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Supplementary Note 1: BCP self-assembly 

 

Block copolymers (BCPs) are a type of macromolecule composed of chemically distinct 

polymer chains that are covalently end-linked. The chemical incompatibility of the different 

polymer blocks leads to phase separation. However, owing to the covalent bonds between the 

chain ends, the separation is limited to within the length scale of the polymeric molecules, 

leading to the formation of nanosized domain structures1–3. As BCP thin films show highly 

ordered nanostructures with tunable nanodomain periodicity, they have attracted interest as 

templates for nanoelectronics fabrication. 

The most studied BCPs are linear AB diblock copolymers. The theoretically derived phase 

diagram (see the figure, panel a) illustrates that the phase behaviour is governed by the volume 

fraction of the A block (fA) and the segregation strength parameter (N, where  is the Flory– 

Huggins interaction parameter for the AB monomer pair and N is the total degree of 

polymerization). Various equilibrium microdomain morphologies have been identified, 

including lamellae (L), bicontinuous gyroid (G), hexagonally packed cylinders (C), body- 

centred cubic spheres (S) and close-packed spheres (Scp) 
4,5. 

A key  parameter  of  BCP self-assembly  is  the  length  scale  or  spacing  (d)  of  its periodic 
 

nanodomain morphology, which is directly related to the characteristic feature size of the 

resulting nanopattern. BCP d spacing is generally determined by the polymer molecular chain 
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size and  value, following the scaling relationship d ≈ χ1/6N, where  = 1/2 in the weak 

segregation limit (N ≈ 10.5) and  = 2/3 in the strong segregation limit (N » 10.5)5. For 

conventional BCPs with modest  values (weak segregation) and molecular weights, the 

ordered structures typically exhibit d spacings of 10–50 nm6. To access nanopatterns with a 

broader range of feature sizes, BCPs with different chemistry and chain architectures have been 

explored (see the figure, panel b). High- BCPs have been exploited for sub-10-nm-scale 

ultrafine semiconductor patterning6. To fulfill the critical counterbalancing condition for 

microphase separation (N > 10.5), BCPs with a low N (and thus small feature size structure 

of <10 nm) should possess a high  value for the thermodynamic stabilization of the nanoscale 

structures7,8. At the other end of the feature size range ( > 100 nm), bottlebrush BCPs, composed 

of linear backbone and high-density side chain, with high molecular weights are being 

investigated9 for the self-assembly of ordered nanodomains with d spacings exceeding 100 nm. 

The ordering kinetics (that defines the speed of the BCP self-assembly and it is thus an essential 

processing parameter for high throughput nanopatterning) of bottlebrush BCPs can be much 

faster than those of linear BCPs of similar molecular weights, because of their extended chain 

conformation and reduced chain entanglements10. 

Supplementary Note 2: Directed self-assembly 

 

Although BCP thin films self-assemble into nanodomain structures under random thermal 

fluctuation, without an external driving force, the lateral ordering of the nanoscale domains is 

generally poor and characterized by dense structural defects, such as dislocations and 

disclinations11. Direct assembly (DSA) strategies have been implemented to create BCP 

nanopatterns with a high level of lateral ordering and minimal structural defects. The two most 

successful DSA approaches are epitaxial self-assembly12 and graphoepitaxy13 (see the figure, 

panel c). Epitaxial self-assembly uses chemically pre-patterned surfaces to direct the self- 



assembly of BCP thin films and control the lateral ordering of the nanodomains12,14. By contrast, 

graphoepitaxy uses substrates with patterned topographical features13,15. Selective wetting of 

one BCP component to the trench side walls drives the lateral ordering of BCP nanodomains, 

leading to a well-aligned morphology along the trenches. Although BCP nanopatterns with 

highly ordered lateral ordering and minimal defects can be achieved by both DSA strategies, 

the ultimate level of defect control, including dislocation, bridging, and clustering, is a 

longstanding challenge, especially for the fabrication of delicate and complex semiconductor 

devices (such as CPU and memory devices). 

 

 

Supplementary Fig. 1| Theoretical thermodynamic phase diagram of diblock copolymer self- 

assembly, tunable self-assembled nanopattern size governed by Flory-Huggins interaction 

parameter and molecular architecture, DSA strategies by means of epitaxial self-assembly and 

graphoepitaxy, and widely used BCPs and their characteristics. Panel a adapted with 

permission from ref. 4, American Chemical Society. 



 

Table S1 | Representative types of block copolymer and their chemical structure, characteristics, and IoT device applications. PS-b- 

PMMA has relatively low  value, so it is easy to induce vertically aligned pattern without topcoat. Moreover, etching rate of PMMA is much 

faster than PS, enabling facile creation of PS mask pattern for pattern transfer process. In the case of PS-b-PEO, hydrophilic PEO block can be 

swelled by polar solvent and adsorb the ion precursor. Moreover, it forms micelle in the solution, enabling easy fabrication of mesoporous thick 

film. In the case of PS-b-P2VP and PS-b-P4VP, pyridinic nitrogen of P2VP and P4VP block can be easily functionalized by proton, resulting in 

easy metal precursor adsorption and crosslinking. PS-b-PDMS has high  value and inorganic component at PDMS, so it is easy to generate 

small pitch size pattern with high etching selectivity. 
 

 

Polymer 

 

PS-b-PMMA 

 

PS-b-PEO 

 

PS-b-P2VP & PS-b-P4VP 

 

PS-b-PDMS 

 

 

 

 

 
Chemical 

Structure 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

.  

 

 

 
 

 

 

 

 
 

Character 

istics 

 

 

 

Easy processability 
Vertical alignment without top-coat 

Moderate etching selectivity 

 

 

 

Versatile precursors decoration 
Easy to fabricate mesoporous thick films 
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