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Apart from BEEM measurements, LSMO/Nb:STO Schottky junctions were character-

ized by three different techniques. In current-voltage (I-V) measurements (Fig. S1a), all

the junctions showed a clear rectification behavior with a linear relationship between log I

and V in the forward bias region (V is applied to the LSMO films). The ideality factor

calculated from the slope of this linear region was close to unity, indicating that the current

is dominated by thermionic emission[1]. The linear region was extrapolated, and the cur-

rent intercept (I0) gives φB via the formula, kT
e

(ln [AT 2] − lnI0), where k is the Boltzmann

constant, T is the measurement temperature, e is the elementary charge, and A is the

Richardson constant[1]. In capacitance-voltage (C-V) measurements (Fig. S1b), 1/C2 was

a linear function of V for all the LSMO thicknesses in accordance with the Mott-Schottky

model[1]. The voltage intercept of the linear extrapolation corresponds to the built-in po-

tential (Vbi) in the semiconductor, which is related to φB via φB-Vbi ∼ 0.1 eV. Here the

gap between the φB and Vbi was estimated using the electronic effective mass of 1.5 m0 ,

1.5 m0, and 15 m0 in three crystallographic directions of STO[2, 3], where m0 denotes the

free electron mass. The slope of this linear function, reflecting the dopant concentration

and the permittivity of the semiconductor in general, has some sample-to-sample variations

due to slightly different Nb concentrations at this low density (the nominal value is 0.01

wt. %). Internal photoemission (IPE) spectroscopy was performed (Fig. S1c) to show a

linear relationship between the square root of photoyield (photocurrent per photon) and

the photon energy[4]. The linear region was extrapolated and the intercept of the photon

energy equals to the φB. In Fig. S1d, the φB values from each measurement are plotted as

a function of the LSMO film thickness, showing the values 1.0 ∼ 1.1 eV with only a small

fluctuation for different LSMO thicknesses or measurement techniques.

The attenuation length is modeled based on the available phase space for scattering, as

discussed in Zarate et al [5]. We constructed a model for the electronic density of states

(DOS) based on the Density Functional Theory (DFT) results from Pickett and Singh [6].

The model consisted of a featureless DOS (for the majority spin) at the Fermi level, combined

with a larger DOS at 1.8 eV below the Fermi level for the majority spin, and a linear DOS

starting at the Fermi level for the minority spin. The band velocity was estimated by a
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FIG. S1. Schottky junction properties. a. I-V characteristics, b. C-V characteristics and c.

IPE spectra for LSMO/Nb:STO heterostructures with varied LSMO film thicknesses. d. φB from

the various measurements are summarized.

simple cosine model. As described in the main text, the electron-electron scattering rate

was combined through Matthiessen’s rule with a polaronic scattering rate. At relatively

high injection energies, the polaronic scattering rate is assumed to be energy-independent.

Using the overall scale for the velocity, the electron-electron scattering matrix element, and

the mean free path due to the polaronic scattering as fitting parameters, we arrive at the

curve shown in Fig. 3 (main text).

It is interesting to note that electron-phonon scattering within the Migdal limit is not

sufficiently strong to arrive at the experimentally observed attenuation length. For reason-

able values of the electron-phonon coupling constant λ, the attenuation length based on

an empirical model of electron-phonon scattering is many times longer than the observed

energy-independent attenuation length.

The extracted hot electron attenuation length for different transition metal ferromagnets
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Metals λhot Energy Ref.

Co (300 K) 2.1 nm -1.5 V 7

Fe (150 K) 1.6 nm -1.4 V 8

Ni (300 K) 3.2 nm -1.4 V 9

Au (300 K) 26.5 nm -1.2 V 10

Ag (80 K) 25 nm -1.2 V 11

Cu (100 K) 30 nm -1.1 V 12

TABLE I. List of values of hot electron attenuation lengths in transition metal ferromagnets and

noble metals on Si (100) using Ballistic electron emission microscopy.

and noble metals on Si (100), obtained from Ballistic Electron Emission Microscopy studies,

at different temperatures, are shown in Table 1.
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