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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

In this paper, The authros used deep learning models for forecasting 5G network traffic. The paper is 

a kind of application paper. The paper can be accepted with minor revisions. 

 

1-The authors should increase the number of benchmarks in the application. 

2- Please, review and cite the recent literature about forecasting with deep leraning 

3- The MASE metric should use as an error metric in the applications. 

 

 

Reviewer #2 (Remarks to the Author): 

 

1. This paper is not technically correct. 

2. The author have not clearly expressed the idea and novelty in the paper. 

3. The references are not sufficient. 

4. The work is not novel and not relevant to the journal. 

5. The length of the paper is not sufficient. 

6. Some of the work is repetitive, so it is advised to give proper justification about it. 

7. The title and abstract is not written properly 

8. The quality of diagrams should be improved and should be of 600dpi. 

9. Conclusion should be explained in more detail 

 

 

Reviewer #3 (Remarks to the Author): 

 

The paper addresses a relevant matter in the context of 5G networks. Despite there is wide SOTA in 

this research area, the authors provide sufficient motivation and novelty in their proposed solution. 

Results are sound, exploiting real datasets and expanding the assessment of the solution to other 

domains. Overall, in this reviewer's perspective, it is a good paper. 

 

Despite the paper in its current form is easy-to-follow, the structure is somehow 

unconventional.....introduction includes partly description of solution and anticipation of results.....the 

detailed description of the proposed approach is provided after results....Authors should probably re-

organize the sections, while keeping the contents. 
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The Response Letter for COMMSENG-22-0216-T

We sincerely thank reviewers for their valuable suggestions and the support of the

novelty and results of our work: R1: "can be accepted with minor revisions", R3:

"Results are sound", "sufficient motivation and novelty", "a good paper". We believe

that all comments have been carefully accommodated to the best of our knowledge.

The underlined texts in the response letter have been highlighted in blue in the current

manuscript, and the point-by-point responses to all comments are as follows.s

Reviewer: #1

Summary

In this paper, the authors used deep learning models for forecasting 5G network traffic.

The paper is a kind of application paper. The paper can be accepted with minor

revisions

Comment-1.1: The authors should increase the number of benchmarks in the

application.

Thanks for your suggestion. We provide more benchmarks to validate the

effectiveness of the proposed method over other deep learning baselines. Table 1+,

Table 2+, Table 3+ below exhibit the supplemental experiment results.

1. NPT-2 & NPT-3 datasets (Line 254-264, Line 312-321): We collect another two

groups of network traffic data (NPT-2, NPT-3), where each group includes five

network ports data recorded every 15 minutes for one year and inbits is the target

feature. The prediction horizon follows the setting in the original NPT dataset (named

NPT-1 in the current version), where we forecast the entire network traffic series {1, 3,

7, 14, 30} days ahead (aligned with {96, 288, 672, 1344, 2880} prediction spans in

Table 1+), and the capacity utilization {30, 60, 90} days ahead (aligned with {2880,

5760, 8640} prediction spans ahead in Table 2+). The supplemental datasets

reproduce the experimental results on the original network traffic data (NPT-1), where
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the proposed method can not only perform a precise long-term network traffic

prediction for up to three months, but also surpasses current arts involving accuracy

and robustness by a large margin. In addition, we have the following results by sorting

the comprehensive performance (obtained by the average MASE errors) of the

baselines established with the Transformer framework: Diviner > Autoformer >

Transformer > Informer. This result verifies our proposal that incorporating the non-

stationarity promotes the adaptive ability of neural networks to model time series

({Diviner, Autoformer}>{Transformer, Informer}), and the modeling of multi-scale

non-stationarity other breaks through the ceiling of prediction abilities for deep

learning models. Furthermore, considering diverse network traffic patterns in the

provided datasets (about 50 ports), these experiments prove the generalization of the

proposed Diviner to deal with a wide range of non-stationary time series.

2. Solar energy production prediction (Line 394-411). The solar dataset contains the

10-minute level one-year (2006) solar power production data of 137 PV plants in

Alabama State, and PV-136 is the target feature. Given that the amount of solar

energy produced daily is generally stable, conducting a super long-term prediction is

unnecessary. Therefore, we set the prediction horizon to {1, 2, 5, 6} days, aligned

with {144, 288, 720, 864} prediction steps ahead. Furthermore, this characteristic of

solar energy means that its production series tend to be stationary, and thereby the

comparison of the predictive performances between different models on this dataset

presents their basic series modeling abilities. Concretely, considering the MASE error

can be used to assess model's performances on different series, we calculate and sort

each model's average MASE error under different prediction horizons to measure

their time series modeling abilities. The results are as follows: Diviner > NBeats >

Transformer > Autoformer > Informer > LSTM, where Diviner surpasses all

Transformer-based models in the selected baselines. Provided that the series data is

not that non-stationary, the advantages of Autoformer's modeling time series non-

stationarity are not apparent. At the same time, capturing stable long- and short-term

dependencies is still effective.

3. Road occupancy rate prediction (Line 412-433). The Traffic dataset contains hourly
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two-year (2015~2016) road occupancy rate collected from 862 sensors on San

Francisco Bay area freeways by the California Department of Transportation, where

sensor861 is the target feature. The prediction horizon is set to {7, 14, 30, 40} days,

aligned with {168, 336, 720, 960} prediction steps ahead. Considering the road

occupancy rate tends to have a weekly cycle, we use this dataset to compare different

networks' ability to model the temporal cycle. During the comparison, we mainly

focus on the following two groups of models: group-1 takes the non-stationary

specialization of time series into account (Diviner, Autoformer), and group-2 does not

employ any time-series-specific components (Transformer, Informer, LSTMa). We

find that group-1 gains a significant performance improvement over group-2, which

suggests the necessity of modeling non-stationarity. As for the proposed Diviner

model, it achieves a 27.64% MAE reduction (0.604→ 0.437) to the Transformer

model when it is used to forecast 30-day road occupancy rate. Subsequently, we

conduct an intra-group comparison for group-1, where the Diviner still gains an

average 35.37% MAE reduction (0.523→0.338) to Autoformer. We attribute this to

Diviner's multiple-scale modeling of non-stationarity, while the trend-seasonal

decomposition of Autoformer merely reflects time series variation at the particular

scale. These experimental results demonstrate that Diviner is competent in predicting

time series data with cycles.

Thanks again for your valuable advice. The supplemental experiments demonstrate

the desirable advantages of our approach. We have revised the corresponding parts of

the manuscript, and highlighted the modified parts in blue.

Comment-1.2: Please, review and cite the recent literature about forecasting with

deep learning.

Reply-1.2: Thanks for your suggestion. We investigate the recent international

conferences and journals, and the literature about forecasting with deep learning of

2021~2022 has been sorted out in the supplement reference.

Following the introduction to existing approaches in our manuscript (Line 54-88), the

RNN-based models mentioned in [28, 29, 30, 31, 32, 33, 34] features a feedback loop
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that allows models to memorize historical data and process variable-length sequences

as both inputs and outputs. [35, 36, 27] develop their model on Transformer

framework to capture longer dependencies and interactions within series data, [42, 43,

44, 45, 46, 47] attempt to incorporate time series decomposition into deep learning

models to increase model's robustness when modeling non-stationary time series.

The supplement references have been added to our manuscript.
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Comment-1.3: The MASE metric should use as an error metric in the applications.

Reply-1.3: Following your suggestion, we add MASE as an error metric in all

benchmarks, the experimental results are provided as follows, and complete

experimental results have been updated in our manuscript.

Table 1+: Time-series forecasting results on the 5G traffic network dataset
Metric
(MASE) Diviner Auto-

former
In-

former
Trans-
former ARIMA Prophet NBeats LSTMa

NPT-1

96 1.391 2.090 1.427 1.362 1.992 2.172 2.082 4.468
288 1.598 2.104 2.488 1.876 2.328 2.180 2.927 4.698
672 1.601 2.278 3.862 1.907 2.941 2.269 2.684 4.814
1344 1.585 2.017 3.987 1.996 3.949 2.298 2.989 4.817
2880 1.613 2.601 4.343 2.697 6.750 2.382 3.491 5.050

NPT-2

96 1.800 2.681 2.870 2.088 2.208 2.005 2.116 4.135
288 1.977 2.786 3.788 2.082 2.289 2.269 2.481 4.437
672 2.074 2.357 3.864 2.453 2.237 2.306 2.685 4.280
1344 1.814 2.301 4.181 2.889 2.453 2.496 2.593 4.666
2880 1.861 3.072 4.457 2.240 2.375 2.634 3.459 4.794

NPT-3

96 1.672 2.076 3.397 2.150 2.476 2.457 1.797 4.834
288 1.558 3.144 3.736 2.478 2.487 2.386 2.579 4.679
672 1.599 2.753 4.044 2.147 2.529 2.457 2.558 4.969
1344 1.822 2.569 4.520 2.363 2.657 2.558 3.128 5.050
2880 1.756 3.228 4.622 2.177 2.416 2.579 3.374 5.137

Table 2+: Long-term capacity utilization forecasting results on NPT dataset
Models Diviner Baseline-A Baseline-M
Metric
(MASE) Inbits Outbits Inbits Outbits Inbits Outbits

NPT-1

96 1.947 3.420 4.851 5.415 17.690 35.274
288 4.352 6.494 5.371 6.848 194.431 127.160
672 3.425 4.172 4.693 6.084 113.567 87.096
1344 1.992 2.574 5.159 4.442 14.959 10.341
2880 2.817 2.905 5.751 4.980 46.936 26.470

NPT-2

96 4.363 3.113 6.265 5.766 44.602 34.165
288 2.232 2.987 5.291 5.192 27.947 37.698
672 4.713 4.911 6.425 5.580 42.245 102.973
1344 3.611 4.062 5.622 5.567 30.023 198.393
2880 1.947 3.420 4.851 5.415 17.690 35.274

NPT-3

96 4.352 6.494 5.371 6.848 194.431 127.160
288 3.425 4.172 4.693 6.084 113.567 87.096
672 1.992 2.574 5.159 4.442 14.959 10.341
1344 2.817 2.905 5.751 4.980 46.936 26.470
2880 4.363 3.113 6.265 5.766 44.602 34.165
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Table 3+: Time-series forecasting results on other real-world datasets
Metric
(MASE) Diviner Auto-

former
In-

former
Trans-
former ARIMA Prophet NBeats LSTMa

WTH

144 7.072 9.125 8.316 10.038 17.151 24.099 12.236 18.956
432 8.135 9.235 8.944 9.754 16.872 22.974 10.397 18.470
1008 6.806 12.720 8.030 10.666 16.185 20.294 10.167 18.364
2016 6.348 21.140 8.651 8.651 17.426 17.240 13.173 18.671
4320 5.832 13.897 13.131 10.035 9.042 18.377 7.070 13.783

ETTh1

24 4.174 5.338 5.634 13.664 6.478 6.273 6.136 6.204
48 4.629 5.222 7.274 11.950 9.669 7.525 6.659 8.164
168 5.977 6.387 7.893 14.099 11.498 17.407 12.228 8.943
336 6.031 7.742 8.710 9.385 13.346 40.962 11.118 15.709
720 7.195 8.133 9.720 9.943 17.116 72.690 18.859 17.161

ETTh2

24 4.281 5.927 5.062 13.773 9.386 8.036 6.707 6.475
48 5.209 5.871 6.491 15.298 9.799 9.551 8.104 7.194
168 6.070 6.881 6.708 9.105 9.743 18.418 9.450 8.864
336 5.792 6.258 6.475 7.158 11.460 39.489 10.171 9.410
720 5.435 9.172 6.365 6.247 15.420 68.888 10.073 10.058

ETTm1

24 4.710 12.952 6.452 19.687 9.702 13.659 64.998 10.974
48 5.159 10.838 9.971 20.853 13.266 13.223 52.892 17.818
96 6.957 8.503 15.975 19.325 17.135 17.006 47.497 18.036
288 9.375 10.990 24.850 18.391 25.030 25.748 27.856 26.196
672 9.323 12.195 28.456 23.861 30.798 51.876 21.210 38.575

ECL

168 2.315 2.937 3.225 3.597 5.598 8.163 2.327 4.200
336 2.602 3.267 3.478 4.215 5.770 20.269 2.364 5.915
720 2.544 5.643 3.552 3.278 5.804 8.803 2.998 6.010
960 3.849 7.242 4.786 4.699 7.730 33.566 4.250 7.919

Ex-
change

10 2.867 3.203 21.601 25.964 5.227 10.922 7.129 45.551
20 3.160 4.054 18.341 18.949 5.810 8.303 7.049 34.092
30 3.132 4.945 13.945 16.310 5.378 7.037 6.839 28.634
60 4.265 4.948 19.557 18.109 8.653 8.264 10.648 30.365

Solar

144 7.461 11.091 8.290 11.742 31.093 29.165 8.487 18.917
288 8.355 12.035 10.007 9.289 34.362 32.236 8.988 20.327
720 8.793 13.497 13.803 11.352 35.099 32.930 9.176 21.886
864 7.053 14.423 21.299 11.367 32.419 30.415 8.488 20.030

Traffic

168 0.835 1.561 3.729 2.071 2.953 2.957 1.700 3.866
336 0.847 1.548 3.738 1.857 2.977 2.977 1.714 3.934
720 1.457 1.751 3.836 2.014 3.069 3.067 1.779 4.087
960 1.299 1.986 3.809 3.649 3.017 3.013 1.740 3.938

Thanks again for your advice. The MASE metric enables us to calculate the model's

comprehensive performance with experimental results under different prediction

horizon settings, which has been employed in the analysis of NPT-2 & NPT-3 datasets

and solar energy production prediction (in Comment-1.1).
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Reviewer: #2

Comment-2.1: This paper is not technically correct.

We address your concerns from the following aspects below:

1. In terms of model design, we develop our model to solve the challenges brought by

non-stationarity: (a) Multi-scale temporal variation. (b) Random factors. (c)

Distribution shift. We introduce a deep stationary process to tackle these challenges to

model the non-stationary time series with multi-scale stable features. Concretely, we

present a smoothing filter attention mechanism to filter out random components

(challenge-b) and adjust the feature scale of the time series layer-by-layer (challenge-

a). Simultaneously, a difference attention module is designed to calculate long- and

short-range dependencies by capturing the stable shifts at the corresponding scale

(challenge-c). Detailed descriptions are stated in Page 4~5 in our original submission.

2. In terms of effectiveness, we collect three groups (49 ports) of network port traffic

datasets (NPT) from real-world metropolitan networks that deliver 5G services by

China Unicom to demonstrate the proposed methods' effectiveness. We also compare

the proposed method with numerous prior arts over multiple applications involving

climate, control, electricity, economics, energy, and transportation fields to validate

the effectiveness of our method. The detailed descriptions are stated in Page 7~11 in

the original submission.

3. In terms of technical soundness, we incorporate stationary processes into a well-

designed hierarchical structure to model non-stationary time series with multi-scale

stable features, where stochastic process theories guarantee the prediction of

stationary events [48, 49, 50]. Besides, our experiments demonstrate that the proposed

Diviner, as a deep learning model, can deal with a wide range of non-stationary time

series, providing strong evidences on our technical correctness.

Comment-2.2: The author have not clearly expressed the idea and novelty in the

paper.

To make our idea easier to follow, we make the following adjustment:
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(a) We further clarify the motivation of our idea more clearly (Line 34-41):

Existing methods for 5G network traffic forecasting suffer a severe performance

degeneration since the long-term prediction horizon exposes the non-stationarity of

time series. This inherent non-stationarity of real-world time series data is caused by

multi-scale temporal variations, random perturbations and outliers, which present

various challenges: 1. Multi-scale temporal variations. 2. Random factors. 3.

Distribution shift. To address these issues, we incorporate stationary processes into a

well-designed hierarchical structure and model non-stationary time series with multi-

scale stable features. By doing so, we achieve a robust and precise long-term

prediction on real-world 5G time series forecasting data as shown in extensive

experiments in Page 8-10 in our original submission.

(b) We elaborate more on existing methods' shortcomings when solving non-

stationarity issues (Line 54-88):

1. RNN+: RNN-based models [28, 29, 30, 31, 32, 33, 34] feature a feedback loop that

allows models to memorize historical data, which calculates the cumulative

dependency between time steps. Nevertheless, such indirect modeling of temporal

dependencies can not disentangle information from different scales within historical

data and thus fails to capture multi-scale variations within non-stationary time series.

2. Transformer+: Transformer-based models [35, 36, 37] use global self-attention

mechanism to capture the long-term dependencies within time series. However,

despite their promising long-term forecasting results, time series' specialization is not

taken into account during their modeling process, where varying distributions of non-

stationary time series deteriorate their predictive performances.

3. Recent researches incorporating time series decomposition+: Recent works [42, 43,

44, 45, 46, 47] attempt to incorporate time series decomposition into deep learning

models. Their limited decomposition, e.g., trend-seasonal decomposition, reverses the

correlation between components and merely presents the variation of time series at

particular scales.

To make our novelty easier to follow, we summarize our novelty in the concluding part

of the Introduction (Line 98-111):
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1. We explore a new avenue to solve the challenges presented in long-term time series

prediction by modeling non-stationarity in the deep learning paradigm. This line is

much more universal and effective than the previous incorporating temporal

decomposition for its limited decomposition that merely presents the temporal

variation at particular scales

2. We develop a new framework with a well-designed hierarchical structure to model

the multi-scale stable regularities within non-stationary time series. In contrast to

previous methods employing various modules in the same layer, we perform a

dynamical scale transformation between different layers and model stable temporal

dependencies in the corresponding layer. This hierarchical deep stationary process

synchronizes with the cascading feature embedding of deep neural networks, which

enables us to capture complex regularities contained in the long-term histories and

achieves precise long-term network traffic forecasting.

The above contents have been added to the manuscript correspondingly, and we

would sincerely appreciate it if the above supplements are helpful and address your

concern.

Comment-2.3: The references are not sufficient.

Thanks for your suggestion. We review the recent literature about employing network

traffic prediction in practical applications and also the recent deep learning forecasting

methods. The additional references are sorted out in the supplement reference.

1. The literature employing network traffic prediction in applications (Line 436-445).

Although some literature [62, 63, 64] in the early stage argues that the probabilistic

traffic forecast under uncertainty is more suitable for the varying network traffic

rather than a concrete forecast produced by time series models, the probabilistic traffic

forecast and the concrete traffic forecast share the same historical information in

essence. And the development of time series forecasting techniques these years has

witnessed a series of works employing time series forecast techniques for practical

applications such as bandwidth management [14, 15], resource allocation [16],

resource provisioning [17].



The Response Letter for COMMSENG-22-0216-T

10

2. The literature forecasts with deep learning (Line 54-88). Following our

manuscript's introduction to existing approaches, the RNN-based models mentioned

in [28, 29, 30, 31, 32, 33, 34] feature a feedback loop that allows models to memorize

historical data and process variable-length sequences as both inputs and outputs. [35,

36, 37] develop their model on Transformer framework to capture longer

dependencies and interactions within series data, [42, 43, 44, 45, 46, 47] attempt to

incorporate time series decomposition into deep learning models to increase model's

stability when modeling non-stationary time series.

The supplement references have been added to our manuscript.

Comment-2.4: The work is not novel and not relevant to the journal.

In terms of novelty, a similar concern is addressed in Comment-2.1, w.r.t. the

following content (Line 98-111):

1. We explore a new avenue to solve the challenges presented in long-term time series

prediction by modeling non-stationarity in the deep learning paradigm. This line is

much more universal and effective than the previous incorporating temporal

decomposition for its limited decomposition that merely presents the temporal

variation at particular scales.

2. We develop a new framework with a well-designed hierarchical structure to model

the multi-scale stable regularities within non-stationary time series. In contrast to

previous methods employing various modules in the same layer, we perform a

dynamical scale transformation between different layers and model stable temporal

dependencies in the corresponding layer. This hierarchical deep stationary process

synchronizes with the cascading feature embedding of deep neural networks, which

enables us to capture complex regularities contained in the long-term histories and

achieves precise long-term network traffic forecasting.

In terms of whether this work is relevant to the journal, we had carefully read the

Aims & Scope of the Communication Engineering journal and sorted out the

following statement to support our work published in Communication Engineering

journal:
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(a) Scope: We are also interested in submissions at the intersection of engineering

with other scientific disciplines, such as biology, chemistry, physics, where the central

advance of the study is of interest to other engineers.

(b) Aims: In general, to be acceptable, a paper should report new thinking with

resulting advances in opportunity, capability or benefit.

We regard our work as an intersection of communication engineering with artificial

intelligence (covered in scope), which aims to solve the crucial bottleneck in making a

detailed long-term network traffic forecasts for massive network ports with deep

learning techniques (satisfying journal aims). Therefore, this work suits the topic and

criteria of the Communication Engineering journal. We would sincerely appreciate it

if the above statements are helpful and address your concern.

Comment-2.5: The length of the paper is not sufficient.

Thanks for your suggestion, we add the following content:

1. We add several 5G network traffic benchmarks and apply our method to more

engineering fields such as solar energy production forecasting and road occupancy

forecasting, w.r.t. Line 394-433 in our manuscript.

2. We reevaluate the performance of baseline models on each benchmark with MASE

as a new indicator, where we can assess the model's comprehensive predictive

performance by calculating average MASE errors under different prediction steps.

Subsequently, we perform a more detailed analysis toward the necessity of modeling

non-stationarity with our experimental results, w.r.t. Line 254-264, Line 312-321, Line

394-411 in our manuscript.

3. We discuss the effectiveness of using time series prediction methods to assist

network planning, and review more literature to prove this, w.r.t Line 436-445 in our

manuscript.

4. We discuss the shortcomings of existing methods when solving the non-stationarity

issue w.r.t. Line 52-88 in our manuscript.

We have added the supplemental contents to our manuscript correspondingly.
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Comment-2.6: Some of the work is repetitive, so it is advised to give proper

justification about it.

Thanks for your suggestion. We make the following adjustments to solve this problem:

1. We delete the description of the solution and results in the Introduction, which has

already been shown in Section 2.1 and Section 2.2, respectively. Instead, we add a

clear conclusion of our work (see Comment-2.9).

2. We delete the background of 5G network construction in the Discussion, which has

already been elaborated in the Introduction. Instead, we discuss the effectiveness of

employing network traffic prediction in practical applications (see Comment-2.3).

3. We delete the description of the experimental results concerning 5G network traffic

prediction and electricity transformer temperature prediction in the Discussion.

Comment-2.7: The title and abstract is not written properly

Thanks for your suggestion. We review the style and formatting guide of the

Communication Engineering journal.

In terms of the title, we highlight the main innovation of our work by modeling non-

stationarity with deep learning for long-term 5G network traffic forecasting. Finally,

the title is revised to Long-term 5G network traffic forecasting via modeling non-

stationarity with deep learning.

In terms of the abstract, following the instruction and the formatting guide, we

incrementally introduce the necessity and motivation of the proposed techniques and

clarify the major results of our work. Finally, the abstract is revised to:

5G cellular networks have recently fostered a wide range of emerging applications,

but their popularity has led to traffic growth that far outpaces network expansion. This

mismatch may decrease network quality and cause severe performance problems. To

reduce the risk, operators need long-term traffic prediction to perform network

expansion schemes months ahead. However, the long-term prediction horizon exposes

the non-stationarity of series data, which deteriorates the performance of existing

approaches. We deal with this challenging problem by developing a deep learning

model, Diviner, that incorporates stationary processes into a well-designed
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hierarchical structure and models non-stationary time series with multi-scale stable

features. We demonstrate that Diviner surpasses current arts in 5G network traffic

forecasting with substantial performance improvement, enabling detailed months-

level forecasting for massive ports with complex flow patterns. Extensive experiments

further present its applicability to various predictive scenarios without any

modification, showing valuable potential to address broader engineering problems.

The revised abstract and the title name have been updated in our manuscript.

Comment-2.8: The quality of diagrams should be improved and should be of 600dpi.

Thanks for your suggestion. We have converted our diagrams into vector format (.pdf),

which can solve the resolution problem in our original .png diagram.

Comment-2.9: Conclusion should be explained in more detail.

Thanks for your suggestion. We rewrite the concluding part in the Introduction and

explain our conclusion in more details (Line 89-121):

In this work, we incorporate deep stationary processes into neural networks to

achieve precise long-term 5G network traffic forecasts, where stochastic process

theories guarantee the prediction of stationary events [48, 49, 50]. Specifically, we

develop a deep learning model, Diviner, to discover the multi-scale stable regularities

within non-stationary time series and generate precise long-term forecasts. To validate

the effectiveness, we collect an extensive network port traffic dataset (NPT) from the

intelligent metropolitan network delivering 5G services of China Unicom and

compare the proposed model with numerous current arts over multiple applications.

We make two distinct research contributions to time series forecasting: (1) We explore

a new avenue to solve the challenges presented in long-term time series prediction by

modeling non-stationarity in the deep learning paradigm. This line is much more

universal and effective than the previous works incorporating temporal decomposition

for their limited decomposition that merely presents the temporal variation at

particular scales. (2) We develop a new framework with a well-designed hierarchical

structure to model the multi-scale stable regularities within non-stationary time series.
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In contrast to previous methods employing various modules in the same layer, we

perform a dynamical scale transformation between different layers and model stable

temporal dependencies in the corresponding layer. This hierarchical deep stationary

process synchronizes with the cascading feature embedding of deep neural networks,

which enables us to capture complex regularities contained in the long-term histories

and achieves precise long-term network traffic forecasting. Our experiment

demonstrates that the robustness and predictive accuracy significantly improve as we

consider more factors concerning non-stationarity, which provides a new avenue to

improve the long-term forecast ability of deep learning methods. Besides, we also

show that the modeling of non-stationarity can help discover nonlinear latent

regularities within network traffic and achieve a quality long-term 5G network traffic

forecast for up to three months. Furthermore, we expand our solution to climate,

control, electricity, economic, energy, and transportation fields, which shows the

applicability of this solution to multiple predictive scenarios, showing valuable

potential to solve broader engineering problems.

We have added the above conclusion to our manuscript.

Reviewer: #3

Summary:

The paper addresses a relevant matter in the context of 5G networks. Despite there is

wide SOTA in this research area, the authors provide sufficient motivation and

novelty in their proposed solution. Results are sound, exploiting real datasets and

expanding the assessment of the solution to other domains. Overall, in this reviewer's

perspective, it is a good paper. Despite the paper in its current form is easy-to-follow,

the structure is somehow unconventional.....introduction includes partly description of

solution and anticipation of results.....the detailed description of the proposed

approach is provided after results....Authors should probably re-organize the sections,

while keeping the contents.
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Response:

We sincerely appreciate your comments that recognize our paper as a good paper

providing sufficient motivation, novelty, and sound results.

1. Following your suggestion, we move the original description of the solution and

anticipation to the corresponding part in the Results section (the former in Section 2.1

and the letter in Section 2.2). And replace them with a conclusion of our work (Line

89-121):

In this work, we incorporate deep stationary processes into neural networks to

achieve precise long-term 5G network traffic forecasts, where stochastic process

theories guarantee the prediction of stationary events [48, 49, 50]. Specifically, we

develop a deep learning model, Diviner, to discover the multi-scale stable regularities

within non-stationary time series and generate precise long-term forecasts. To validate

the effectiveness, we collect an extensive network port traffic dataset (NPT) from the

intelligent metropolitan network delivering 5G services of China Unicom and

compare the proposed model with numerous current arts over multiple applications.

We make two distinct research contributions to time series forecasting: (1) We explore

a new avenue to solve the challenges presented in long-term time series prediction by

modeling non-stationarity in the deep learning paradigm. This line is much more

universal and effective than the previous works incorporating temporal decomposition

for their limited decomposition that merely presents the temporal variation at

particular scales. (2) We develop a new framework with a well-designed hierarchical

structure to model the multi-scale stable regularities within non-stationary time series.

In contrast to previous methods employing various modules in the same layer, we

perform a dynamical scale transformation between different layers and model stable

temporal dependencies in the corresponding layer. This hierarchical deep stationary

process synchronizes with the cascading feature embedding of deep neural networks,

which enables us to capture complex regularities contained in the long-term histories

and achieves precise long-term network traffic forecasting. Our experiment

demonstrates that the robustness and predictive accuracy significantly improve as we

consider more factors concerning non-stationarity, which provides a new avenue to
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improve the long-term forecast ability of deep learning methods. Besides, we also

show that the modeling of non-stationarity can help discover nonlinear latent

regularities within network traffic and achieve a quality long-term 5G network traffic

forecast for up to three months. Furthermore, we expand our solution to climate,

control, electricity, economic, energy, and transportation fields, which shows the

applicability of this solution to multiple predictive scenarios, showing valuable

potential to solve broader engineering problems.

We rechecked the style and formatting guide and the articles published in the

Communication Engineering journal, and the Methods section does come after the

Results section.

Thanks again for your valuable suggestion. The revised content has been added to the

concluding part of current manuscript's Introduction.
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The most important problem of the paper is that MASE metric is not smaller than 1. This means that the 

random walk is always better than the proposed method. So the paper should be rejected. 



Reviewer: #1

Comment-1.1: The most important problem of the paper is that MASE metric is not

smaller than 1. This means that the random walk is always better than the proposed

method. So the paper should be rejected.

We appreciate your constructive feedback on our paper, and we have carefully

considered your comments. We understand that you are concerned about the MASE

metric and believe that our proposed method's performance is poor because the

MASE value is not smaller than 1. We work more on this issue and we respectfully

disagree with your conclusion. The reasons are as follows:

1. Evidence from the first literature which introduces the MASE measure [Hyndman

& Koehler, 2006]. The Mean Absolute Scaled Error (MASE) can be calculated by:

MASE =
1
n i=1

n yi − yi��
1

n − 1 j=2
n yj − yj−1�

,

which scales the MAE error based on one-step naïve forecast computed in-sample,

and the denominator of the this metric can be seen as an one-step ahead random walk

forecast. While [Hyndman & Koehler, 2006] concluded that MASE greater than one

indicate poorer forecasts, this literature particularly emphasized that "because the

scaling is based on one-step forecasts, the scaled errors for multi-step forecasts are

typically larger than one". And thus, it is reasonable to obtain MASE values greater

than one in our experiment. Moreover, they demonstrated that for long-term time

series prediction, a smaller MASE score is indicative of better performance, rather

than whether the MASE score is smaller than one, as shown in Table 4 of their paper.

The evidence presented in this literature (also the first literature to introduce MASE

metric) strongly supports our contention that the MASE value of less than one as a

criterion for evaluating long-term time series prediction models is inappropriate.



2. The label leak problem caused by the naïve forecast for long-term time series

forecast. The issue of label leak problem arises from the use of naïve forecast in long-

term time series prediction. Although the MASE value is typically greater than one in

such cases, it is erroneous to interpret this as a better performance of the naïve

forecast over the multi-step forecasting method. This is because the naïve forecast

uses the label data directly in its prediction, thereby causing a label leak problem if it

is utilized as a baseline prediction for multi-step ahead long-term forecast.

Consequently, utilizing a MASE value of less than 1 as a criterion to evaluate model

performance for long-term time series prediction is inappropriate. Instead, comparing

the proposed method with other baselines by considering a smaller MASE score as

indicative of better performance, experimental results show that our method achieves

the state-of-the-art predictive performance.

Therefore, we respectfully hope you can reconsider your evaluation of our proposed

method's performance based on the MASE value of less than one alone. We believe

that our work provides valuable insights into long-term time series prediction and

deserves further consideration. Thank you for your time and attention to our paper.
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Dear authors, 

 

I understood that my previous comment is not true. I am very sorry. The paper can be accepted now. 
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