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This supplementary material document includes:

• The proofs to Corollary 1 and Corollary 2 from the main paper.

• Details of the experimental settings for the offshore infrastructure maintenance case study from the Results
Section of the main paper.

Supplementary Methods 1: Corollary Proofs

Corollary 1. When m = 3, the bounds (7) and (8) in Theorem 1 of the main paper satisfy:

λl ≥

{
ε1l(ε1)θ2
θ1+l(ε1)θ2

, if θ2(ε1−ε2)
θ1

> ε2l(ε2)−ε1l(ε1)
l(ε1)l(ε2)

ε2l(ε2)θ2
θ1+l(ε2)θ2

, otherwise
(S1)

and

λu <


ε1l(ε1)θ1+ε2l(ε2)θ2+ 1

t l(
1
t )(1−θ1−θ2)

l(ε1)θ1
, if t < 1

ε2
ε1l(ε1)θ1+ 1

t l(
1
t )θ2+ε2l(ε2)(1−θ1−θ2)

l(ε1)θ1
, if 1

ε2
≤ t ≤ 1

ε1
ε1l(ε1)(θ1+θ2)+ε2l(ε2)(1−θ1−θ2)

l(ε1)θ1
, otherwise

(S2)

Proof. When m = 3, Eq. (8) of Theorem 1 says, there is a supremum λu,m=3:

λu,m=3 = max
{0≤λ1≤ε1<λ2≤ε2<λ3<+∞}

λ1l(λ1)θ1 + λ2l(λ2)θ2 + λ3l(λ3)(1− θ1 − θ2)

l(λ1)θ1 + l(λ2)θ2 + l(λ3)(1− θ1 − θ2)
(S3)

Similarly, Eq. (7) of Theorem 1 shows, when m = 3, there is an infimum λl,m=3:

λl,m=3 = min
{0≤xi≤1,∀i∈[1..3]}

∑
i=1..3

[εil(εi)(1− xi)θi + εi−1l(εi−1)xiθi]∑
i=1..3

[l(εi)(1− xi)θi + l(εi−1)xiθi]
(S4)

where ε0 = 0 and ε3 = +∞ (and thus l(ε0) = 1, lim
ε3→+∞

l(ε3) = 0 and lim
ε3→+∞

ε3l(ε3) = 0).

First, we prove the result of (S2). By taking the partial derivative of the objective function in (S3) w.r.t. λ1,
we know the derivative is always positive, irrespective of the values λ2 and λ3 take in their respective ranges, as
shown below (note 0 ≤ λ1 ≤ ε1 < λ2 ≤ ε2 < λ3 < +∞):

∂ λ1l(λ1)θ1+λ2l(λ2)θ2+λ3l(λ3)(1−θ1−θ2)
l(λ1)θ1+l(λ2)θ2+l(λ3)(1−θ1−θ2)

∂λ1
=

e−λ1tθ1

[
e−λ1tθ1 + e−λ2tθ2 (1− (λ1 − λ2)t) + e−λ3t(1− θ1 − θ2)(1− (λ1 − λ3)t)

]
(e−λ1tθ1 + e−λ2tθ2 + e−λ3t(1− θ1 − θ2))2

> 0 (S5)
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This implies that the maximum point lies in the hyperplane of λ1 = ε1. Thus, we substitute λ1 = ε1 into (S3) and
reduce the problem to:

λu,m=3 = max
{ε1<λ2≤ε2<λ3<+∞}

ε1l(ε1)θ1 + λ2l(λ2)θ2 + λ3l(λ3)(1− θ1 − θ2)

l(ε1)θ1 + l(λ2)θ2 + l(λ3)(1− θ1 − θ2)
(S6)

< max
{ε1<λ2≤ε2<λ3<+∞}

ε1l(ε1)θ1 + λ2l(λ2)θ2 + λ3l(λ3)(1− θ1 − θ2)

l(ε1)θ1
(S7)

≤


ε1l(ε1)θ1+ε2l(ε2)θ2+ 1

t l(
1
t )(1−θ1−θ2)

l(ε1)θ1
t < 1

ε2
ε1l(ε1)θ1+ 1

t l(
1
t )θ2+ε2l(ε2)(1−θ1−θ2)

l(ε1)θ1
1
ε2
≤ t ≤ 1

ε1
ε1l(ε1)(θ1+θ2)+ε2l(ε2)(1−θ1−θ2)

l(ε1)θ1
t > 1

ε1

(S8)

where the last step is due to the fact that the function xl(x) is unimodal over [0, 1] with a maximum point at x = 1
t .

Thus, the last step says:

• When t < 1
ε2

(i.e. ε2 <
1
t ): the function λ3l(λ3) can reach its maximum at λ3 = 1

t in the range (ε2,+∞);

While, since λ2 ∈ (ε1, ε2], the function λ2l(λ2) cannot reach λ2 = 1
t , so we set λ2 = ε2 to maximise the

objective function.

• When 1
ε2
≤ t ≤ 1

ε1
(i.e. ε1 ≤ 1

t ≤ ε2): the function λ2l(λ2) can attain its maximum at λ2 = 1
t in the range

(ε1, ε2]; While, since λ3 ∈ (ε2,+∞], the function λ3l(λ3) cannot reach λ3 = 1
t , so we set λ3 = ε2 to maximise

the objective function.

• When t > 1
ε1

(i.e. 1
t < ε1) both the functions λ3l(λ3) λ2l(λ2) take the left endpoints in their range to maximise

the objective function, so we set λ3 = ε2 and λ2 = ε1.

Substitute the values of λ2 and λ3 into the objective function in those three cases, we obtain the results of (S2).

Now we prove the result of (S1). If we denote the objective function in (S4) as a fraction Nu(x1,x2,x3)
De(x1,x2,x3) , then

take its partial derivative w.r.t. x3:

∂Nu(x1,x2,x3)
De(x1,x2,x3)

∂x3
=
l(ε2)(1− θ1 − θ2)[((1− x1)θ1 + x2θ2)(ε2 − ε1)l(ε1) + ε2x1θ1]

De(x1, x2, x3)2
> 0 (S9)

Thus to minimise the objective function, we set x3 = 0. Then we take its partial derivative w.r.t. x1:

∂Nu(x1,x2,0)
De(x1,x2,0)

∂x1
=
−θ1[ε1l(ε1)De(x1, x2, 0) + (1− l(ε1))Nu(x1, x2, 0)]

De(x1, x2, 0)2
< 0 (S10)

Thus to minimise the objective function, we set x1 = 1. Now we take its partial derivative w.r.t. x2:

∂Nu(1,x2,0)
De(1,x2,0)

∂x2
=
θ2[θ2(ε1 − ε2)l(ε1)l(ε2) + θ1ε1l(ε1)− θ1ε2l(ε2)]

De(1, x2, 0)2
(S11)

whose sign is determined by other model parameters. Thus, we set x2 = 1θ2(ε1−ε2)l(ε1)l(ε2)+θ1ε1l(ε1)−θ1ε2l(ε2)<0 where
1S is an indicator function – it equals 1 when predicate S is true, and 0 otherwise.

Substitute x1 = 1, x3 = 0 and x2 = 1θ2(ε1−ε2)l(ε1)l(ε2)+θ1ε1l(ε1)−θ1ε2l(ε2)<0 into Nu(x1,x2,x3)
De(x1,x2,x3) , we obtain two cases

in (S1).

Corollary 2. The closed-form BIPP bounds for m = 2 can be obtained respectively by setting ε2 = ε1 and θ2 = 0
in the results (S1) and (S2).

Proof. When m = 2, Eq. (8) of Theorem 1 becomes the supremum λu,m=2 such that (note, θ2 = 1− θ1):

λu,m=2 = max
{0≤λ1≤ε1<λ2<+∞}

λ1l(λ1)θ1 + λ2l(λ2)(1− θ1)

l(λ1)θ1 + l(λ2)(1− θ1)
(S12)

Similarly, Eq. (7) of Theorem 1 becomes the infimum λl,m=2:

λl,m=2 = min
{0≤x1≤1,0≤x2≤1}

ε0l(ε0)x1θ1 + ε1l(ε1)(1− x1)θ1 + ε1l(ε1)x2(1− θ1) + ε2l(ε2)(1− x2)(1− θ1)

l(ε0)x1θ1 + l(ε1)(1− x1)θ1 + l(ε1)x2(1− θ1) + l(ε2)(1− x2)(1− θ1)
(S13)

where ε0 = 0 and ε2 = +∞.
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First, we prove the bound λu,m=2 satisfies:

λu,m=2 <

{
ε1l(ε1)θ1+ 1

t l(
1
t )(1−θ1)

l(ε1)θ1
t < 1

ε1
ε1
θ1

t ≥ 1
ε1

(S14)

for which we proceed in two steps:

1. We show the optimised point in the two dimensional space of λ1 and λ2 must lie in the plane of λ1 = ε1.

2. In the plane of λ1 = ε1, a closed-form expression can be derived from the monotonicity analysis of λ2.

By taking the partial derivative of the objective function in (S12) w.r.t. λ1, we know the derivative is always positive,
irrespective of the value take λ2 in its respective range, as shown in (S15) below (note, 0 ≤ λ1 ≤ ε1 < λ2 < +∞):

∂ λ1e
−λ1tθ1+λ2e

−λ2t(1−θ1)
e−λ1tθ1+e−λ2t(1−θ1)

∂λ1
=
e−λ1tθ1

[
e−λ1tθ1 + e−λ2t(1− θ1)(1− (λ1 − λ2)t)

]
(e−λ1tθ1 + e−λ2t(1− θ1))2

> 0 (S15)

This implies that the maximum point lies in the plane of λ1 = ε1. Now we reduce the optimisation problem from a
two-dimensional space to the one-dimensional space of λ2. Thus, by substituting λ1 = ε1 in to the r.h.s. of (S12),
we have:

λu,m=2 ≤ max
{λ2>ε1}

ε1l(ε1)θ1 + λ2l(λ2)(1− θ1)

l(ε1)θ1 + l(λ2)(1− θ1)

< max
{λ2>ε1}

ε1l(ε1)θ1 + λ2l(λ2)(1− θ1)

l(ε1)θ1

<

{
ε1l(ε1)θ1+ 1

t l(
1
t )(1−θ1)

l(ε1)θ1
t < 1

ε1
ε1
θ1

t ≥ 1
ε1

(S16)

where the last step of (S16) is because of the monotonicity analysis of the term λ2l(λ2) as follows. Depends on the
the observable t:

• When ε1 <
1
t , λ2l(λ2) attains its maximum at the critical point λ2 = 1

t , in the range λ2 > ε1. Thus, we
substitute λ2 = 1

t and obtain the first case in result (S16).

• When ε1 ≥ 1
t , in the range λ2 > ε1, we know the supremum of λ2l(λ2) is attained at the boundary point

λ2 = ε1 . Thus, we substitute λ2 = ε1 and obtain the second case in result (S16).

Second, we prove the infimum λl,m=2 = 0 with the optimal point at x1 = 1, x2 = 0. Since l(0) = 1,
lim

ε2→+∞
l(ε2) = 0 and lim

ε2→+∞
ε2l(ε2) = 0, (S13) can be rewritten as:

λl,m=2 = min
{0≤x1≤1,0≤x2≤1}

ε1l(ε1)(1− x1)θ1 + ε1l(ε1)x2(1− θ1)

x1θ1 + l(ε1)(1− x1)θ1 + l(ε1)x2(1− θ1)
(S17)

The partial derivative of the objective function in (S17) w.r.t. x2 is:

∂ ε1l(ε1)(1−x1)θ1+ε1l(ε1)x2(1−θ1)
x1θ1+l(ε1)(1−x1)θ1+l(ε1)x2(1−θ1)

∂x2
=

ε1l(ε1)(1− θ1)θ1x1

[((x1 + x2 − 1)θ1 − x2)l(ε1)− θ1x1]2
> 0 (S18)

Thus we set x2 = 0 in (S17) to reduce the problem to:

λl,m=2 = min
{0≤x1≤1}

ε1l(ε1)(1− x1)θ1

x1θ1 + l(ε1)(1− x1)θ1
(S19)

The partial derivative of the objective function in (S19) w.r.t. x1 is:

∂ ε1l(ε1)(1−x1)θ1
x1θ1+l(ε1)(1−x1)θ1

∂x1
=

−ε1l(ε1)

[x1 + (1− x1)l(ε1)]2
< 0 (S20)

Thus we set x1 = 1 in (S19), and obtain λl,m=2 = 0. Note, the result of 0 is attainable meaning we cannot find a
lower bound that bigger than 0 for the given optimisation problem.
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Finally, substitute ε2 = ε1 and θ2 = 0 in the results (S2) and (S1), we obtain the results of (S14) and 0 which
are the closed-form BIPP bounds for m = 2.

Supplementary Methods 2: Offshore Infrastructure Maintenance Ex-
periments

Simulation Platform

Supplementary figure 1: Illustration of our robust Bayesian verification framework for the structural health inspection and cleaning mission
using an autonomous underwater vehicle (AUV) at the point when the AUV inspects the final floating chain.

In the Results Section of the main paper, we demonstrate the application of our robust Bayesian verification
framework using a case study that involves an autonomous underwater vehicle (AUV) executing a structural health
inspection and cleaning mission of the substructure of an offshore wind farm. The offshore wind farm consists of
multiple floating wind turbines. Each turbine is a buoyant foundation structure secured to the sea bed with floating
chains tethered to anchors. The AUV is deployed to collect data about the condition of the floating chains to enable
the post-mission identification of problems that could affect the structural integrity of the chains. Supplementary
figure 1 shows the AUV during the inspection of the last floating chain.

The AUV-based mission is built on top of the open-source framework MOOS-IvP (http://www.moos-ivp.org),
a widely used platform for the implementation of autonomous applications with AUVs. When used for the execution
of oceanic missions, MOOS-IvP is deployed on the payload computer of an AUV, facilitating the decoupling of the
vehicle’s autonomy from the navigation and control system running on the main AUV computer [1].

An AUV-based system leveraging MOOS-IvP is structured as a community of independent applications running
in parallel that communicate via a MOOS database (MOOSDB) using a publish-subscribe architecture. Supple-
mentary figure 2 shows the high-level architecture of MOOS-IvP. Applications publish messages in the form of
key-value pairs with specified frequencies, sharing information about AUV components that an application moni-
tors. Interested listening applications can use the keys to subscribe to messages and receive a notification when an
update of that message becomes available.

The autonomous operation in MOOV-IvP is instrumented through a collection of behaviours, i.e., combinations
of boolean logic constraints and piecewise-linear utility functions parametrised, for example, with parameters of
the navigation and control system such as heading, speed or depth. During mission execution, the IvP Helm,
the decision-making component of MOOS-IvP, periodically collects and reconciles the instantiated behaviours. If
multiple behaviours are active simultaneously, the IvP Helm executes Interval Programming (IvP) multi-objective
optimisation to determine the optimal action, i.e., an optimal point in the decision space defined by the constraints
and utility functions. This optimal action is expressed as a set of key–value pairs and is published to the MOOSDB
so that interested (subscribing) applications can receive this update and act upon it.
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Supplementary figure 2: High-level MOOS-IvP architecture with the RBV framework implementation

To realise the AUV-based floating chain inspection and maintenance mission, we extended the MOOS-IvP
framework and developed a new MOOS application (called RBV in supplementary figure 2) that implements the
overall mission scenario and controls the mission execution. In particular, the RBV application employs the built-in
behaviours MOOS-IvP (e.g., waypoint and station keep) to model the AUV mission and leverages the starting
and ending condition of these behaviours to instrument the decision-making via the IvP Helm. Furthermore, the
RBV application provides several configuration parameters that enable the execution of custom experiments. For
instance, users can define the probabilities and rates characterising the behaviour of each chain (i.e., specialising
the continuous-time Markov chain – CTMC, model in the main paper), thus, affecting the UAV behaviour. Using
a seed as a configuration parameter enables to reduce the non-determinism of the simulator, thus enhancing the
reproducibility of the experiments and the robustness of the results obtained.

The open-source RBV source code, the full experimental results, additional information about RBV, including a
video of the floating chain inspection and maintenance mission, are available at https://github.com/gerasimou/
RBV.

Experimental Methodology

We evaluated the capabilities of our RBV framework by performing a wide range of experiments that assess both the
decision support offered by the framework and its overheads. Accordingly, we instrumented the simulation platform
(as described in the Section of Simulation Platform in this document) with the implemented RBV framework (main
paper, Figure 1) and realised the AUV-driven structural health inspection and cleaning mission presented in the
Results Section of the main paper. Given the parametric CTMC model of the mission (main paper, Figure 2), we
consider as unknown parameters the chain-dependent transition rate for cleaning the i-th chain (rclean

i ), and the
mission-dependent transition rates for causing catastrophic damage to a floating chain or itself (rdamage) and for
failing to clean (rfail). Since the floating chains are spatially located in the same area, we model the failure rate
rfail as a homogeneous parameter affecting all chains of the mission similarly. Nevertheless, our RBV framework
can be easily adapted to support modelling an individual transition rate for failing to clean (rfail

i ) each i-th chain.
We assemble the interval CTMC model using the BIPP and IPSP estimators to learn these unknown model

parameters. In particular, we use the BIPP estimator to quantify the rate values associated with the singular
events of cleaning the i-th chain (rclean

i ) and encountering a catastrophic failure (rdamage). The former corresponds
to successfully completing a difficult one-off task, and the latter models a major failure. Since the AUV may
try multiple times to clean a particular chain, we model the corresponding transition rate (rfail) using the IPSP
estimator, which is suitable for events observed regularly during system operation.

Results

We have already presented how our RBV framework supports the runtime verification of mission-critical autonomous
robots for a typical scenario of the AUV-based offshore wind-turbine inspection and maintenance mission (main
paper, Figure 3). We also measured the overheads associated with executing the online verification process (main
paper, Figure 4). Furthermore, we systematically analysed the operation of both BIPP and IPSP estimators in
several scenarios with varying levels of partial prior knowledge (main paper, Figures 5 and 6).

In this section, we present additional results for the end-to-end application of the RBV framework, focusing
on the AUV behaviour over multiple failed attempts to clean a specific chain. Supplementary figure 3 shows the
verification results for requirements R1 – quantifying the probability of the mission completing successfully (top)
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<latexit sha1_base64="j89DkNTt52DfODrPJT9Awd/DP0A=">AAACYHicbVFNT9wwEHVCC9uUj6W9tRerC1JPq4QDIFBVKqSqxwWxgLSJVo4zAQt/RPaEdhXlT/bWQy/9JfWGLaLASJae3pt5Yz/nlRQO4/hXEC69eLm80nsVvV5dW9/ob745d6a2HMbcSGMvc+ZACg1jFCjhsrLAVC7hIr85nusXt2CdMPoMZxVkil1pUQrO0FPT/vftFOEHWtUcG12Kq9p2At1to3vlCyKoCtsoSrURugCNnZSXzWly0NJTv53lQgqcRWl637M1mjafPreTr+kh/WdVML8f2mxr2h/Ew7gr+hQkCzAgixpN+z/TwvBaeWMumXOTJK4wa5hFwSW0UVo7qBi/8fYTDzVT4LKmC6il254paGmsPxppxz6caJhybqZy36kYXrvH2px8TpvUWO5njdBVjaD53aKylhQNnadNC2GBo5x5wLgV/q6UXzPLOPo/iXwIyeMnPwXnO8Nkd5ic7AyODhZx9Mh78oF8JAnZI0fkGxmRMeHkd7AUrAZrwZ+wF26Em3etYbCYeUv+q/DdX1MLtyA=</latexit> R
1
:

R
el

ia
b
il
it
y

P
=

?
[F

d
am

ag
e]

<latexit sha1_base64="XOyGQSpsFyWKtydO0KPZ3M7EumQ=">AAACAXicbVA9SwNBEN3zM8avUxvBZjEIVuFORMUqkMYygvmAJIS9zV6yZG/32J0TwxEb/4qNhSK2/gs7/42byxWa+GDg8d4MM/OCWHADnvftLC2vrK6tFzaKm1vbO7vu3n7DqERTVqdKKN0KiGGCS1YHDoK1Ys1IFAjWDEbVqd+8Z9pwJe9gHLNuRAaSh5wSsFLPPewAewAdpVUlQz5IdKZjf9JzS17Zy4AXiZ+TEspR67lfnb6iScQkUEGMafteDN2UaOBUsEmxkxgWEzoiA9a2VJKImW6afTDBJ1bp41BpWxJwpv6eSElkzDgKbGdEYGjmvan4n9dOILzqplzGCTBJZ4vCRGBQeBoH7nPNKIixJYRqbm/FdEg0oWBDK9oQ/PmXF0njrOxflP3b81LlOo+jgI7QMTpFPrpEFXSDaqiOKHpEz+gVvTlPzovz7nzMWpecfOYA/YHz+QMHNJc6</latexit>

Configuration 1
<latexit sha1_base64="JKxgGivCf4XffDZYuXWbhWYVdBM=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8FSSIuqx2IvHCvYD2lA22027dLMJuxOxhHrxr3jxoIhX/4U3/43bNAdtfTDweG+GmXl+LLgGx/m2Ciura+sbxc3S1vbO7p69f9DSUaIoa9JIRKrjE80El6wJHATrxIqR0Bes7Y/rM799z5TmkbyDScy8kAwlDzglYKS+fdQD9gAqTOuRDPgwUZmOz6d9u+xUnAx4mbg5KaMcjb791RtENAmZBCqI1l3XicFLiQJOBZuWeolmMaFjMmRdQyUJmfbS7IMpPjXKAAeRMiUBZ+rviZSEWk9C33SGBEZ60ZuJ/3ndBIIrL+UyToBJOl8UJAJDhGdx4AFXjIKYGEKo4uZWTEdEEQomtJIJwV18eZm0qhX3ouLeVsu16zyOIjpGJ+gMuegS1dANaqAmougRPaNX9GY9WS/Wu/Uxby1Y+cwh+gPr8wcNi5dD</latexit>

Configuration 4
<latexit sha1_base64="QmeBXNkAZbCEqpKGZ42BVITB2BM=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJWkiHos9uKxgv2ANpTNdtMu3WzC7kQsoXjxr3jxoIhXf4U3/43bNAdtfTDweG+GmXl+LLgGx/m2Ciura+sbxc3S1vbO7p69f9DSUaIoa9JIRKrjE80El6wJHATrxIqR0Bes7Y/rM799z5TmkbyDScy8kAwlDzglYKS+fdQD9gAqTOuRDPgwUZmO3fNp3y47FScDXiZuTsooR6Nvf/UGEU1CJoEKonXXdWLwUqKAU8GmpV6iWUzomAxZ11BJQqa9NHthik+NMsBBpExJwJn6eyIlodaT0DedIYGRXvRm4n9eN4Hgyku5jBNgks4XBYnAEOFZHnjAFaMgJoYQqri5FdMRUYSCSa1kQnAXX14mrWrFvai4t9Vy7TqPo4iO0Qk6Qy66RDV0gxqoiSh6RM/oFb1ZT9aL9W59zFsLVj5ziP7A+vwBhlWXfg==</latexit>

Configuration 14
<latexit sha1_base64="J1ITkhkLC6+0kA/U5gA9NjXjM+E=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWkCx+7YjcuK9gHtKFMppN26GQSZm7EEurGX3HjQhG3/oU7/8ZpmoW2HrhwOOde7r3HjwXX4DjfVmFldW19o7hZ2tre2d2z9w9aOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf1xfea375nSPJJ3MImZF5Kh5AGnBIzUt496wB5AhWk9kgEfJirT8dW0b5edipMBLxM3J2WUo9G3v3qDiCYhk0AF0brrOjF4KVHAqWDTUi/RLCZ0TIasa6gkIdNemn0wxadGGeAgUqYk4Ez9PZGSUOtJ6JvOkMBIL3oz8T+vm0Bw6aVcxgkwSeeLgkRgiPAsDjzgilEQE0MIVdzciumIKELBhFYyIbiLLy+TVrXinlfc22q5dp3HUUTH6ASdIRddoBq6QQ3URBQ9omf0it6sJ+vFerc+5q0FK585RH9gff4AFSSXSA==</latexit>

Configuration 9

<latexit sha1_base64="rxubWn96TAIxR/Hl8UAe02fRll4=">AAACE3icbVA9SwNBEN3z2/gVtbRZDAGxCHciUayUNJYRTBRiCHububi4u3fszonhyH+w8a/YWChia2Pnv3GTnKDRBwOP92aYmRcmUlj0/U9vanpmdm5+YbGwtLyyulZc32jaODUcGjyWsbkMmQUpNDRQoITLxABToYSL8KY29C9uwVgR63PsJ9BWrKdFJDhDJ3WKu+UrhDs0KqvFOhK91IwMWh0Uvo0TRFAJDjrFkl/xR6B/SZCTEslR7xQ/rroxTxVo5JJZ2wr8BNsZMyi4BLcgtZAwfsN60HJUMwW2nY1+GtCyU7o0io0rjXSk/pzImLK2r0LXqRhe20lvKP7ntVKMDtuZ0EmKoPl4UZRKijEdBkS7wgBH2XeEcSPcrZRfM8M4uhgLLoRg8uW/pLlXCaqV4Gy/dHyUx7FAtsg22SEBOSDH5JTUSYNwck8eyTN58R68J+/Vexu3Tnn5zCb5Be/9CzB6nvk=</latexit>

Attempt

<latexit sha1_base64="eLuzQDHMjCYxyg9ECxWhtec/x5M="></latexit> R
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Supplementary figure 3: Computed value intervals for the reliability requirement R1, the probability that the AUV will not encounter a
catastrophic failure during its mission (top) and energy requirement R2, the expected energy consumption (bottom), over successive attempts
for the same AUV configuration. After a failed attempt, each new attempt for the same chain and AUV configuration results in a wider interval
for the key system requirements R1 and R2.

and R2 – quantifying the expected energy consumption of the AUV (bottom) across successive attempts for the
same AUV configuration. In each of these plots and irrespective of the system property measured, the computed
value intervals become wider as the number of failed AUV attempts to clean the chain increases. For instance,
consider requirement R1 and configuration 1 (shown on the top left in supplementary figure 3), which shows a small
increase in the reliability interval for the three initial attempts to clean the chain. Despite the interval becoming
wider, the reliability threshold of 0.95 is satisfied; thus, this configuration is feasible and is included in the candidates
set for further analysis using requirement R3 – selecting the configuration that maximises the number of chains
cleaned. In contrast, the computed reliability interval for the fourth attempt violates the reliability threshold; thus,
this configuration is infeasible. No valid configuration exists in the fourth attempt, and the AUV decides to skip
the chain and move to the next.

A similar pattern of wider value intervals is also observed for the energy consumption property (R2). In this
case, the energy threshold decreases for each new attempt as the AUV has consumed energy trying to clean the
chain in the previous attempts. Consequently, this requirement is more restrictive and leads to excluding further
configurations; see, for instance, the violated energy threshold in attempt 3 for configurations 4 and 9.

The wider intervals over each successive failed attempt correspond to the increased uncertainty concerning the
AUV’s operation and its capacity to fulfil the mission successfully. The rationale underpinning this behaviour is
that since both transition rates rclean

i and rdamage employ the BIPP estimator, the posterior estimate bounds for
both transition rates are wider and converge towards their theoretical asymptotic values (cf. the section of “BIPP
estimator evaluation” in the main paper). However, since the prior knowledge for the rclean

i rate is higher than the
rdamage rate, the posterior bounds for the rclean

i rate decline much faster than those of the rdamage rate, leading to
a more conservative estimate and a wider interval for requirements R1 and R2.
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