
Supplementary Notes 1: Details of Data Augmentation

Following up on the Data Augmentation sub-section in Methods, this section contains a tabular illustration of some of the
data augmentation techniques integrated into GaNDLF. The variety showcased here highlights the built-in flexibility of the
entire framework.

Supplementary Table 1: All available data augmentations provided in GaNDLF.

Type Augmentation Description of Specific Application

Spatial

Affine Random affine transformations
Elastic Dense random elastic deformations

Flipping Reversal of the order of elements in an image along the given axes
Rotation Rigid rotations of 90 or 180 degrees across the specified axes

Anisotropic Down-sample and up-sample images along the provided axes

Intensity
Blur Blurring using a random-sized Gaussian filter

Noise Gaussian noise with random parameters
Gamma Random change of contrast by raising values to the power of γ

MRI Space

Bias field Random MRI bias field artifact
MRI motion Random motion artifact

Ghosting Random ghosting artifact
Spike Random spike artifacts

Supplementary Methods: Network Architectures

GaNDLF seeks to provide both well-established and state-of-the-art network architectures showing promise in the field
of healthcare. Since the literature on novel network architectures is continuously being expanded, at the time of publication
the following list/table of architectures are offered by GaNDLF, the topologies of which are shown in the Methods section.
Detailed description of each architecture is provided in the Supplementary Material.
• UNet: The UNet with (ResUNet) and without residual connections1–5 (Supplementary Figure 1) is one of the most

well known architectures of Convolutional Neural Networks (CNN) used for 2D and 3D segmentation. The UNet
consists of an encoder, comprising convolutional layers and downsampling layers, and a decoder offering upsampling
layers (applying transpose convolution layers) and convolutional layers. The encoder-decoder structure contributed in
automatically capturing information at multiple scales/resolutions. The UNet further includes skip connections, which
consist of concatenated feature maps paired across the encoder and the decoder layer, to improve context and feature
re-usability.
• Fully Convolutional Network (FCN): The FCN architecture6 (Supplementary Figure 2) introduced in 2017, utilizes

hierarchical feature extraction with an encoder recognizing both imaging patterns and spatial information of each input
image, with varying receptive fields. FCN has smaller computational requirements compared to UNet, due to the absence
of the decoding module, incorporating convolution and transpose convolution operations. FCN simply upsamples
the encoded features to the required output segmentations to generate masks. It hence provides faster, yet coarser,
segmentations for various domains7.
• Inception UNet (UInc): The Inception module8,9 can be used to substitute the standard convolutional block (which is a

simple series of convolutional layers) of the UNet to create the UInc architecture (Supplementary Figure 3). This module
describes parallel pathways of convolutional layers of different kernel sizes, to improve the representation of multi-scale
features. UInc has been applied towards semantic segmentation workloads10.
• Spatial Decomposition Network (SDNet): The SDNet11 (Supplementary Figure 4) is a well-known content-style

disentanglement model for medical image segmentation. SDNet uses two different encoders to separate anatomy from
appearance; a UNet encodes the anatomical information into a spatial representation and a variational autoencoder
encodes the appearance into a vector one. The encoded anatomical information is represented as multi-channel binary
maps of the same resolution as the input. A segmentation module is applied on the anatomy latent space to learn to
predict the segmentation masks. A decoder is responsible for reconstructing the input by combining the two latent
variables at multiple levels of granularity using AdaIN layers12. The original architecture uses FiLM layers13 to combine
these variables and a mask discriminator to support semi-supervised learning. GaNDLF currently supports the fully
supervised training scheme.
• TransUNet: The TransUNet14 (Supplementary Figure 5) architecture is a variant of UNet that uses a CNN-transformer

hybrid encoder rather than just a CNN (UNet) or transformer (UNetR) encoder. This allows for the transformer portion
of the encoder to capture long-range dependencies and global context using self-attention, while the leveraging the
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resolution of the CNN feature maps. GaNDLF supports TransUNet of variable depth and will scale the number of
transformer layers accordingly. GaNDLF supports the use of TransUNet on both 2D and 3D images.
• UNetR: The UNetR15 (Supplementary Figure 6) architecture is a variant of UNet that uses a transformer encoder

rather than the traditional CNN-based encoder. The transformer allows for capturing of long-range dependencies and
global context, and it consists of a multi-head self-attention module that maps between a query and the value and key
representations followed by a multilayer perceptron. GaNDLF supports UNetR of variable depth and will scale the
number of transformer layers based on the size of the input image. GaNDLF supports the use of UNetR on both 2D and
3D images.
• VGG: The VGG16,17 (Supplementary Figure 7) is a well-known network for performing classification and regression

workloads. The original VGG has 16 convolutional layers and 3 dense layers. We have modified the final classifier
layers to include a global average pooling layer followed by a single dense layer, which allows greater flexibility18 for
different types of workloads and reduce the effect of overfitting due to dense layers19. It is well known for its performance
on the ImageNet classification challenge20. VGG reinforced the idea that networks should be simple and deep. VGG
uses 3 × 3 convolution filters and 2 × 2 max-pooling layers with a stride of 2 throughout the architecture. The original
architecture uses ReLU activation function21 and categorical cross-entropy loss function. The initial layers of the VGG
perform feature extraction and the last softmax layers act as the classifier. GaNDLF supports multiple variants of the
VGG, namely, VGG11, VGG13, VGG16, VGG19, with and without batch normalization for both 2D and 3D datasets to
maximize flexibility.
• DenseNet: The DenseNet22 (Supplementary Figure 8) architecture is a type of convolutional neural networks that

consist of dense blocks, where each layer in the block is densely connected, which is a mechanism to address the
vanishing-gradient problem23. A unique property of the dense connections in DenseNet is that the previous layer’s output
and the current layer’s output are concatenated instead of getting added. After the concatenation, there is a pooling layer,
batch normalization, and non-linear activation layer. The DenseNet architecture can be customized based on the number
of layers, and GaNDLF currently supports the DenseNet-121, DenseNet-160, DenseNet-201 and DenseNet-264 variants.
• ResNet: The ResNet3 (Supplementary Figure 9) module uses shortcut connections to allow for learning of deeper

architectures while avoiding the degradation of training accuracy. When the dimensions of the input and output to
the block are the same, identity mapping is used, which does not introduce new parameters or increase computation
complexity. If the dimensions change, linear projections are applied by the shortcut connection to match dimensions.
GaNDLF supports variants of ResNet, including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152.
ResNet-18 and ResNet-34 use a pair of 3× 3 convolutions for each block, while ResNet-50, ResNet-101, and ResNet-152
use a bottleneck of 1 × 1, 3 × 3, and 1 × 1 convolutions to reduce the number of parameters.
• EfficientNet: The EfficientNet24 (Supplementary Figure 10) module uses a compound scaling method to uniformly

network scale width, depth, and resolution using a set of fixed constants, which allows for networks to be scaled while
achieving improved accuracy without sacrificing efficiency. The base architecture uses mobile inverted bottleneck
convolutions (MBConv) with squeeze-and-excitation optimization, which increases efficiency by the use of a narrow to
wide to narrow approach rather than the wide to narrow to wide approach of residual blocks. GaNDLF supports multiple
variants of EfficientNet, from EfficientNetB0 through EfficientNetB7.
• ImageNet-trained 2D models: GaNDLF also provides functionality of transfer learning based on popular architectures

pre-trained on the ImageNet data20. Every architecture’s first and last layers are modified to be able to process input
images of any size, and only output the relevant number of classes for each problem, respectively. The rest of the layers
retain weights from the ImageNet data. This allows for more efficient training, with a potential for better convergence
result25.
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