detailed discussion see W. H. Press et al. Numerical

Recipes, 3rd Ed. (Cambridge University Press) Section

https://github.com/morpho-lang/morpho-manual
https://github.com/morpho-lang/morpho-manual
https://github.com/Morpho-lang/morpho-devguide
https://github.com/Morpho-lang/morpho-devguide
https://github.com/morpho-lang/morpho
https://github.com/morpho-lang/morpho
https://www.youtube.com/@Morpho-lang
https://www.youtube.com/@Morpho-lang


19

10.6.
[12] S.G. Prasath et al. “Shapes of a filament on the surface

of a bubble” Proc. R. Soc. A 477 20210353 (2021).
[13] Cousins, J. R., Duffy, B. R., Wilson, S. K. & Mottram,

N. J. Young and young–laplace equations for a static
ridge of nematic liquid crystal, and transitions between

equilibrium states. Proceedings of the Royal Society A
478, 20210849 (2022).

[14] The KKT matrix is sometimes referred to as the bordered
hessian in the context of stability analysis.

[15] Code to do this is included in the provided listing in [8].


	SpringerNature_NatComputSci_749_ESM.pdf
	Usability
	Performance comparison with Surface Evolver
	Step-By-Step examples
	Minimal Surfaces
	Initialization
	Create initial mesh
	Set up the optimization problem
	Perform optimization
	Refinement
	Visualization

	Filaments
	Initialization
	Set up the optimization problem
	Perform the optimization
	Visualization

	Isotropic contact mechanics
	Droplet initializer
	Create the initial mesh
	Create subsidiary quantities
	Set up the optimization problem
	Perform the optimization
	Visualize results
	Running the code

	Nematic contact mechanics
	Initializing a NematicDroplet
	Setting up the problem
	Performing the optimization
	Visualization
	Running the code

	Refinement
	Refinement
	Continuation
	Further improvements


	Stability Analysis
	References




