A Hidden Oncogenic Positive Feedback Loop Caused by Crosstalk Between Wnt and ERK Pathways

Dongsan Kim^{1†}, Oliver Rath^{3†}, Walter Kolch^{3,4§}, and Kwang-Hyun Cho^{1, 2*}

¹College of Medicine, Seoul National University, Jongno-gu, Seoul, 110-799, Korea
²Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, 151-818, Korea
³Beatson Institute for Cancer Research, Glasgow, G61 1BD, U.K

⁴Institute of Biomedical and Life Science, Univ. of Glasgow, Glasgow G12 8QQ, U.K.

Supplementary Information

[†]These authors contributed equally to this study.

^{*}Corresponding author: Kwang-Hyun Cho, E-mail: ckh-sb@snu.ac.kr.

SCo-corresponding author: Walter Kolch, E-mail: w.kolch@beatson.gla.ac.uk.

State variables	Symbols	Concentrations (nM)
Dsh _i	X1	100
Dsh _a	X2	0
APC*/Axin*/GSK-3β	X3	0.0153
APC/Axin/GSK-3β	X4	0.0076
GSK3β	X5	49.1372
APC/Axin	X6	0.0015
APC	X7	96.6019
β-catenin/APC*/Axin*/GSK-3β	X8	0.002
β-catenin*/APC*/Axin*/GSK-3β	X9	0.002
β-catenin*	X10	0.9881
β-catenin	X11	42.7224
Axin	X12	0.0008
TCF	X13	6.1879
β-catenin/TCF	X14	8.8121
β-catenin/APC	X15	3.4392
Ras _i	X16	200.0000
Ras _a	X17	0
Raf-1	X18	112.5585
Raf-1*	X19	6.4860
MEK	X20	296.1137
MEK*	X21	3.8863
ERK	X22	297.8897
ERK*	X23	2.1103
Raf1/RKIP	X24	180.9595
RKIP	X25	418.1788
RKIP*	X26	0.8619
unknown molecule X	X27	10.2630
GSK-3β*	X28	0.85544

Table S1. The summary of state variables and their steady states for a normal system (W=0).

(Notations: i: inactivated state, a: activated state, /: complex, *: phosphorylated state)

The conserved molecular concentrations (nM) (X_T: The total molecular concentration of X): Dsh_T = 100, APC_T = 100, TCF_T = 15, GSK-3 β_T = 50, Ras_T = 200, Raf-1_T = 300, MEK_T = 300, ERK_T = 300,

 $RKIP_T = 600.$

Table S2. The mathematical model of the Wnt/ERK signaling pathways.

 $V1 = k_1 * X1 * W$ $V2 = k_2 * X2$ $V3 = k_3 * X2 * X4$ $V4 = k_4 * X4$ $V5 = k_5 * X3$ $V6 = k_{+6} * X5 * X6 - k_{-6} * X4$ $V7 = k_{+7} * X7 * X12 - k_{-7} * X6$ $V8 = k_{+8} * X3 * X11 - k_{-8} * X8$ $V9 = k_9 * X8$ $V10 = k_{10} * X9$ $V11 = k_{11} * X10$ V12 = V12 $V13 = k_{13} * X11$ V14 = $k_{14} + k_{21} * (X11 + X14)$ %We assume that the availabile β -catenin (X11+X14) induces Axin. $V15 = k_{15} * X12$ $V16 = k_{+16} * X11 * X13 - k_{-16} * X14$ $V17 = k_{+17} * X7 * X11 - k_{-17} * X15$ $V18 = (V_{max1} * X16 * W / (Km_1 + X16)) * (K_i / (K_i + X23))$ $V19 = V_{max2} * X17 / (Km_2 + X17)$ $V20 = kcat_1 * X17 * X18 / (Km_3 + X18)$ $V21 = V_{max3} * X19 / (Km_4 + X19)$

 $V22 = kcat_2 * X19 * X20 / (Km_5 + X20)$ $V23 = V_{max4} * X21 / (Km_6 + X21)$ $V24 = kcat_3 * X21 * X22 / (Km_7 + X22)$ $V25 = V_{max5} * X23 / (Km_8 + X23)$ $V26 = kcat_4 * X23 * X24 / (Km_9 + X24)$ $V27 = k_{18} * X18 * X25 - k_{19} * X24$ $V28 = V_{max6} * X26 / (Km_{10} + X26)$ $V29 = kcat_5 * X14^n / (Km_{11}^n + X14^n)$ $V30 = k_{20} * X27$ $V31 = kcat_6 * X27 * X18 / (Km_{12} + X18)$ $V32 = kcat_7 * X23 * X5 / (Km_{13} + X5)$ $V33 = V_{max7} * X28 / (Km_{14} + X28)$ dX1/dt = -V1 + V2dX2/dt = V1 - V2dX3/dt = V4 - V5 - V8 + V10dX4/dt = -V3 - V4 + V5 + V6dX5/dt = V3 - V6 - V32 + V33dX6/dt = V3 - V6 + V7dX7/dt = -V7 - V17dX8/dt = V8 - V9dX9/dt = V9 - V10dX10/dt = V10 - V11dX11/dt = -V8 + V12 - V13 - V16 - V17dX12/dt = -V7 + V14 - V15dX13/dt = -V16dX14/dt = V16dX15/dt = V17dX16/dt = -V18 + V19dX17/dt = V18 - V19 $dX_{18}/dt = -V_{20} + V_{21} + V_{26} - V_{27} - V_{31}$ dX19/dt = V20 - V21 + V31dX20/dt = -V22 + V23dX21/dt = V22 - V23dX22/dt = -V24 + V25dX23/dt = V24 - V25dX24/dt = -V26 + V27

dX25/dt = -V27 + V28		
dX26/dt = -V28 + V26		
dX27/dt = V29 - V30		
dX28/dt = V32 - V33		

Table S3. The summary of parameter values used for simulation of the Wnt/ERK signaling pathway model.

Reaction parameters	Values	Units
k ₁	0.182	min ⁻¹
k ₂	0.0182	\min^{-1}
k ₃	0.05	$nM^{-1} min^{-1}$
k4	0.267	min ⁻¹
\mathbf{k}_5	0.133	\min^{-1}
k+6/ k-6	0.0909/0.909	$nM^{-1} min^{-1} / min^{-1}$
k ₊₇ / k ₋₇	1/50	$nM^{-1} min^{-1} / min^{-1}$
k ₊₈ / k ₋₈	1/120	$nM^{-1} min^{-1} / min^{-1}$
k ₉	206	\min^{-1}
k ₁₀	206	min ⁻¹
k ₁₁	0.417	\min^{-1}
V12	0.423	$nM^{-1} min^{-1}$
K ₁₃	0.000257	min ⁻¹
k ₁₄	0.0000822	$nM^{-1} min^{-1}$
k ₁₅	0.167	\min^{-1}
k+16/ k-16	1/30	$nM^{-1} min^{-1} / min^{-1}$
k ₊₁₇ / k ₋₁₇	1/1200	$nM^{-1} min^{-1} / min^{-1}$
V_{max1}	150	$nM min^{-1}$
Km ₁	10	nM
ki	9	nM
V _{max2}	15	$nM min^{-1}$
Km ₂	8	nM
kcat ₁	1.5	min ⁻¹
Km ₃	15	nM

V _{max3}	45	nM min ⁻¹
Km ₄	15	nM
kcat ₂	1.5	min ⁻¹
Km ₅	15	nM
V_{max4}	45	$nM min^{-1}$
Km ₆	15	nM
kcat ₃	1.5	min ⁻¹
Km ₇	15	nM
V _{max5}	45	$nM min^{-1}$
Km ₈	15	nM
kcat ₄	1.5	min ⁻¹
Km ₉	9	nM
k ₁₈	0.15	$nM^{-1}min^{-1}$
k ₁₉	39	min ⁻¹
V _{max6}	45	$nM min^{-1}$
Km ₁₀	12	nM
kcat ₅	0.6	min ⁻¹
Km ₁₁	15	nM
n	2	
k ₂₀	0.015	min ⁻¹
kcat ₆	1.5	\min^{-1}
Km ₁₂	15	nM
kcat ₇	1.5	min ⁻¹
Km ₁₃	15	nM
V _{max7}	45	nM min ⁻¹
Km ₁₄	15	nM
k ₂₁	0.000001	min ⁻¹