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Supplementary Table 1. A list of in situ ET stations used in this study, including key metadata. 

Land cover classification and mean daily energy balance closure assignment and calculations are 

described in Volk et al.
1,2

.  

 

Site ID
General 

classification

State Data 

source/network

Period of record Energy 

balanc

e

Latitude Longitud

e

Elevatio

n (m)

Land cover details Land cover type Measurement 

technique

US-A32 Grasslands OK AmeriFlux 06/2015-06/2017 0.90 36.8193 -97.81977 335 Hay pasture Grasslands Eddy covariance

US-A74 Croplands OK AmeriFlux 01/2016-10/2017 0.92 36.8085 -97.54885 337 Sorghum Annual crops Eddy covariance

US-ADR Shrublands NV AmeriFlux 05/2011-05/2017 0.92 36.7653 -116.6933 842 Greasewood Shrublands Eddy covariance

US-AR1 Croplands OK AmeriFlux 06/2009-12/2012 1.09 36.4267 -99.42 611 Planted Switchgrass Annual crops Eddy covariance

US-ARb Grasslands OK AmeriFlux 03/2005-10/2006 1.01 35.5497 -98.0402 424 Native tallgrass prairie Grasslands Eddy covariance

US-ARc Grasslands OK AmeriFlux 03/2005-10/2006 1.02 35.5465 -98.04 424

Native tallgrass prairie 

(burned in March 2005) Grasslands Eddy covariance

US-ARM Croplands OK AmeriFlux 01/2003-09/2020 0.87 36.6058 -97.4888 314 Winter wheat, corn, soy, Annual crops Eddy covariance

US-Aud Grasslands AZ AmeriFlux 06/2002-09/2011 1.14 31.5907 -110.5104 1469 Madrean mixed grass Grasslands Eddy covariance

US-Bi1 Croplands CA AmeriFlux 08/2016-12/2019 0.78 38.0992 -121.4993 -2.7 Alfalfa Annual crops Eddy covariance

US-Bi2 Croplands CA AmeriFlux 04/2017-07/2020 0.80 38.109 -121.535 -4.98 Corn Annual crops Eddy covariance

US-Bkg Croplands SD AmeriFlux 04/2004-03/2010 0.99 44.3453 -96.83617 510 Native grass pasture Annual crops Eddy covariance

US-Blk Evergreen ForestsSD AmeriFlux 01/2004-04/2008 0.94 44.158 -103.65 1718 Ponderosa pine Evergreen ForestsEddy covariance

US-Blo Evergreen ForestsCA AmeriFlux 06/1997-10/2007 0.93 38.8953 -120.6328 1315

Ponderosa pine 

plantation, mixed- Evergreen ForestsEddy covariance

US-Bo1 Croplands IL AmeriFlux 08/1996-04/2008 0.84 40.0062 -88.2904 219

Corn (2005, 2007) and soy 

rotation (2006, 2008), no- Annual crops Eddy covariance

US-Br1 Croplands IA AmeriFlux 04/2005-11/2011 0.81 41.9749 -93.6906 313 Corn and soy rotation Annual crops Eddy covariance

US-Br3 Croplands IA AmeriFlux 01/2005-11/2011 0.81 41.9747 -93.69357 313 Corn and soy rotation Annual crops Eddy covariance

US-Ced Shrublands NJ AmeriFlux 07/2005-12/2014 1.08 39.8379 -74.3791 58 Pitch pine prescribed Shrublands Eddy covariance

US-CMW Wetland/Riparian AZ AmeriFlux 03/2001-12/2019 0.87 31.6637 -110.1777 1199 Riparian mesquite Riparian Eddy covariance

US-CRT Croplands OH AmeriFlux 01/2011-12/2013 0.77 41.6285 -83.34709 180 Soy and winter wheat, no Annual crops Eddy covariance

US-Ctn Grasslands SD AmeriFlux 11/2006-09/2009 0.71 43.95 -101.8466 744 Grasslands Grasslands Eddy covariance

US-CZ3 Evergreen ForestsCA AmeriFlux 07/2011-10/2016 1.21 37.0674 -119.1951 2015 Pine/fir forest Evergreen ForestsEddy covariance

US-Dix Mixed Forests NJ AmeriFlux 04/2005-04/2008 1.06 39.9712 -74.43455 48 Oak/pine forest Mixed Forests Eddy covariance

US-Dk1 Croplands NC AmeriFlux 01/2006-11/2008 0.87 35.9712 -79.09338 168 Grass (Festuca Annual crops Eddy covariance

US-Dk2 Mixed Forests NC AmeriFlux 07/2006-04/2008 0.89 35.9736 -79.10043 168 Mature oak-hickory forest Mixed Forests Eddy covariance

US-Esm Wetland/Riparian FL AmeriFlux 01/2008-11/2013 0.80 25.4379 -80.5946 1.07

Everglades peat and marl 

forming wetlands Wetlands Eddy covariance

US-Fmf Evergreen ForestsAZ AmeriFlux 08/2005-12/2010 0.83 35.1426 -111.7273 2160 Ponderosa pine forest Evergreen ForestsEddy covariance

US-FPe Grasslands MT AmeriFlux 01/2000-06/2008 1.07 48.3077 -105.1019 634 Grassland Grasslands Eddy covariance

US-FR2 Mixed Forests TX AmeriFlux 01/2005-12/2007 0.78 29.9495 -97.99623 271.9 Mesquite Juniper forest Mixed Forests Eddy covariance

US-Fuf Evergreen ForestsAZ AmeriFlux 09/2005-12/2010 0.96 35.089 -111.762 2180 Ponderosa pine forest, Evergreen ForestsEddy covariance

US-Fwf Grasslands AZ AmeriFlux 06/2005-12/2010 0.97 35.4454 -111.7718 2270

Grassland, after severe 

fire removed ponderosa Grasslands Eddy covariance

US-GLE Evergreen ForestsWY AmeriFlux 01/1999-03/2018 0.73 41.3665 -106.2399 3197

85% Engelmann spruce 

15% Subalpine fir Evergreen ForestsEddy covariance

US-GMF Mixed Forests CT AmeriFlux 05/1999-01/2002 0.87 41.9667 -73.23333 380

Hemlock, pine, with mixed 

deciduous forest Mixed Forests Eddy covariance

US-Goo Grasslands MS AmeriFlux 05/2002-11/2006 0.83 34.2547 -89.8735 87 Grassland Grasslands Eddy covariance

US-Hn2 Grasslands WA AmeriFlux 01/2016-12/2018 0.85 46.6889 -119.4641 117.5 Cheatgrass and Russian Grasslands Eddy covariance

US-Hn3 Shrublands WA AmeriFlux 11/2017-12/2018 0.87 46.6878 -119.4615 120.9

Cheatgrass, Russian 

thistle, bitterbrush, 

sagebrush, and Shrublands Eddy covariance

US-IB1 Croplands IL AmeriFlux 07/2005-12/2018 0.79 41.8593 -88.22273 226.5 Corn and soybean rotation Annual crops Eddy covariance

US-IB2 Grasslands IL AmeriFlux 10/2004-12/2018 0.78 41.8406 -88.24103 226.5 Restored prairie Grasslands Eddy covariance

US-Jo2 Shrublands NM AmeriFlux 08/2010-12/2019 0.80 32.5849 -106.6032 1469 Open phreatophyte Shrublands Eddy covariance

US-KLS Croplands KS AmeriFlux 12/2014-12/2016 0.78 38.7745 -97.5684 373 Wheatgrass Annual crops Eddy covariance

US-KM4 Grasslands MI AmeriFlux 07/2010-12/2018 0.78 42.4423 -85.33006 288 Smooth brome grass Grasslands Eddy covariance

US-KS2 Shrublands FL AmeriFlux 04/2000-09/2006 0.81 28.6086 -80.6715 3 Scrub oak, fire in 1996 Shrublands Eddy covariance

US-LS1 Grasslands AZ AmeriFlux 03/2003-12/2007 0.76 31.5615 -110.1403 1230 Bunchgrass Grasslands Eddy covariance

US-Me1 Evergreen ForestsOR AmeriFlux 06/2004-05/2005 0.98 44.5794 -121.5 896

Ponderosa pine forest, 

burn replaced stand in Evergreen ForestsEddy covariance

US-Me2 Evergreen ForestsOR AmeriFlux 01/2002-07/2020 0.93 44.4523 -121.5574 1253 Mature ponderosa pine Evergreen ForestsEddy covariance

US-Me5 Evergreen ForestsOR AmeriFlux 01/2000-12/2002 0.76 44.4372 -121.5668 1188 Ponderosa pine forest, Evergreen ForestsEddy covariance

US-Me6 Evergreen ForestsOR AmeriFlux 10/2014-07/2020 0.83 44.3233 -121.6078 998 Ponderosa pine forest, Evergreen ForestsEddy covariance

US-Mj1 Croplands MT AmeriFlux 04/2013-09/2014 0.94 46.9948 -109.6138 1285 Wheat Annual crops Eddy covariance

US-Mj2 Croplands MT AmeriFlux 04/2014-09/2014 1.03 46.9957 -109.6295 1277 Summer fallow Annual crops Eddy covariance

US-MMS Mixed Forests IN AmeriFlux 01/1999-12/2014 0.76 39.3232 -86.4131 275

Mature broadleaf forest, 

maple. beech, oak, hickory Mixed Forests Eddy covariance

US-MOz Mixed Forests MO AmeriFlux 05/2006-12/2017 0.76 38.7441 -92.2 219.4

Oak/hickory/pine closed 

forest Mixed Forests Eddy covariance

US-NC2 Evergreen ForestsNC AmeriFlux 01/2005-12/2019 1.09 35.803 -76.6685 5 Loblolly pine plantation Evergreen ForestsEddy covariance

US-NC3 Evergreen ForestsNC AmeriFlux 03/2013-11/2019 1.07 35.799 -76.656 5

Loblolly pine forest, 

planted after clearcut in 

2012 Evergreen ForestsEddy covariance
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US-NC4 Wetland/Riparian NC AmeriFlux 02/2009-12/2019 1.10 35.7879 -75.9038 1 Forested wetland Wetlands Eddy covariance

US-Ne1 Croplands NE AmeriFlux 06/2001-12/2014 0.79 41.1651 -96.47664 361 Agriculture (continuous maize) Annual crops Eddy covariance

US-Ne2 Croplands NE AmeriFlux 06/2001-12/2014 0.83 41.1649 -96.4701 362 Agriculture (maize-soybean rotation) Annual crops Eddy covariance

US-Ne3 Croplands NE AmeriFlux 06/2001-12/2014 0.87 41.1797 -96.43965 363 Agriculture (maize-soybean rotation) Annual crops Eddy covariance

US-NR1 Evergreen ForestsCO AmeriFlux 06/1999-12/2019 0.81 40.0329 -105.5464 3050

Subalpine fir, Engelmann spruce, and 

lodgepole pine Evergreen ForestsEddy covariance

US-Oho Mixed Forests OH AmeriFlux 01/2004-12/2013 0.82 41.5545 -83.8438 230 Oak woodlands Mixed Forests Eddy covariance

US-Ro1 Croplands MN AmeriFlux 01/2011-12/2016 0.78 44.7143 -93.0898 260

Agricultural, corn and soybean 

rotation Annual crops Eddy covariance

US-Ro2 Croplands MN AmeriFlux 01/2016-12/2016 0.76 44.7288 -93.0888 292

Corn-Soybean-Kura Clover annual 

rotation Annual crops Eddy covariance

US-Ro3 Croplands MN AmeriFlux 07/2004-12/2007 0.86 44.7217 -93.0893 260

Corn-Soybean annual rotation (corn: 

2003, 2005, 2007, 2009, 2011, 2013 

soybean: 2004, 2006, 2008, 2010, 2012, 

2014) Annual crops Eddy covariance

US-Ro4 Grasslands MN AmeriFlux 09/2015-06/2020 0.83 44.6781 -93.0723 274

Restored prarie, Andropogon 

gerardii, Sorghastrum nutans, and 

Elymus canadensis Grasslands Eddy covariance

US-Ro5 Croplands MN AmeriFlux 03/2017-12/2017 0.77 44.691 -93.0576 283 Corn/soy rotation Annual crops Eddy covariance

US-Ro6 Croplands MN AmeriFlux 03/2017-12/2017 0.80 44.6946 -93.05776 282 Corn/soybean/clover rotation Annual crops Eddy covariance

US-Rwe Shrublands ID AmeriFlux 01/2003-09/2007 0.93 43.0653 -116.7591 2098 Mixed sagebrush Shrublands Eddy covariance

US-Rwf Shrublands ID AmeriFlux 06/2014-01/2018 0.85 43.1207 -116.7231 1878 Sagebrush, prescribed fire in 2007 Shrublands Eddy covariance

US-Rws Shrublands ID AmeriFlux 09/2014-09/2018 0.87 43.1675 -116.7132 1425

The site is a grazing alotment with 

light cattle grazing in spring. Shrublands Eddy covariance

US-SCg Grasslands CA AmeriFlux 08/2008-04/2011 0.89 33.7365 -117.6946 465 Grassland Grasslands Eddy covariance

US-SCs Shrublands CA AmeriFlux 08/2008-10/2014 0.81 33.7343 -117.696 470 Coastal sage scrub Shrublands Eddy covariance

US-SCw Shrublands CA AmeriFlux 09/2008-12/2009 0.88 33.6047 -116.4527 1281 Pinyon/Juniper woodland Shrublands Eddy covariance

US-SdH Grasslands NE AmeriFlux 05/2004-12/2009 1.04 42.0693 -101.4072 1081 Grass pasture Grasslands Eddy covariance

US-Skr Wetland/Riparian FL AmeriFlux 01/2004-08/2011 0.93 25.3629 -81.07758 0

This is a tall (up to 20 m) mangrove 

forest. Wetlands Eddy covariance

US-Slt Mixed Forests NJ AmeriFlux 01/2005-12/2014 1.08 39.9138 -74.596 30 Oak forest Mixed Forests Eddy covariance

US-Sne Wetland/Riparian CA AmeriFlux 05/2016-12/2019 0.85 38.0369 -121.7547 -5 Restored wetland Wetlands Eddy covariance

US-SO2 Shrublands CA AmeriFlux 03/1997-12/2006 0.99 33.3738 -116.6228 1394 Chaparral, severe fire in 2003 Shrublands Eddy covariance

US-SO3 Shrublands CA AmeriFlux 03/1997-12/2006 0.90 33.3771 -116.6226 1429 Chaparral, severe fire in 2003 Shrublands Eddy covariance

US-SO4 Shrublands CA AmeriFlux 01/2004-12/2006 0.87 33.3845 -116.6406 1429 Old-growth chaparral ecosystem Shrublands Eddy covariance

US-SP2 Evergreen ForestsFL AmeriFlux 02/1999-07/2008 0.89 29.7648 -82.24482 50

Slash pine (Pinus elliottii) plantation, 

planted in Jan. 1999 Evergreen ForestsEddy covariance

US-SP3 Evergreen ForestsFL AmeriFlux 01/1999-12/2010 0.85 29.7548 -82.16328 50

Even aged high density slash pine 

(Pinus elliottii) plantation. Evergreen ForestsEddy covariance

US-SRC Mixed Forests AZ AmeriFlux 03/2008-06/2014 0.82 31.9083 -110.8395 950 Greasewood Mixed Forests Eddy covariance

US-SRG Grasslands AZ AmeriFlux 04/2008-06/2020 0.91 31.7894 -110.8277 1291 C4 grassland pasture Grasslands Eddy covariance

US-SRM Shrublands AZ AmeriFlux 01/2004-06/2020 0.89 31.8214 -110.8661 1120

MODIS website lists this as Open 

Shrublands (OSO), but site is a Desert 

Grassland that has been fully 

encroached by Mesquite (now about 

35% canopy cover, mean canopy 

height > 2 m) Shrublands Eddy covariance

US-Srr Wetland/Riparian CA AmeriFlux 03/2016-10/2017 0.86 38.2006 -122.0264 8 Brackish tidal marsh Wetlands Eddy covariance

US-SRS Shrublands AZ AmeriFlux 05/2011-11/2018 0.94 31.8173 -110.8508 1169

Mesquite savanna, herbicide applied 

in 2016 Shrublands Eddy covariance

US-Tw2 Croplands CA AmeriFlux 05/2012-04/2013 0.77 38.1047 -121.6433 -5 Corn on peat soil Annual crops Eddy covariance

US-Tw3 Croplands CA AmeriFlux 05/2013-06/2018 0.85 38.1159 -121.6467 -9 Alfalfa Annual crops Eddy covariance

US-Twt Croplands CA AmeriFlux 04/2009-04/2017 0.90 38.1087 -121.6531 -7 Rice Annual crops Eddy covariance

US-Var Grasslands CA AmeriFlux 10/2000-08/2020 0.94 38.4133 -120.9507 129 Annual grasses and forbs Grasslands Eddy covariance

US-WBW Mixed Forests TN AmeriFlux 01/1995-06/2007 0.75 35.9588 -84.28743 283 Oak/hickory broadleaf forest Mixed Forests Eddy covariance

US-WCr Mixed Forests WI AmeriFlux 02/1999-04/2020 0.89 45.8059 -90.0799 520

sugar maple (Acer saccharum), 

basswood (Tilia americana), and 

yellow birch (Betula alleghaniensis). Mixed Forests Eddy covariance

US-Wkg Grasslands AZ AmeriFlux 05/2004-06/2020 0.93 31.7365 -109.9419 1531 Desert grassland Grasslands Eddy covariance

US-xAE Grasslands OK AmeriFlux 02/2018-05/2020 0.76 35.4106 -99.05879 516 Grass pasture Grasslands Eddy covariance

US-xDC Grasslands ND AmeriFlux 10/2017-05/2020 0.74 47.1617 -99.10656 559 Prairie grasslands, mid- to tall-height Grasslands Eddy covariance

US-xDL Mixed Forests AL AmeriFlux 01/2017-05/2020 0.83 32.5417 -87.80389 22 Oak and hickory Mixed Forests Eddy covariance

US-xDS Grasslands FL AmeriFlux 01/2018-05/2020 0.75 28.125 -81.4362 15 Native grasses and wetlands Grasslands Eddy covariance
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US-xNG Grasslands ND AmeriFlux 10/2017-04/2020 0.71 46.7697 -100.9154 578

Smooth Brome and Kentucky blue 

grass grassland Grasslands Eddy covariance

US-xRM Evergreen ForestsCO AmeriFlux 06/2017-05/2020 0.65 40.2759 -105.5459 2743 Ponderosa pine, open canopy Evergreen ForestsEddy covariance

US-xSB Evergreen ForestsFL AmeriFlux 12/2017-05/2020 0.82 29.6893 -81.99343 45 Pine forest, longleaf and loblolly Evergreen ForestsEddy covariance

US-xSL Croplands CO AmeriFlux 06/2017-05/2020 0.78 40.4619 -103.0293 1364

Winter wheat, millet, and maize, 

no-till Annual crops Eddy covariance

US-xST Mixed Forests WI AmeriFlux 08/2018-05/2020 0.77 45.5089 -89.58637 481

Early successional, even-aged 

aspen stand, with some red maple 

and balsam fir Mixed Forests Eddy covariance

US-xUN Mixed Forests MI AmeriFlux 08/2017-05/2020 0.74 46.2339 -89.53725 518 Maple, aspen, birch mesic forest Mixed Forests Eddy covariance

MB_Pch Croplands CA CSUMB 04/2012-12/2015 1.00 36.4587 -119.5801 90 Peach Orchards Eddy covariance

Ellendale Croplands LA Delta-Flux 8/2018-12/2020 0.77 29.6333 -90.82766 2 Sugarcane Annual crops Eddy covariance

manilacotton Croplands AR Delta-Flux 5/2016-10/2018 0.80 35.8872 -90.1371 73 Cotton Annual crops Eddy covariance

stonevillesoy Croplands MS Delta-Flux 04/2017-07/2019 0.81 33.4433 -90.8865 37 Soy Annual crops Eddy covariance

US-OF1 Croplands AR Delta-Flux 5/2017-9/2017 0.84 35.7371 -90.0492 70 Rice Annual crops Eddy covariance

US-OF2 Croplands AR Delta-Flux 6/2017-9/2017 0.76 35.7406 -90.0489 70 Rice Annual crops Eddy covariance

US-OF4 Croplands AR Delta-Flux 5/2018-8/2018 0.89 35.7343 -90.03798 71 Rice Annual crops Eddy covariance

US-OF6 Croplands AR Delta-Flux 5/2018-8/2018 0.78 35.73 -90.04033 70 Rice Annual crops Eddy covariance

S2 Croplands OR DRI 09/2017-04/2021 0.80 43.4171 -118.6142 1255 Alfalfa Annual crops Eddy covariance

ALARC2_Smith6 Croplands AZ USDA-ARS 01/2018-06/2018 0.84 32.6973 -114.5154 45 Wheat Annual crops Eddy covariance

Almond_High Croplands CA USDA-ARS 10/2016-10/2019 0.83 36.1697 -120.201 147 Almond Orchards Eddy covariance

Almond_Low Croplands CA USDA-ARS 10/2016-10/2019 0.84 36.9466 -120.1024 78 Almond Orchards Eddy covariance

Almond_Med Croplands CA USDA-ARS 09/2016-10/2019 0.82 36.1777 -120.2026 147 Almond Orchards Eddy covariance

JPL1_JV114 Croplands AZ USDA-ARS 09/2018-12/2018 0.77 32.6563 -114.6565 35 Iceberg Vegetable crops Eddy covariance

JPL1_Smith5 Croplands AZ USDA-ARS 12/2017-06/2018 0.78 32.6975 -114.5195 44 Wheat Annual crops Eddy covariance

UA1_HartFarm Croplands AZ USDA-ARS 12/2018-05/2019 0.92 33.0774 -112.1121 355 Wheat Annual crops Eddy covariance

UA1_JV187 Croplands AZ USDA-ARS 03/2018-07/2018 0.87 32.7065 -114.7085 36 Sudan Annual crops Eddy covariance

UA1_KN18 Croplands AZ USDA-ARS 09/2018-11/2018 0.94 32.7762 -114.5888 40 Cauliflower Vegetable crops Eddy covariance

UA2_JV330 Croplands AZ USDA-ARS 11/2018-01/2019 0.89 32.7122 -114.5742 40 Spring mix Vegetable crops Eddy covariance

UA2_KN20 Croplands AZ USDA-ARS 02/2019-03/2019 0.87 32.7795 -114.5811 40 Baby Leaf Lettuce Vegetable crops Eddy covariance

UA3_JV108 Croplands AZ USDA-ARS 03/2018-06/2018 0.87 32.7207 -114.706 37 Sudan Annual crops Eddy covariance

UA3_KN15 Croplands AZ USDA-ARS 09/2018-11/2018 0.88 32.7802 -114.5883 39 Broccoli Vegetable crops Eddy covariance

LYS_NE Croplands TX USDA-ARS 5/2013-10/2016 35.1881 -102.0955 1173

Corn and sorghum, subsurface drip 

irrigation Annual crops Weighing lysimeter

LYS_NW Croplands TX USDA-ARS 6/2013-10/2016 35.1881 -102.0979 1174

Corn and sorghum, mid elevation 

sprinkler application Annual crops Weighing lysimeter

LYS_SE Croplands TX USDA-ARS 5/2013-10/2016 35.1861 -102.0956 1172

Corn and sorghum, subsurface drip 

irrigation Annual crops Weighing lysimeter

LYS_SW Croplands TX USDA-ARS 6/2013-10/2016 35.1861 -102.0979 1174

Corn and sorghum, mid elevation 

sprinkler application Annual crops Weighing lysimeter

BAR012 Croplands CA USDA-ARS GRAPEX 05/2017-11/2018 0.85 38.751 -122.975 102 Vineyard Vineyards Eddy covariance

RIP760 Croplands CA USDA-ARS GRAPEX 05/2017-11/2018 0.88 36.839 -120.21 57 Vineyard Vineyards Eddy covariance

SLM001 Croplands CA USDA-ARS GRAPEX 01/2017-11/2018 0.94 38.289 -121.118 39 Vineyard Vineyards Eddy covariance

B_01 Croplands NV USGS NWSC 03/2005-04/2007 39.055 -119.134 1326 Non Irrigated Alfalfa Annual crops Bowen Ratio

B_11 Croplands NV USGS NWSC 03/2005-03/2007 39.108 -119.146 1317 Irrigated Alfalfa Annual crops Bowen Ratio

ET_1 Shrublands NV USGS NWSC 01/2004-10/2004 39.029 -119.808 1420 Greasewood/Rabbitbrush Shrublands Bowen Ratio

ET_8 Croplands NV USGS NWSC 06/2003-11/2004 38.859 -119.764 1471 Irrigated Pasture Grass Annual crops Bowen Ratio

MR Wetland/Riparian NV USGS NWSC 07/2003-09/2006 36.691 -114.688 503 Mesquite Riparian Bowen Ratio

TAM Wetland/Riparian NV USGS NWSC 03/2005-03/2007 38.851 -118.773 1222 Salt Cedar Riparian Bowen Ratio

VR Wetland/Riparian NV USGS NWSC 02/2003-03/2005 36.588 -114.328 370 Salt Cedar Riparian Bowen Ratio

AFD Shrublands NV USGS NWSC 11/2011-11/2013 0.83 36.4909 -116.2533 709 Shadscale Shrublands Eddy covariance

AFS Grasslands NV USGS NWSC 11/2011-11/2013 0.99 36.4926 -116.2594 708 Salt Grass Grasslands Eddy covariance

BPHV Grasslands CA USGS NWSC 10/2012-09/2013 0.77 38.2097 -119.2914 1997 Pasture Grass Grasslands Eddy covariance

BPLV Grasslands CA USGS NWSC 10/2012-09/2013 0.98 38.2267 -119.2861 2023 Pasture grass Grasslands Eddy covariance

DVDV Shrublands NV USGS NWSC 10/2009-09/2011 0.77 39.7625 -117.9601 1046

Greasewood/Big 

Saltbush/Seepweed Shrublands Eddy covariance

KV_1 Shrublands NV USGS NWSC 08/2011-08/2012 0.89 39.5371 -116.3576 1859 Greasewood/Rabbitbrush Shrublands Eddy covariance

KV_2 Shrublands NV USGS NWSC 08/2010-08/2012 0.91 39.6197 -116.2134 1845

Greasewood/Rabbitbrush/Salt 

Grass Shrublands Eddy covariance

KV_4 Grasslands NV USGS NWSC 11/2011-11/2012 0.90 39.5987 -116.1642 1833 Meadow Grass Grasslands Eddy covariance

SPV_1 Shrublands NV USGS NWSC 09/2005-08/2007 0.81 38.7776 -114.4678 1763 Greasewood/Rabbitbrush Shrublands Eddy covariance

SPV_3 Grasslands NV USGS NWSC 09/2005-08/2007 0.93 38.9367 -114.4212 1763 Mixed Grasses Grasslands Eddy covariance

SV_5 Shrublands NV USGS NWSC 10/2007-09/2009 0.95 39.0325 -114.4855 1760 Greasewood/Rabbitbrush Shrublands Eddy covariance

SV_6 Shrublands NV USGS NWSC 10/2007-09/2009 0.95 39.0429 -114.4831 1756 Greasewood/Rabbitbrush Shrublands Eddy covariance

UMVW Shrublands NV USGS NWSC 10/2005-09/2006 1.06 37.5204 -114.5832 1250 Rabbitbrush Shrublands Eddy covariance

WRV_1 Shrublands NV USGS NWSC 09/2005-08/2007 0.99 38.4136 -115.0509 1600 Greasewood Shrublands Eddy covariance

WRV_2 Shrublands NV USGS NWSC 09/2006-08/2007 0.82 38.6405 -115.1026 1622 Greasewood Shrublands Eddy covariance
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US-A32 10.17190/AMF/1436327 Lara Kueppers PI

Lawrence Berkeley National 

Laboratory lmkueppers@lbl.gov ARM-SGP Medford hay pasture

US-A74 10.17190/AMF/1436328 Lara Kueppers PI

Lawrence Berkeley National 

Laboratory lmkueppers@lbl.gov ARM SGP milo field

US-ADR 10.17190/AMF/1418680 Michael Moreo PI U.S. Geological Survey mtmoreo@usgs.gov Amargosa Desert Research Site (ADRS)

US-AR1 10.17190/AMF/1246137 Dave Billesbach PI University of Nebraska dbillesbach1@unl.edu

ARM USDA UNL OSU Woodward 

Switchgrass 1

US-ARb 10.17190/AMF/1246025 Margaret Torn PI

Lawrence Berkeley National 

Laboratory mstorn@lbl.gov

ARM Southern Great Plains burn site- 

Lamont

US-ARc 10.17190/AMF/1246026 Margaret Torn PI

Lawrence Berkeley National 

Laboratory mstorn@lbl.gov

ARM Southern Great Plains control site- 

Lamont

US-ARM 10.17190/AMF/1246027 Sebastien Biraud PI

Lawrence Berkeley National 

Laboratory SCBiraud@lbl.gov ARM Southern Great Plains site- Lamont

US-Aud 10.17190/AMF/1246028 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Audubon Research Ranch

US-Bi1 10.17190/AMF/1480317 Dennis Baldocchi PI University of California, Berkeley Baldocchi@berkeley.edu Bouldin Island Alfalfa

US-Bi2 10.17190/AMF/1419513 Dennis Baldocchi PI University of California, Berkeley baldocchi@berkeley.edu Bouldin Island corn

US-Bkg 10.17190/AMF/1246040 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Brookings

US-Blk 10.17190/AMF/1246031 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Black Hills

US-Blo 10.17190/AMF/1246032 Allen Goldstein PI University of California, Berkeley ahg@berkeley.edu Blodgett Forest

US-Bo1 10.17190/AMF/1246036 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Bondville

US-Br1 10.17190/AMF/1246038 John Prueger PI

National Laboratory for 

Agriculture and the Environment john.prueger@ars.usda.gov Brooks Field Site 10- Ames

US-Br3 10.17190/AMF/1246039 John Prueger PI

National Laboratory for 

Agriculture and the Environment john.prueger@ars.usda.gov Brooks Field Site 11- Ames

US-Ced 10.17190/AMF/1246043 Ken Clark PI USDA Forest Service kennethclark@fs.fed.us Cedar Bridge

US-CMW 10.17190/AMF/1660339 Russell Scott PI USDA-ARS russ.scott@ars.usda.gov Charleston Mesquite Woodland

US-CRT 10.17190/AMF/1246156 Jiquan Chen PI

University of Toledo / Michigan 

State University jqchen@msu.edu Curtice Walter-Berger cropland

US-Ctn 10.17190/AMF/1246117 Tilden Meyers PI NOAA/ARL tilden.meyers@noaa.gov Cottonwood

US-CZ3 10.17190/AMF/1419512 Michael Goulden PI UC Irvine mgoulden@uci.edu

Sierra Critical Zone, Sierra Transect, Sierran 

Mixed Conifer, P301

US-Dix 10.17190/AMF/1246045 Ken Clark PI USDA Forest Service kennethclark@fs.fed.us Fort Dix

US-Dk1 10.17190/AMF/1246046 Chris Oishi PI USDA Forest Service christopher.oishi@gmail.com Duke Forest-open field

US-Dk2 10.17190/AMF/1246047 A. Christopher Oishi PI USDA Forest Service acoishi@fs.fed.us Duke Forest-hardwoods

US-Esm 10.17190/AMF/1246119 Gregory Starr PI University of Alabama gstarr@bama.ua.edu Everglades (short hydroperiod marsh)

US-Fmf 10.17190/AMF/1246050 Sabina Dore PI Northern Arizona University Sabina.Dore@nau.edu Flagstaff - Managed Forest

US-FPe 10.17190/AMF/1246053 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Fort Peck

US-FR2 10.17190/AMF/1246054 Marcy Litvak PI University of New Mexico mlitvak@unm.edu Freeman Ranch- Mesquite Juniper

US-Fuf 10.17190/AMF/1246051 Sabina Dore PI Northern Arizona University Sabina.Dore@nau.edu Flagstaff - Unmanaged Forest

US-Fwf 10.17190/AMF/1246052 Sabina Dore PI Northern Arizona University Sabina.Dore@nau.edu Flagstaff - Wildfire

US-GLE 10.17190/AMF/1246056 Bill Massman PI USDA Forest Service wmassman@fs.fed.us GLEES

US-GMF 10.17190/AMF/1246057 Xuhui Lee PI Yale University xuhui.lee@yale.edu Great Mountain Forest

US-Goo 10.17190/AMF/1246058 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Goodwin Creek

US-Hn2 10.17190/AMF/1562389 Heping Liu PI Washington State University heping.liu@wsu.edu Hanford 100H grassland

US-Hn3 10.17190/AMF/1543379 Heping Liu PI Washington State University heping.liu@wsu.edu Hanford 100H sagebrush

US-IB1 10.17190/AMF/1246065 Roser Matamala PI Argonne National Laboratory matamala@anl.gov

Fermi National Accelerator Laboratory- 

Batavia (Agricultural site)

US-IB2 10.17190/AMF/1246066 Roser Matamala PI Argonne National Laboratory matamala@anl.gov

Fermi National Accelerator Laboratory- 

Batavia (Prairie site)

US-Jo2 10.17190/AMF/1617696 Enrique R. Vivoni PI Arizona State University vivoni@asu.edu

Jornada Experimental Range Mixed 

Shrubland

US-KLS 10.17190/AMF/1498745 Nathaniel Brunsell PI Kansas University brunsell@ku.edu Kansas Land Institute

US-KM4 10.17190/AMF/1634882 G. Philip Robertson PI Michigan State University robert30@msu.edu

KBS Marshall Farms Smooth Brome Grass 

(Ref)

US-KS2 10.17190/AMF/1246070 Bert Drake PI

Smithsonian Environmental 

Research Center drakeb@si.edu Kennedy Space Center (scrub oak)

US-LS1 10.17190/AMF/1660346 Russell Scott PI USDA-ARS russ.scott@ars.usda.gov

San Pedro River Lewis Springs Sacaton 

Grassland

US-Me1 10.17190/AMF/1246074 Bev Law PI Oregon State University bev.law@oregonstate.edu Metolius - Eyerly burn

US-Me2 10.17190/AMF/1246076 Bev Law PI Oregon State University bev.law@oregonstate.edu Metolius mature ponderosa pine

US-Me5 10.17190/AMF/1246079 Bev Law PI Oregon State University bev.law@oregonstate.edu Metolius-first young aged pine

US-Me6 10.17190/AMF/1246128 Bev Law PI Oregon State University bev.law@oregonstate.edu Metolius Young Pine Burn



 

Site ID
DOI/link Team member Member 

role

Member institution Member email Site name

US-Mj1 10.17190/AMF/1617715 Paul C. Stoy PI Montana State University paul.stoy@montana.edu Montana Judith Basin wheat field

US-Mj2 10.17190/AMF/1617716 Paul C. Stoy PI Montana State University paul.stoy@montana.edu Montana Judith Basin summer fallow field

US-MMS 10.17190/AMF/1246080 Kim Novick PI Indiana University knovick@indiana.edu Morgan Monroe State Forest

US-MOz 10.17190/AMF/1246081 Jeffrey Wood PI University of Missouri woodjd@missouri.edu Missouri Ozark Site

US-NC2 10.17190/AMF/1246083 Asko Noormets PI Texas A&M University noormets@tamu.edu NC_Loblolly Plantation

US-NC3 10.17190/AMF/1419506 Asko Noormets PI Texas A&M University noormets@tamu.edu NC_Clearcut#3

US-NC4 10.17190/AMF/1480314 Asko Noormets PI Texas A&M University noormets@tamu.edu NC_AlligatorRiver

US-Ne1 10.17190/AMF/1246084 Andy Suyker PI University of Nebraska - Lincoln asuyker1@unl.edu Mead - irrigated continuous maize site

US-Ne2 10.17190/AMF/1246085 Andy Suyker PI University of Nebraska - Lincoln asuyker1@unl.edu Mead - irrigated maize-soybean rotation site

US-Ne3 10.17190/AMF/1246086 Andy Suyker PI University of Nebraska - Lincoln asuyker1@unl.edu Mead - rainfed maize-soybean rotation site

US-NR1 10.17190/AMF/1246088 Peter Blanken PI University of Colorado Blanken@Colorado.EDU Niwot Ridge Forest (LTER NWT1)

US-Oho 10.17190/AMF/1246089 Jiquan Chen PI

University of Toledo / Michigan 

State University jqchen@msu.edu Oak Openings

US-Ro1 10.17190/AMF/1246092 John Baker PI USDA-ARS john.baker@ars.usda.gov Rosemount- G21

US-Ro2 10.17190/AMF/1418683 John Baker PI USDA-ARS john.baker@ars.usda.gov Rosemount- C7

US-Ro3 10.17190/AMF/1246093 John Baker PI USDA-ARS John.Baker@ARS.USDA.GOV Rosemount- G19

US-Ro4 10.17190/AMF/1419507 John Baker PI USDA-ARS John.Baker@ARS.USDA.GOV Rosemount Prairie

US-Ro5 10.17190/AMF/1419508 John Baker PI USDA-ARS john.baker@ars.usda.gov Rosemount I18_South

US-Ro6 10.17190/AMF/1419509 John Baker PI USDA-ARS john.baker@ars.usda.gov Rosemount I18_North

US-Rwe 10.17190/AMF/1617721 Gerald Flerchinger PI

USDA Agricultural Research 

Service gerald.flerchinger@ars.usda.govRCEW Reynolds Mountain East

US-Rwf 10.17190/AMF/1617724 Gerald Flerchinger PI

USDA Agricultural Research 

Service gerald.flerchinger@ars.usda.govRCEW Upper Sheep Prescibed Fire

US-Rws 10.17190/AMF/1375201 Gerald Flerchinger PI

USDA Agricultural Research 

Service gerald.flerchinger@ars.usda.govReynolds Creek Wyoming big sagebrush

US-SCg 10.17190/AMF/1419502 Mike Goulden PI University of California - Irvine mgoulden@uci.edu Southern California Climate Gradient - Grassland

US-SCs 10.17190/AMF/1419501 Mike Goulden PI University of California - Irvine mgoulden@uci.edu

Southern California Climate Gradient - Coastal 

Sage

US-SCw 10.17190/AMF/1419504 Mike Goulden PI University of California - Irvine mgoulden@uci.edu

Southern California Climate Gradient - 

Pinyon/Juniper Woodland

US-SdH 10.17190/AMF/1246136 Dave Billesbach PI University of Nebraska dbillesbach1@unl.edu Nebraska SandHills Dry Valley

US-Skr 10.17190/AMF/1246105 Sparkle Malone PI Pennsylvania State University jdfuentes@psu.edu Shark River Slough (Tower SRS-6) Everglades

US-Slt 10.17190/AMF/1246096 Ken Clark PI USDA Forest Service kennethclark@fs.fed.us Silas Little- New Jersey

US-Sne 10.17190/AMF/1418684 Dennis Baldocchi PI University of California, Berkeley Baldocchi@berkeley.edu Sherman Island Restored Wetland

US-SO2 10.17190/AMF/1246097 Walt Oechel PI San Diego State University woechel@mail.sdsu.edu Sky Oaks- Old Stand

US-SO3 10.17190/AMF/1246098 Walt Oechel PI San Diego State University woechel@mail.sdsu.edu Sky Oaks- Young Stand

US-SO4 10.17190/AMF/1246099 Walt Oechel PI San Diego State University woechel@mail.sdsu.edu Sky Oaks- New Stand

US-SP2 10.17190/AMF/1246101 Tim Martin PI University of Florida tamartin@ufl.edu Slashpine-Mize-clearcut-3yr,regen

US-SP3 10.17190/AMF/1246102 Tim Martin PI University of Florida tamartin@ufl.edu Slashpine-Donaldson-mid-rot- 12yrs

US-SRC 10.17190/AMF/1246127 Shirley Kurc PI University of Arizona kurc@ag.arizona.edu Santa Rita Creosote

US-SRG 10.17190/AMF/1246154 Russell Scott PI

United States Department of 

Agriculture russ.scott@ars.usda.gov Santa Rita Grassland

US-SRM 10.17190/AMF/1246104 Russell Scott PI

United States Department of 

Agriculture russ.scott@ars.usda.gov Santa Rita Mesquite

US-Srr 10.17190/AMF/1418685 Brian Bergamaschi PI USGS bbergama@usgs.gov Suisun marsh - Rush Ranch

US-SRS 10.17190/AMF/1660351 Enrique R. Vivoni PI Arizona State University vivoni@asu.edu Santa Rita Experimental Range Mesquite Savanna

US-Tw2 10.17190/AMF/1246148 Dennis Baldocchi PI University of California, Berkeley baldocchi@berkeley.edu Twitchell Corn

US-Tw3 10.17190/AMF/1246149 Dennis Baldocchi PI University of California, Berkeley baldocchi@berkeley.edu Twitchell Alfalfa

US-Twt 10.17190/AMF/1246140 Dennis Baldocchi PI University of California, Berkeley baldocchi@berkeley.edu Twitchell Island

US-Var 10.17190/AMF/1245984 Dennis Baldocchi PI University of California, Berkeley Baldocchi@berkeley.edu Vaira Ranch- Ione

US-WBW 10.17190/AMF/1246109 Tilden Meyers PI NOAA/ARL Tilden.Meyers@noaa.gov Walker Branch Watershed

US-WCr 10.17190/AMF/1246111 Ankur Desai PI University of Wisconsin desai@aos.wisc.edu Willow Creek

US-Wkg 10.17190/AMF/1246112 Russell Scott PI

United States Department of 

Agriculture russ.scott@ars.usda.gov Walnut Gulch Kendall Grasslands

US-xAE Cove Sturtevant PI NEON csturtevant@battelleecology.orgNEON Klemme Range Research Station (OAES)

US-xDC 10.17190/AMF/1617728 Cove Sturtevant PI NEON csturtevant@battelleecology.orgNEON Dakota Coteau Field School (DCFS)

US-xDL 10.17190/AMF/1579721 Cove Sturtevant PI NEON csturtevant@battelleecology.orgNEON Dead Lake (DELA)

US-xDS Cove Sturtevant PI NEON csturtevant@battelleecology.orgNEON Disney Wilderness Preserve (DSNY)



 

Site ID
DOI/link Team member Member 

role

Member 

institution

Member email Site name

US-xNG 10.17190/AMF/1617732 Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON Northern Great 

Plains Research Laboratory 

(NOGP)

US-xRM 10.17190/AMF/1579723 Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON Rocky Mountain 

National Park, CASTNET 

(RMNP)

US-xSB Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON Ordway-Swisher 

Biological Station (OSBS)

US-xSL 10.17190/AMF/1617735 Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON North Sterling, CO 

(STER)

US-xST 10.17190/AMF/1617737 Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON Steigerwaldt Land 

Services (STEI)

US-xUN 10.17190/AMF/1617741 Cove Sturtevant PI NEON csturtevant@battelleecology.org

NEON University of Notre 

Dame Environmental 

Research Center (UNDE)

MB_Pch Forrest Melton fmelton@csumb.edu

Ellendale Benjamin Runkle brrunkle@uark.edu

manilacotton Benjamin Runkle brrunkle@uark.edu

stonevillesoy Saseendran Anapalli saseendran.anapalli@usda.gov

US-OF1 Benjamin Runkle brrunkle@uark.edu

US-OF2 Benjamin Runkle brrunkle@uark.edu

US-OF4 Benjamin Runkle brrunkle@uark.edu

US-OF6 Benjamin Runkle brrunkle@uark.edu

S2 Richard Jasoni Richard.Jasoni@dri.edu

ALARC2_Smith6 Andy French andrew.french@usda.gov

Almond_High Ray Anderson ray.anderson@usda.gov

Almond_Low Ray Anderson ray.anderson@usda.gov

Almond_Med Ray Anderson ray.anderson@usda.gov

JPL1_JV114 Andy French andrew.french@usda.gov

JPL1_Smith5 Andy French andrew.french@usda.gov

UA1_HartFarm Andy French andrew.french@usda.gov

UA1_JV187 Andy French andrew.french@usda.gov

UA1_KN18 Andy French andrew.french@usda.gov

UA2_JV330 Andy French andrew.french@usda.gov

UA2_KN20 Andy French andrew.french@usda.gov

UA3_JV108 Andy French andrew.french@usda.gov

UA3_KN15 Andy French andrew.french@usda.gov

LYS_NE Steven Evett steve.evett@usda.gov

LYS_NW Steven Evett steve.evett@usda.gov

LYS_SE Steven Evett steve.evett@usda.gov

LYS_SW Steven Evett steve.evett@usda.gov

BAR012 William Kustas bill.kustas@usda.gov

RIP760 William Kustas bill.kustas@usda.gov

SLM001 William Kustas bill.kustas@usda.gov

B_01 10.3133/sir20095079 Kip Allander kalland@usgs.gov

B_11 10.3133/sir20095079 Kip Allander kalland@usgs.gov

ET_1 10.3133/sir20055288 Doug Maurer dkmaurer@usgs.gov

ET_8 10.3133/sir20055288 Doug Maurer dkmaurer@usgs.gov

MR 10.3133/sir20085116 Guy A. DeMeo gademeo@usgs.gov

TAM 10.3133/sir20095079 Kip Allander kalland@usgs.gov

VR 10.3133/sir20085116 Guy A. DeMeo gademeo@usgs.gov

AFD 10.5066/F7R49NZN Michael T. Moreo mtmoreo@usgs.gov

AFS 10.5066/F7R49NZN Michael T. Moreo mtmoreo@usgs.gov

BPHV 10.5066/F79C6WM9 Guy A. DeMeo gademeo@usgs.gov

BPLV 10.5066/F79C6WM9 Guy A. DeMeo gademeo@usgs.gov

DVDV 10.3133/pp1805 Amanda Garcia cgarcia@usgs.gov

KV_1 10.5066/P9NZ9XSP Amanda Garcia cgarcia@usgs.gov

KV_2 10.5066/P9NZ9XSP Amanda Garcia cgarcia@usgs.gov

KV_4 10.5066/P9NZ9XSP Amanda Garcia cgarcia@usgs.gov

SPV_1 10.3133/sir20075078 Michael T. Moreo mtmoreo@usgs.gov

SPV_3 10.3133/sir20075078 Michael T. Moreo mtmoreo@usgs.gov

SV_5 Jay Arnone jarnone@dri.edu

SV_6 Jay Arnone jarnone@dri.edu

UMVW 10.3133/sir20085116 Guy A. DeMeo gademeo@usgs.gov

WRV_1 10.3133/sir20075078 Michael T. Moreo mtmoreo@usgs.gov

WRV_2 10.3133/sir20075078 Michael T. Moreo mtmoreo@usgs.gov



Supplementary Discussion 1. Discussion of energy balance closure error and uncertainty in 

eddy covariance data used to evaluate OpenET. 

 

The eddy covariance (EC) technique is widely used to estimate vertical turbulent fluxes of latent 

energy (LE) and sensible heat (H) within a region of interest
3,4

. Other major components of the 

near surface energy balance (SEB) can often be estimated with additional sensors, commonly 

soil heat flux plates and a net radiometer to measure soil heat flux (G) and net radiation (Rn), 

respectively. While EC is widely used for in situ ET estimation and is regarded as one of the best 

available methods, the approach is subject to limitations that can lead to surface energy 

imbalance
5
. We next discuss some of the major reasons why the method often has additional data 

uncertainties that can result in misrepresentation of the major SEB components and give 

examples. We then discuss the steps taken to limit those uncertainties prior to using the EC data 

to evaluate OpenET remote sensing ET (RSET) data (see also Volk et al.
1,2

, Melton et al.
6
).   

 

Causes of EC closure problems may be grouped into four broad categories: instrument error, data 

processing error, unaccounted energy sources, and sub-mesoscale transport/secondary 

circulations
7
. Some error sources can be accounted for by the practitioner, including sensor 

calibration and maintenance, and high frequency data processing and correction methods
7
. In 

addition, spectral correction can also account for high-frequency spectral loss due to sensor 

limitations
8,9

. Many of the SEB error sources EC data are difficult to account for on a post hoc 

basis. These range from site land cover heterogeneity and terrain complexity, instrumentation 

type, placement, and micrometeorological conditions that are not well suited for the theoretical 

assumptions of the EC technique. 

 

A well known source of error that is difficult to account for is sub-mesoscale eddies that are not 

captured by a single EC tower. This secondary circulation can appear as advection and result in 

under- or over-estimations of LE and H. Similarly, LE and H can be misrepresented due to other 

invalidations of the assumptions of the EC technique such as insufficient friction velocity to 

generate eddies of appropriate scale
10,11

, highly stable or unstable atmospheric boundary 

conditions
12

, or their combination
13–15

. Another well-known source of uncertainty in EC data is 

that Rn as measured on a tower and G from soil heat flux plates (point scales) do not correspond 

with the larger scale of the source area of turbulent fluxes that are temporally dynamic as a 

function of atmospheric circulations and land cover
16

. The scale mismatch between available 

energy and turbulent fluxes poses further challenges in assessing the SEB.  

 

Other SEB closure errors in EC data may come from unaccounted energy storage, and these 

include heat storage in soil, air, and canopies, which can be a significant component of the SEB 

depending on the micrometeorological conditions and timescale
5,7

. For example, heat storage in 

air and biomass, as well as chemical energy stored during photosynthesis, are often overlooked 

as a source of SEB error in EC data
17,18

 and it is often not reported with EC data or not feasible 



to be estimated because the required measurements are expensive, requiring additional gas and 

thermal probes placed along the vertical profile
19

. Soil heat storage above a soil heat flux plate 

can be readily measured and corrected for by using thermocouples to estimate the vertical 

thermal profile
20

. Plant physiology in response to micrometeorological conditions can also 

change the SEB; for example, in a water limited environment with plenty of available energy and 

warm and dry air, some plants may temporarily close their stomata to preserve water, leading to 

a reduction in LE and an increase in H.  

 

Some of the sources of SEB errors (including some of those previously mentioned) may be 

limited by following best practices or by using post-processing techniques. For example: 

appropriate site placement and footprint representation
4,16

, limiting instrumentation error caused 

by improper maintenance and calibration, e.g., cleaning dust from net radiometers can reduce 

error
21

, and accounting for the heat storage in soil can reduce SEB error, particularly at sub-daily 

timescales
5,17

. Errors from instrumentation, high frequency data processing and averaging, data 

corrections are also important sources of uncertainty that can be accounted for by most 

practitioners who follow best practices, such as those set by AmeriFlux
22

. 

 

Acknowledging the inherent issues with EC data and SEB error, and that much of the decisions 

and steps that are needed to limit SEB error are dependent on the initial deployment of each EC 

system, maintenance, and processing of high-frequency data— we took further steps to limit 

SEB related uncertainty in the dataset used in this study. First, we gathered data from networks, 

such as AmeriFlux
22

, which follow best practices in EC system installation, instrumentation, 

maintenance, and data processing. AmeriFlux provides services to help site principal 

investigators (PI) and technicians install EC systems, setup instrumentation and calibrate them, 

and perform data quality control and high frequency data processing 

(https://ameriflux.lbl.gov/about/ameriflux-management-project/). When gathering EC data, 

particularly those from other networks and university partners, we asked PIs about their site 

instrumentation and data quality control techniques to ensure that they were like those 

recommended by trusted networks. For example, we made efforts to ensure that all soil heat flux 

measurements were corrected for soil heat storage above heat flux plates. We also used data 

subject to prior quality control checks when provided. In the cases of multiple soil heat flux plate 

measurements, we used either the PI approved records or took the average from multiple sensors. 

In developing the benchmark flux dataset, we only considered flux stations where continuous 

measurements of all four SEB components were measured so that we could assess energy 

balance closure error; all of the EC stations used employed high quality instrumentation 

including a 3-D sonic anemometer, an open-path infrared gas analyzer, a net radiometer, and soil 

heat flux plates
1,2

.   

 

After the initial collection of EC data, we performed a series of quality control checks and post-

processing steps, culminating with SEB closure corrections applied to turbulent fluxes
1,2

. 

https://ameriflux.lbl.gov/about/ameriflux-management-project/


Together these steps aimed to limit the uncertainty inherent in EC data. The first step of flux data 

post-processing we performed was a conservative gap-filling procedure on the half-hourly 

records of the SEB components using linear interpolation, where we limited the total number of 

gap-filled hours per day to 2 hours. This approach is more conservative than the 

FLUXNET2015/ONEFlux methods that use longer gap-filling windows
1,2,23

. We averaged the 

gap-filled SEB components to 24-hour periods, this decision was made for two reasons: (1) the 

OpenET models output daily ET; and (2) to limit the error caused by diurnal phase shifts in heat 

storage (in soil, air, and biomass), available energy, and turbulent fluxes that may result in SEB 

error that are higher at shorter timescales. We acknowledge that 24-hour averaging will not 

remove all sources of SEB error, such as energy use by photosynthesis or storage of energy in 

dense canopies, however it will limit some of the error. For example, soil heat storage will often 

have a strong diurnal pattern, going up during the morning and releasing heat as longwave 

radiation in the afternoon and evening and often canceling out over 24 hours
5,17

. Similar patterns 

are true for heat storage in canopies and air. For example, storage of latent energy in air can 

follow a diurnal pattern where energy storage increases during the day and energy is released 

when nighttime temperatures drop and condensation (dew) forms. We tested for average closure 

at longer time scales (e.g. weeks to months), with similar results to average daily closure at most 

sites. After daily averaging of SEB components, we performed visual quality control checks for 

each EC station’s SEB data, removing periods of data that had clear data quality issues such as 

spikes, trends, and other systematic errors. Data periods that had poor closure, but no clear data 

problems were further investigated using the EC station micrometeorological data, gridded 

climate data and reference ET, visual inspection of site land cover and aerial imagery, and 

sometimes by simply asking site PIs for their insight. For example, some sites that were subject 

to high levels of smoke from nearby wildfires had suspect data records that were filtered out 

during those seasons. Other sites with suspected data quality issues were found to be in locations 

with complex terrain or too near to unrepresentative land cover which would cause invalidation 

of the assumptions of the EC technique, and these sites were removed from the selection of sites. 

Next, we further filtered out EC stations that had an average daily SEB closure error that 

exceeded 25% in the growing season and 40% during the non-growing season. Growing seasons 

start and end dates were determined using long-term climate data for each site
1
. Lastly, we 

applied the FLUXNET2015/ONEFlux method of correcting daily average latent energy flux 

(ET); this approach uses the energy balance ratio over moving windows (typically 15 days) to 

correct LE and H
23

. The FLUXNET2015/ONEFlux methods represent the most standardized 

approaches to processing EC data, and we think it is important to follow well established 

methods. Because the ONEFlux method uses the average energy balance ratio determined over 

moving windows, it does not force closure on a given date but results in a more conservative 

correction and may help account for energy imbalances that have longer timescales such as heat 

storage in wetland and riparian zones, or dense woody canopies
18

. One limitation of the energy 

balance ratio approach for SEB closure correction is that it assumes both LE and H are to be 

corrected by the same factor, i.e., that LE and H are both under- or over-estimated by equal 



proportions which is not always the case. There is some evidence based on data from the large 

sample EC dataset used in this study that LE and H both tend to be underestimated by similar 

proportions, with perhaps slightly more underestimation of LE than H on average for cropland 

sites
1
. Lastly, although not an active data processing step, the large number of flux sites used in 

this study (141) acts to dampen any systematic SEB error and biases that may be present in some 

sites or small samples of sites.  

 

The screening and other procedures we used to limit SEB error in the flux data resulted in a 

dataset with less energy balance closure error than what is typically reported from large studies 

involving half-hourly fluxes. For example, we found a daily average closure error of 0.88 or 12% 

underestimation of LE + H, most other studies involving AmeriFlux data report closure error 

between 20–30%
10,11,24

. We acknowledge that the EC dataset still has SEB uncertainty and other 

errors that are difficult or currently impossible to account for, and that the ground data may thus 

have inherent limitations as a basis for RSET evaluation. Yet, this study possibly represents the 

most extensive assessment of RSET accuracy performed to date and the EC dataset used for 

comparison provides a consistent, reproducible benchmark for evaluation of the RSET data from 

all individual models. While the results are subject to revision in response to future 

improvements in characterization of ground data uncertainty, they should offer useful insight to 

absolute accuracies as well as relative performance across models and land cover types.   

 

 

Supplementary Table 2. Daily statistical metrics for OpenET
6
 models compared against paired 

closed flux tower daily ET
1,2

 for sites grouped by their general land cover type. Data pairing was 

limited to days of satellite overpass (every 8 days in the case of Landsat, assuming clear-sky 

conditions). Slope is calculated as the linear regression slope forced through the origin. Measures 

of mean-bias-error (MBE), mean-absolute-error (MAE), and root-mean-square-error (RMSE) 

include the error in mm day
-1

 and normalized as a percentage of the weighted mean closed flux 

tower ET. Daily results for SIMS exclude soil evaporation from precipitation, which has been 

recently added to the SIMS model but was not included in the daily data from SIMS used in this 

analysis. 



 

 

 

Supplementary Table 3. Monthly statistical metrics from comparisons between OpenET
6
 

models and closed flux tower monthly ET
1,2

 for sites grouped by their general land cover type. 

Slope is calculated as the linear regression slope forced through the origin. Measures of mean-

bias-error (MBE), mean-absolute-error (MAE), and root-mean-square-error (RMSE) include the 

error in mm month
-1

 and normalized as a percentage of the weighted mean closed flux tower ET. 

 



 

 

Supplementary Table 4. Growing season statistical metrics for OpenET
6
 models against paired 

closed flux tower growing season ET
1,2

 for sites grouped by their general land cover type. 

Growing seasons were defined based on long-term climate for each site, and monthly ET totals 

were used to aggregate to growing season periods
1
. Slope is calculated as the linear regression 

slope forced through the origin. Measures of mean-bias-error (MBE), mean-absolute-error 

(MAE), and root-mean-square-error (RMSE) include the error in mm season
-1

 and normalized as 

a percentage of the weighted mean closed flux tower ET. 

 
 

 

Supplementary Table 5. Water year (October 1 through September 30) statistical metrics for 

OpenET
6
 models against paired closed flux tower ET

1,2
 for sites grouped by their general land 

cover type. Water year totals were aggregated from monthly ET data. Slope is calculated as the 

linear regression slope forced through the origin. Measures of mean-bias-error (MBE), mean-

absolute-error (MAE), and root-mean-square-error (RMSE) include the error in mm year
-1

 and 

normalized as a percentage of the weighted mean closed flux tower ET. 

 



 

 

Supplementary Table 6. Calendar year statistical metrics for OpenET
6
 models against paired 

closed flux tower ET
1,2

 for sites grouped by their general land cover type. Annual totals were 

aggregated from monthly ET data. Slope is calculated as the linear regression slope forced 

through the origin. Measures of mean-bias-error (MBE), mean-absolute-error (MAE), and root-

mean-square-error (RMSE) include the error in mm year
-1

 and normalized as a percentage of the 

weighted mean closed flux tower ET. 

 
 

 

Supplementary Table 7. Least squares linear regression model results using all paired monthly 

ET data for OpenET
6
 models and flux tower ET

1,2
 grouped by general land cover types.  

 

 



 
Supplementary Figure 1. Date of overpass OpenET

6
 ensemble mean ET, mean-absolute-error 

(MAE), and MAE normalized by the mean closed flux tower ET
1,2

 (NMAE) for each day of year 

using all paired model-measured data for cropland stations grouped by crop types. The NMAE 

data were smoothed using a 7-day moving average. Annual crops that had a mixed history of 

rotation between C3 and C4 crop types, e.g., corn-soy rotations, were not included in C3 or C4 

results but were included in the combined (all annuals) grouping. The relative error rates for 

most cropland sites were typically below 25% of the mean closed flux tower ET during growing 

season periods; however, the low actual ET rates amplify the relative error during the colder 

periods of the year. 

 

 



 



Supplementary Figure 2. Monthly OpenET
6
 ensemble mean ET, mean-absolute-error (MAE), 

and MAE normalized by the mean closed flux tower ET
1,2

 (NMAE) for each month using all 

paired model-measured data for all cropland stations grouped by their Köppen-Geiger climate 

classifications
25

. Climate zone abbreviations are defined as follows: cold and hot semi-arid 

steppe (Bsk + Bsh); hot and cold desert (Bwh + Bwk); humid subtropical (Cfa); hot- and warm-

summer Mediterranean (Csa + Csb); and hot- and warm-summer humid continental (Dfa + Dfb). 

Relative errors are low for most climate zones during the summer months, typically below 15% 

of the mean closed flux tower ET. A different pattern is shown for desert cropland sites, with low 

relative error in the late winter and early spring, this may partially coincide with those sites' early 

growing season start. Similarly to non-growing periods for all crop types, relative error in 

croplands in humid regions is higher and this may be partially due to the lower ET rates in these 

regions.  

 

Supplementary Table 8. Post-hoc Tukey test results for comparison of cropland monthly mean 

ET estimates from paired data (using 1,652 months from 53 stations) from each OpenET
6
 model, 

the ensemble mean, and the unclosed and closed flux tower ET
1,2

. The upper and lower columns 

refer to the bounds on the 95% confidence interval for the difference between means for each 

group, and the null hypothesis of the test is that there is no significant difference between groups. 

Results suggest that the monthly mean ET for the OpenET ensemble value, PT-JPL, SIMS, and 

eeMETRIC are no different than the mean closed flux tower ET. Alternatively, DisALEXI, 

SSEBop, and geeSEBAL’s monthly mean ET is statistically different from the closed flux tower 

ET, and their values are lower than the closed flux tower ET. Alternatively, the monthly mean 

unclosed flux tower ET was no different than the monthly means of DisALEXI, the ensemble 

value, geeSEBAL, and SSEBop, whereas eeMETRIC, SIMS, and PT-JPL had monthly mean ET 

values that were statistically different (higher) than the unclosed values.  



 
 

 

Supplementary Table 9. Post-hoc Tukey test results for comparison of cropland growing season 

mean ET estimates from paired data (using 177 growing season totals from 39 stations) from 



each OpenET
6
 model, the ensemble mean, and the unclosed and closed flux tower ET

1,2
. The 

upper and lower columns refer to the bounds on the 95% confidence interval for the difference 

between means for each group, and the null hypothesis of the test is that there is no significant 

difference between groups. At growing season aggregation periods no model’s mean ET was 

statistically different from the mean closed or unclosed flux tower ET. 

 



 

 

Supplementary Discussion 2. Ensemble outlier removal and spatial inter-model variability 

Sophisticated, skill-based methods exist for integrating multiple RSET models and other data to 

improve RSET accuracy; however, they often employ data- and computationally-intensive 

approaches such as stochastic Bayesian averaging and other machine learning methods
26,27

. 

These methods can be difficult to communicate to stakeholders, and are prone to overfitting. 

Simple ensemble methods like the arithmetic mean may provide similar levels of accuracy
28

 

while offering a variety of advantages. In terms of accuracy at the flux sites, the simple mean 

after removal of outliers using the MAD approach gave comparable results to the simple 

arithmetic mean, the median, and standard deviation outlier removal approaches (Supplementary 

Table 10).  

 

To characterize the spatial occurrence of outliers and to illustrate inter-model variability, we 

mapped the mean growing season (April through October) ET for each model and the ensemble 

with and without outlier removal, using the full OpenET domain over the period 2016–2022 

(Extended Data Fig.’s 7–8 and Supplementary Figures 3–9). We found minor differences 

between the ensemble mean with and without outlier removal at most cropland pixels; however, 

outlier removal provides a layer of confidence in regions with sparse ground measurements 

where we know little about individual model biases
6
.  

 

In cropland pixels, the simple mean tended to be slightly higher than the MAD ensemble, 

indicating that, more often than not, a high estimate was discarded. However, the difference 

between the two methods rarely exceeded 10% of the mean growing season ET as calculated by 

the MAD approach (Supplementary Figure 3). In intensive agricultural regions, such as the 

California Central Valley and large fractions of the Central Plains, typically only a single or no 

model was identified as an outlier during growing season months (Extended Data Fig. 7). SIMS 

was deemed an outlier more often than other models in cropland pixels at a 20% frequency for 

growing season months, whereas the other models were deemed outliers at 8–10% frequency 

(Supplementary Table 11). Each model showed distinct spatial patterns in their divergence from 

the ensemble (Extended Data Fig. 8). Some of the substantial model biases we observe at the 

flux stations also show up in most cropland pixels over the growing season average, albeit with 

regional variations and exceptions. For example, the high relative bias of SIMS and low bias of 

geeSEBAL are most clearly pronounced in continental regions of the Central Plains and 

Midwest.  

 

 

 

 



Supplementary Table 10.  Monthly statistical metrics for several OpenET
6
 ensemble 

approaches against closed flux ET
1,2

 grouped by general land cover types. The 2xMADe, 

2.5xMADe, and 3xMADe columns represent the ensemble approach where outlier model values 

are removed from the ensemble if they are outside of the band defined by the median absolute 

deviation (MAD), which is also adjusted by a coefficient. After removal of up to two models, 

defined by the MAD band, the ensemble mean is taken on a per-pixel basis to form the 

ensemble. The ensemble method adopted by OpenET was the 2MADe approach. See the 

Methods section of the article for a full description of the MAD approach. SAM represents the 

simple arithmetic mean without outlier removal; the STDEV columns use a per-pixel band 

defined by the sample standard deviation to identify outliers, much like the MAD approach. The 

“Throw 1” approach involves removing the furthest model from the mean and then computing 

the ensemble mean. “Throw 2” involves another iteration whereby the two models furthest from 

the mean will always be removed. To keep comparisons consistent, only one model was ever 

removed from any ensemble approach in non-agricultural locations because SIMS was not 

implemented in those instances.  

 
 

 

Supplementary Table 11. Occurrence of models used in the OpenET
6
 ensemble after the MAD 

outlier removal, as a percentage, using all monthly growing season data for all pixels that were 

classified as croplands for each year from 2016–2022, using all pixels in the current OpenET 

domain. 



 
 

 

Supplementary Discussion 3. Potential use of OpenET data with regard to irrigation 

management 

 

The scale of irrigated agriculture in terms of water use and costs is substantial, particularly in the 

western United States. Based on an assessment conducted in 2015, agricultural irrigation in the 

U.S. comprised an estimated 118,000 Mgal/day (446 million m3/day) of irrigation water 

withdrawals that were applied to about 63.5 million acres (25.7 million hectares); 81% of this 

water and 74% of the irrigated land was within the 17 most western states
29

. The majority of 

irrigation water, often over 70%, is “consumed” or lost to ET or plant tissue and not returned to 

the water reservoir from which it was withdrawn
29

. In 2018, total U.S. reported costs of off-farm 

water purchases was over $1.1 billion, pumping costs were about $2.5 billion, and other costs 

related to irrigation and technology maintenance were over $2 billion
30

.  The cost structure of 

irrigation varies greatly by region, farm size, and irrigation type.  Major expenses include the 

cost of water if purchased off site, pumping costs, and maintenance costs. Thus, while aggregate 

expenditures are substantial, potential cost savings resulting from use of ET data are difficult to 

generalize. 

 

Environmental costs may be considered as well. For instance, most water (around 52%) used for 

irrigation in the U.S. comes from groundwater reservoirs
29

. High rates of groundwater 

withdrawal can result in lowered water tables due to extraction rates exceeding recharge, 

resulting in aquifer compaction land subsidence
31

, aquifer contamination
32

 and increased 

pumping costs. Withdrawals from both surface and groundwater thus deplete resource 

availability for environmental, municipal, and industrial uses.  

 

The high economic and environmental costs of irrigation have resulted in incentives to reduce 

water consumption through irrigation strategies that may benefit from operational production of 

ET data. OpenET data can help irrigators manage applied irrigation water resources. For 

instance, daily data from the system might be used to guide ET-based irrigation scheduling 

operations
33,34

 by estimating crop water consumption since the last wetting event. To calculate 

ET replacement, a conservative approach might involve summing ET and the associated average 

error for the crop type and time of year. Such use of an RSET framework for irrigation 

scheduling may or may not lead to water reductions in a given situation, depending on efficiency 

of prevailing irrigation practices on a given farm. Such efficiency is sensitive to both regional 

water availability and individual farm management strategies, which in turn are influenced by 



economic and social conditions as well as individual grower decisions reflecting risk aversion 

and overall familiarity with irrigation practices
35

.  

 

To directly quantify the benefits of readily accessible ET information through platforms such as 

OpenET, a project is underway that explores the economic and social benefits of adopting RSET 

for irrigation management in California
36

. The study focuses on almond orchards and wine grape 

vineyards, cropping systems where RSET model performance surpassed that of others examined 

in the study, suggesting greater adoption potential for irrigation management strategies. Water 

savings from RSET adoption will be quantified by comparing current irrigation management 

practices with a potential future state that utilizes RSET. Specifically, two approaches will be 

taken: the “cost savings to farmers,” determined by surface water prices and groundwater 

pumping costs, and a broader “economic value of water saved,” drawn from California’s water 

market data. These savings can offer direct economic benefit for growers, as well as broader 

social value in terms of sustained or expanded resources available for allocation to non-farm 

uses. This work aims to explore the value of RSET in almond and wine grape production and 

may possibly offer a template to evaluate benefits more widely across landscapes evaluated 

under the current study.  

 

 

 



 
Supplementary Figure 3. Difference between mean growing season (April through October) 

OpenET
6
 ensemble ET using the simple arithmetic mean (SAM) and the median absolute 

deviation (MAD) outlier removal ensemble mean as a percentage of the MAD growing season 

mean ET. Mean growing season ET values were calculated using monthly data from all pixels 

that were classified as croplands for each year from 2016–2022. 

 

 

 

 



 
Supplementary Figure 4. The OpenET

6
 ensemble mean growing season (April through 

October) ET for cropland pixels using the median absolute deviation (MAD) outlier removal 

ensemble approach. Monthly ET from 2016–2022 was used to build the map.  

 

 

 

 

 

 

 

 

 



 
Supplementary Figure 5. The spatial differences between the OpenET

6
 ensemble mean 

growing season (April through October) ET for all pixels using the median absolute deviation 

(MAD) outlier removal approach and the simple arithmetic mean (SAM). Monthly ET from 

2016–2022 was used to build the map.  

 

 



 
Supplementary Figure 6. The average count of models used in the OpenET

6
 ensemble after 

median absolute deviation (MAD) outlier removal using all growing season monthly data from 

2016–2022. A value of six indicates that no model was identified as an outlier, while four is the 

lower limit where a maximum of two models were removed as outliers before taking the 

ensemble mean.   

 

 



 
Supplementary Figure 7. Difference between mean growing season (April through October) ET 

from each OpenET
6
 model minus the ensemble mean using all monthly data from all pixels for 



each year from 2016–2022. See Supplementary Discussion 3 for a discussion of the Landsat 

striping exhibited by geeSEBAL.   

 

 

 
Supplementary Figure 8. Difference between mean growing season (April through October) 

OpenET
6
 ET using the simple arithmetic mean (SAM) and the median absolute deviation (MAD) 

outlier removal ensemble mean as a percentage of the MAD growing season mean ET. Mean 

growing season ET values were calculated using monthly data from all pixels for each year from 

2016–2022. Based on the long-term model differences from the ensemble (Supplementary Figure 

5) it appears that geeSEBAL was frequently identified as an outlier in the western arid/semi-arid 

non-agricultural pixels, and it was typically estimating higher ET compared to the other models.  

 

 
 



 
Supplementary Figure 9. The OpenET

6
 ensemble mean growing season (April through 

October) ET for all pixels using the median absolute deviation (MAD) outlier removal ensemble 

approach. Monthly ET from 2016–2022 was used to build the map.  

 

 

 

Supplementary Discussion 4. Landsat striping data artifact  

 

Some of the surface energy balance (SEB) modeling approaches in the OpenET
6
 ensemble are 

affected by environmental conditions related to the model domain area. For instance, geeSEBAL 

is a domain-dependent model, in which the results of ET estimates, in terms of distribution, 

amplitude and magnitude, depend on the domain area of the model. This domain area includes 

characteristics such as size area to select the endmembers, climate conditions, and land cover. 

Given the high sensitivity of geeSEBAL to the automated calibration process based on the hot 

and cold endmembers for internal calibration, the aforementioned domain characteristics impact 

the range of both cold and hot endmembers and consequently the ET estimates, making some 

Landsat striping visible especially over the Great Plains. A more comprehensive assessment of 

the domain-dependence of SEBAL is presented by Long et al.
37

 and by Kayser et al.
38

. The 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD016542


OpenET team members are currently conducting comprehensive research to reduce the domain-

dependency and to improve the spatial accuracy of SEB models, especially for geeSEBAL. For 

further information regarding model known issues, readers are encouraged to visit the OpenET 

webpage.  

  

 

Supplementary Table 12. Daily and monthly linear regression slope forced through the origin 

(Slope) and r
2
 statistical metrics computed using the weighted approaches that were used by 

Melton et al.
6
 to compare the OpenET ensemble against paired closed flux tower ET

1,2
 for all 

cropland sites. These statistics are only provided for comparison with Melton et al.
6
 because our 

calculation methods have since changed; specifically, in the current study, we did not employ 

weighting by the number of paired observations per site for these two statistics. Although this 

study incorporated over twice the number of stations and paired observations as Melton et al.
6
, 

these statistical metrics were quite similar, with monthly ensemble values being within 0.01 from 

one another. When employing the weighting approaches previously used in Melton et al.
6
 to 

compute the slope and r
2
 statistics for the full datasets used in the current study, the daily 

ensemble r
2
 improved from the previous study, from 0.84 to 0.87, and the daily Slope decreased 

from 0.90 to 0.87. Daily data pairing was limited to days of satellite overpass (every 8 days from 

in the case of Landsat, assuming clear-sky conditions). Daily results for SIMS exclude soil 

evaporation from precipitation, which has been recently added to the SIMS model but was not 

included in the daily data from SIMS used in this analysis. 
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