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Figure S.1: Same figure as Fig. 1 in the main paper but, in this case, with
the ticker symbol of each stock reported.
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S.1 Peripheral vs. central nodes: frequencies

In this section we show that the center of PMFG is dominated by a small
number of central stocks whereas the periphery exhibits larger variations.

For each date we select the most central (peripheral) stocks defined as the
5% companies characterized by smallest (largest) values of X + Y - a total
of 15 stocks for each date. By aggregating all the dates and counting the
number of times a stock is selected as ‘central’ or ‘peripheral’, we assign a
frequency to each of the 2286 stocks analyzed over the whole period. The
resulting cumulative frequency is reported in Fig. S.2. We see that the two
curves for central and peripheral stocks are rather different. For instance,
for central stocks, the 229 largest frequencies (corresponding to 10% of all
stocks) account for 83% of all “most central stocks”; conversely, for peripheral
stocks, the 229 largest frequencies account for only 50% of the total. This
means that central stocks are more stable in central positions than peripheral
stocks in peripheral positions.

S.1 Peripheral vs. central nodes: frequencies

In this section we show that the center of PMFG is dominated by a small
number of central stocks whereas the periphery exhibits larger variations.

For each date we select the most central (peripheral) stocks defined as the
5% companies characterized by smallest (largest) values of X + Y - a total
of 15 stocks for each date. By aggregating all the dates and counting the
number of times a stock is selected as ‘central’ or ‘peripheral’, we assign a
frequency to each of the 2286 stocks analyzed over the whole period. The
resulting cumulative frequency is reported in Fig. S.2. We see that the two
curves for central and peripheral stocks are rather di↵erent. For instance,
for central stocks, the 229 largest frequencies (corresponding to 10% of all
stocks) account for 83% of all “most central stocks”; conversely, for peripheral
stocks, the 229 largest frequencies account for only 50% of the total. This
means that central stocks are more stable in central positions than peripheral
stocks in peripheral positions.

0 20 40 60 80 100

20

40

60

80

100

securities (%)

cu
m

. f
re

q.
 (%

)

peripheral

central

Figure S.2: Cumulated frequencies, for each security, of centers and periph-
eries: 229 central stocks represent 83% of total frequencies for central stocks;
the same number of peripheral stocks represents just 50% of all frequencies
for peripheral stocks.
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Table S.1: Average yearly returns for portfolios of MKT , RAND, BEST , PMFG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). In round brackets the standard deviations are
reported for all 7071 yearly returns.

# of MKT RAND BEST PMFG-c PMFG-p

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks 0.152 0.137 0.142 0.151 0.142 0.141 0.236 0.182 0.183 0.144 0.122 0.118 0.165 0.154 0.153
(0.195) (0.148) (0.156) (0.250) (0.211) (0.211) (0.359) (0.285) (0.286) (0.272) (0.235) (0.234) (0.219) (0.196) (0.196)

10 stocks 0.152 0.137 0.142 0.154 0.139 0.138 0.214 0.159 0.159 0.142 0.118 0.114 0.163 0.148 0.147
(0.195) (0.148) (0.156) (0.223) (0.189) (0.190) (0.318) (0.221) (0.222) (0.251) (0.212) (0.207) (0.196) (0.174) (0.174)

20 stocks 0.152 0.137 0.142 0.152 0.139 0.138 0.194 0.150 0.150 0.142 0.118 0.112 0.159 0.143 0.141
(0.195) (0.148) (0.156) (0.209) (0.176) (0.176) (0.286) (0.204) (0.205) (0.236) (0.197) (0.192) (0.185) (0.161) (0.161)

30 stocks 0.152 0.137 0.142 0.151 0.138 0.136 0.186 0.147 0.150 0.142 0.118 0.113 0.158 0.142 0.139
(0.195) (0.148) (0.156) (0.202) (0.170) (0.171) (0.274) (0.196) (0.198) (0.230) (0.187) (0.186) (0.183) (0.157) (0.158)

40 stocks 0.152 0.137 0.142 0.152 0.138 0.136 0.179 0.146 0.150 0.144 0.123 0.118 0.157 0.140 0.137
(0.195) (0.148) (0.156) (0.201) (0.166) (0.168) (0.263) (0.188) (0.192) (0.226) (0.179) (0.181) (0.182) (0.156) (0.157)

S.2 Measures of performance and risk

We report here a selection of measures of performance and risk for portfo-
lios “MKT” (all 300 stocks), “RAND” (random stocks), “BEST” (of stocks
achieving best performance on the year preceding the investment), “PMFG-
c” (PMFG central stocks) and “PMFG-p” (PMFG peripheral stocks).

Table S.1 reports the average yearly returns and the associated standard
deviation computed over the whole period of 7071 days. Analogously, Ta-
ble S.2 reports the average yearly excess returns (defined as the difference
between the portfolio returns and returns of the benchmark S&P 500 Com-
posite index) over the whole period of 7071 days. In both tables it is evident
how peripheral nodes perform systematically better than central nodes both
in terms of averages and standard deviations; they perform equivalently or
better than “MKT” and “RAND”, both in terms of averages and stan-
dard deviations (except for standard deviations of excess returns, which are
slightly worse although associated with usually higher averages); their aver-
ages are smaller than in the case of “BEST” but they have smaller standard
deviations.

By looking at the generalized Hurst exponent [1, 2, 3, 4] of yearly re-
turns and yearly excess returns, we observe differences in long-term memory
for different portfolios. Results, for the generalized Hurst exponent H(1),
computed using [5], are reported in Tables S.3 and S.4. Let us recall that
the generalized Hurst exponent must be equal to 0 for a white noise process
and 0.5 for a random walk, and deviations from 0.5 reveal deviations from a
Brownian motion. We find that returns obtained from “MKT” are charac-
terized by highest H(1) while those from “RAND” are characterized by very
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Table S.2: Average yearly excess returns for portfolios of MKT , RAND, BEST , PMFG’s central
nodes (PMFG-c) and PMFG’s peripheral nodes (PMFG-p). In round brackets the standard deviations
are reported for all 7071 yearly excess returns. Excess returns have been here calculated as the difference
between yearly portfolio returns and S&P 500 Composite index returns.

# of MKT RAND BEST PMFG-c PMFG-p

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks 0.053 0.038 0.043 0.052 0.043 0.042 0.137 0.083 0.084 0.045 0.023 0.019 0.066 0.055 0.054
(0.073) (0.127) (0.151) (0.172) (0.154) (0.155) (0.283) (0.234) (0.235) (0.169) (0.149) (0.156) (0.181) (0.174) (0.175)

10 stocks 0.053 0.038 0.043 0.055 0.040 0.040 0.115 0.060 0.060 0.043 0.019 0.015 0.064 0.049 0.048
(0.073) (0.127) (0.151) (0.128) (0.135) (0.139) (0.238) (0.154) (0.157) (0.138) (0.125) (0.145) (0.146) (0.150) (0.152)

20 stocks 0.053 0.038 0.043 0.053 0.040 0.039 0.095 0.051 0.051 0.043 0.019 0.013 0.060 0.044 0.042
(0.073) (0.127) (0.151) (0.105) (0.128) (0.138) (0.197) (0.136) (0.141) (0.114) (0.121) (0.151) (0.120) (0.137) (0.141)

30 stocks 0.053 0.038 0.043 0.052 0.039 0.037 0.087 0.048 0.051 0.043 0.019 0.014 0.059 0.043 0.040
(0.073) (0.127) (0.151) (0.092) (0.127) (0.140) (0.184) (0.131) (0.139) (0.105) (0.122) (0.158) (0.107) (0.132) (0.139)

40 stocks 0.053 0.038 0.043 0.053 0.039 0.037 0.081 0.047 0.051 0.045 0.024 0.019 0.058 0.041 0.038
(0.073) (0.127) (0.151) (0.088) (0.126) (0.142) (0.172) (0.129) (0.138) (0.100) (0.124) (0.159) (0.099) (0.130) (0.138)

Table S.3: Generalized Hurst exponents of yearly returns for portfolios of MKT , RAND, BEST ,
PMFG’s central nodes (PMFG-c) and PMFG’s peripheral nodes (PMFG-p). Standard deviations are
small and therefore omitted.

# of MKT RAND BEST PMFG-c PMFG-p

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks 0.507 0.462 0.387 0.022 0.018 0.018 0.322 0.329 0.329 0.244 0.231 0.219 0.137 0.143 0.142
10 stocks 0.507 0.462 0.387 0.033 0.018 0.019 0.361 0.341 0.338 0.278 0.246 0.225 0.143 0.152 0.150
20 stocks 0.507 0.462 0.387 0.059 0.028 0.024 0.367 0.354 0.351 0.292 0.209 0.193 0.174 0.186 0.181
30 stocks 0.507 0.462 0.387 0.095 0.042 0.035 0.395 0.348 0.346 0.333 0.208 0.177 0.211 0.212 0.204
40 stocks 0.507 0.462 0.387 0.102 0.040 0.033 0.408 0.352 0.349 0.344 0.204 0.168 0.238 0.230 0.214

low values of H(1); returns from “BEST” exhibit relatively high H(1), but
smaller than “MKT”, while returns from PMFGs are characterized by rela-
tively small H(1), but larger than “RAND”. It has been pointed out that the
Hurst exponent can successfully detect the level of development/liquidity of
a market [1, 2] and it has been argued that it could be used as a tool to detect
market instabilities [4]. Generally speaking, we can affirm that small H(1)
should be associated with lower risk of large persistent deviations. Further
studies will be devoted to understand the relation between scaling exponents
and portfolio investment risk.

Tables S.5 and S.6 report the Information Ratio (IR) and the Sharpe
(Information) Ratio (SIR). The Information Ratio is calculated as average
divided by standard deviation of yearly returns; the Sharpe (Information)
Ratio - also called revised Sharpe Ratio [6] - is the information ratio of the
excess yearly returns (the benchmark being the S&P 500 Composite index).
(We do not use a risk-free rate as benchmark because our portfolios contain
only stocks and no risk-free alternative.)
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Table S.4: Generalized Hurst exponents of yearly excess returns for portfolios of MKT , RAND,
BEST , PMFG’s central nodes (PMFG-c) and PMFG’s peripheral nodes (PMFG-p). Standard devia-
tions are small and therefore omitted.

# of MKT RAND BEST PMFG-c PMFG-p

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks 0.449 0.431 0.392 0.008 0.010 0.010 0.316 0.325 0.324 0.209 0.202 0.194 0.132 0.138 0.137
10 stocks 0.449 0.431 0.392 0.008 0.011 0.012 0.342 0.330 0.328 0.219 0.217 0.200 0.127 0.144 0.142
20 stocks 0.449 0.431 0.392 0.010 0.013 0.017 0.336 0.333 0.335 0.204 0.180 0.176 0.142 0.166 0.162
30 stocks 0.449 0.431 0.392 0.027 0.028 0.029 0.358 0.337 0.342 0.229 0.179 0.172 0.167 0.188 0.184
40 stocks 0.449 0.431 0.392 0.025 0.023 0.029 0.366 0.345 0.342 0.229 0.186 0.168 0.169 0.204 0.191

Table S.5: Information Ratio for portfolios of MKT , RAND, BEST , PMFG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Information Ratio over the whole period
of 7071 days; (b) Average Information Ratio calculated over 6821 samples (corresponding to as many
sub-periods each of 250 observations); (c) Standard deviations for the samples as in (b). The Information
Ratio has been here calculated for the yearly returns without benchmark.

# of MKT RAND BEST PMFG-c PMFG-p
measure

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks
(a) 0.782 0.926 0.908 0.603 0.671 0.669 0.657 0.639 0.638 0.528 0.519 0.507 0.754 0.785 0.782
(b) 1.955 2.023 2.018 0.872 0.959 0.954 1.093 1.073 1.073 1.002 0.912 0.869 1.063 1.129 1.127
(c) (1.893) (1.745) (2.055) (0.898) (0.929) (0.927) (1.419) (1.281) (1.282) (1.382) (1.238) (1.211) (0.883) (0.965) (0.966)

10 stocks
(a) 0.782 0.926 0.908 0.690 0.737 0.730 0.672 0.723 0.717 0.565 0.559 0.548 0.830 0.850 0.844
(b) 1.955 2.023 2.018 1.132 1.143 1.130 1.229 1.329 1.322 1.200 1.014 0.915 1.345 1.374 1.362
(c) (1.893) (1.745) (2.055) (1.123) (1.127) (1.126) (1.489) (1.510) (1.513) (1.479) (1.282) (1.166) (1.139) (1.166) (1.167)

20 stocks
(a) 0.782 0.926 0.908 0.728 0.792 0.782 0.678 0.736 0.732 0.601 0.602 0.584 0.859 0.891 0.875
(b) 1.955 2.023 2.018 1.356 1.342 1.300 1.366 1.519 1.539 1.337 1.093 0.984 1.617 1.628 1.584
(c) (1.893) (1.745) (2.055) (1.317) (1.299) (1.286) (1.556) (1.695) (1.710) (1.529) (1.296) (1.155) (1.426) (1.391) (1.388)

30 stocks
(a) 0.782 0.926 0.908 0.747 0.813 0.795 0.678 0.750 0.757 0.618 0.634 0.608 0.861 0.900 0.878
(b) 1.955 2.023 2.018 1.521 1.451 1.378 1.460 1.572 1.624 1.403 1.194 1.062 1.761 1.778 1.696
(c) (1.893) (1.745) (2.055) (1.491) (1.399) (1.370) (1.604) (1.653) (1.708) (1.555) (1.379) (1.256) (1.615) (1.556) (1.524)

40 stocks
(a) 0.782 0.926 0.908 0.759 0.835 0.810 0.683 0.774 0.780 0.635 0.686 0.654 0.861 0.895 0.870
(b) 1.955 2.023 2.018 1.585 1.513 1.428 1.520 1.644 1.722 1.450 1.292 1.138 1.853 1.816 1.712
(c) (1.893) (1.745) (2.055) (1.523) (1.438) (1.411) (1.614) (1.641) (1.765) (1.572) (1.413) (1.296) (1.715) (1.606) (1.568)

We report in (a) the measures computed over the whole period of 7071
days; the averages of all subperiods in (b) and the standard deviation of the
measures observed over all subperiods in (c).
The IR of peripheral nodes performs better than that of central nodes,
“RAND” and “BEST” and analogously to that of “MKT”. The SIR of pe-
ripheral portfolios performs better than that of central nodes and “RAND”
but worse than that of “BEST” and “MKT”.

Table S.7 reports the beta coefficients calculated over the yearly returns,
with S&P 500 Composite index as benchmark. Let us recall that ‘beta’ is
a measure of systematic risk of a portfolio in comparison with the market.
Values of beta smaller than one indicate that the portfolio’s excess returns
have an anti-cyclic behavior with respect to the benchmark market. In (a)
the measures computed over 7071 periods (since the standard deviation of
beta coefficients is always very small it is omitted); the averages of the beta
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Table S.6: Sharpe Information Ratio for portfolios of MKT , RAND, BEST , PMFG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Sharpe Information Ratio over the whole
period of 7071 days; (b) Average Sharpe Information Ratio calculated over 6821 samples (corresponding
to as many sub-periods each of 250 observations); (c) Standard deviations for the samples as in (b). The
Sharpe Information Ratio has been here calculated as the information ratio of the excess yearly returns
(the benchmark being the S&P 500 Composite index).

# of MKT RAND BEST PMFG-c PMFG-p
measure

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks
(a) 0.731 0.298 0.284 0.301 0.278 0.273 0.484 0.356 0.357 0.264 0.154 0.125 0.365 0.314 0.311
(b) 1.596 0.691 0.707 0.342 0.339 0.335 0.705 0.562 0.561 0.406 0.260 0.226 0.481 0.444 0.443
(c) (1.814) (1.794) (1.705) (0.340) (0.460) (0.461) (0.873) (0.822) (0.821) (0.967) (0.750) (0.736) (0.598) (0.741) (0.743)

10 stocks
(a) 0.731 0.298 0.284 0.426 0.300 0.284 0.482 0.392 0.384 0.313 0.156 0.101 0.435 0.328 0.317
(b) 1.596 0.691 0.707 0.512 0.406 0.397 0.752 0.631 0.625 0.582 0.242 0.159 0.605 0.512 0.503
(c) (1.814) (1.794) (1.705) (0.482) (0.703) (0.705) (0.962) (0.882) (0.880) (1.052) (0.798) (0.770) (0.732) (0.942) (0.943)

20 stocks
(a) 0.731 0.298 0.284 0.508 0.313 0.282 0.482 0.375 0.362 0.374 0.159 0.089 0.498 0.323 0.297
(b) 1.596 0.691 0.707 0.680 0.505 0.471 0.836 0.695 0.672 0.732 0.272 0.147 0.744 0.556 0.532
(c) (1.814) (1.794) (1.705) (0.683) (0.921) (0.930) (1.070) (1.081) (1.038) (1.033) (0.935) (0.954) (0.908) (1.113) (1.111)

30 stocks
(a) 0.731 0.298 0.284 0.562 0.309 0.267 0.472 0.369 0.367 0.409 0.159 0.090 0.547 0.322 0.285
(b) 1.596 0.691 0.707 0.799 0.517 0.463 0.873 0.706 0.702 0.828 0.291 0.150 0.850 0.584 0.538
(c) (1.814) (1.794) (1.705) (0.828) (1.042) (1.035) (1.068) (1.161) (1.107) (1.042) (1.020) (1.128) (1.032) (1.195) (1.179)

40 stocks
(a) 0.731 0.298 0.284 0.606 0.311 0.264 0.468 0.363 0.365 0.445 0.194 0.122 0.585 0.314 0.274
(b) 1.596 0.691 0.707 0.899 0.558 0.490 0.906 0.707 0.737 0.913 0.337 0.209 0.941 0.587 0.529
(c) (1.814) (1.794) (1.705) (0.891) (1.115) (1.098) (1.094) (1.170) (1.180) (1.063) (1.047) (1.184) (1.144) (1.232) (1.209)

coefficients calculated over 7071− 250 = 6821 subperiods of length 250 days
are reported in (b) and the standard deviation of the beta coefficients ob-
served during all subperiods in (c). We observe that “BEST” and central
nodes provide the worst performance, being unable to diversify market risk
and often amplifying it. Peripheral nodes provide beta coefficients superior
to “RAND” and comparable to “MKT”. Beta coefficients of peripheral
portfolios with uniform weights are much smaller than those obtained with
any other portfolio with uniform weighting.

Tables S.8 and S.9 report the probability of respectively positive yearly
returns and positive excess yearly returns. We report in (a) the measures
computed over 7071 periods (since the standard deviation of the probabili-
ties is always very small it is omitted); the averages of all subperiods in (b)
and the standard deviation of the probabilities observed over all subperiods
in (c). The probability of positive yearly returns of peripheral nodes is su-
perior to that of “RAND”, “BEST” and central nodes while it is similar
to that of “MKT”. The probability of positive excess yearly returns of pe-
ripheral nodes is superior to that of central nodes and comparable to that of
“RAND”, “BEST” and “MKT”.

Overall we can say that from all previous analyses it emerges clearly
that central nodes perform worse than any other alternative while peripheral
nodes are often better than others, sometimes equivalent and seldom inferior.
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Table S.7: Beta coefficients for portfolios of MKT , RAND, BEST , PMFG’s central nodes (PMFG-
c) and PMFG’s peripheral nodes (PMFG-p). (a) Beta coefficients over 7071 periods; (b) Average Beta
coefficients calculated over 6821 samples (corresponding to as many sub-periods each of 250 observations);
(c) Standard deviations for the samples as in (b). The Beta coefficients have been here calculated for the
yearly returns (the benchmark being the S&P 500 Composite index).

# of MKT RAND BEST PMFG-c PMFG-p
measure

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks
(a) 1.018 0.591 0.525 1.023 0.832 0.827 1.274 0.922 0.925 1.222 1.023 0.979 0.741 0.627 0.624
(b) 1.164 0.605 0.471 1.127 0.850 0.847 1.637 1.062 1.070 1.318 1.134 1.112 0.773 0.624 0.622
(c) (0.431) (0.490) (0.485) (0.452) (0.363) (0.365) (1.380) (0.969) (0.978) (0.870) (0.672) (0.697) (0.688) (0.595) (0.596)

10 stocks
(a) 1.018 0.591 0.525 1.026 0.781 0.765 1.209 0.895 0.893 1.203 0.965 0.851 0.769 0.626 0.617
(b) 1.164 0.605 0.471 1.143 0.794 0.773 1.588 0.922 0.925 1.292 1.011 0.946 0.782 0.630 0.622
(c) (0.431) (0.490) (0.485) (0.454) (0.372) (0.376) (1.223) (0.742) (0.739) (0.762) (0.518) (0.571) (0.669) (0.552) (0.554)

20 stocks
(a) 1.018 0.591 0.525 1.020 0.729 0.692 1.182 0.866 0.851 1.176 0.880 0.724 0.815 0.613 0.595
(b) 1.164 0.605 0.471 1.173 0.749 0.699 1.526 0.853 0.831 1.302 0.956 0.834 0.853 0.635 0.616
(c) (0.431) (0.490) (0.485) (0.435) (0.412) (0.421) (1.052) (0.685) (0.692) (0.663) (0.504) (0.590) (0.562) (0.497) (0.504)

30 stocks
(a) 1.018 0.591 0.525 1.013 0.703 0.656 1.154 0.839 0.817 1.162 0.817 0.657 0.849 0.615 0.589
(b) 1.164 0.605 0.471 1.154 0.738 0.669 1.472 0.832 0.790 1.315 0.894 0.751 0.903 0.626 0.596
(c) (0.431) (0.490) (0.485) (0.424) (0.428) (0.438) (1.026) (0.621) (0.618) (0.608) (0.527) (0.611) (0.519) (0.488) (0.502)

40 stocks
(a) 1.018 0.591 0.525 1.018 0.683 0.630 1.127 0.799 0.780 1.153 0.767 0.618 0.872 0.620 0.590
(b) 1.164 0.605 0.471 1.151 0.714 0.637 1.411 0.770 0.718 1.322 0.823 0.688 0.951 0.623 0.584
(c) (0.431) (0.490) (0.485) (0.436) (0.438) (0.459) (0.984) (0.573) (0.576) (0.569) (0.536) (0.613) (0.465) (0.485) (0.502)

Table S.8: Probability of positive yearly returns for portfolios of MKT , RAND, BEST , PMFG’s
central nodes (PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Probabilities over 7071 periods;
(b) Average probabilities calculated over 6821 samples (corresponding to as many sub-periods each of 250
observations); (c) Standard deviations for the samples as in (b).

# of MKT RAND BEST PMFG-c PMFG-p
measure

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks
(a) 0.782 0.840 0.816 0.760 0.770 0.769 0.760 0.763 0.763 0.747 0.742 0.737 0.794 0.802 0.802
(b) 0.774 0.834 0.810 0.752 0.763 0.762 0.751 0.756 0.756 0.738 0.735 0.730 0.787 0.796 0.796
(c) (0.302) (0.250) (0.286) (0.241) (0.236) (0.236) (0.255) (0.254) (0.254) (0.304) (0.277) (0.274) (0.217) (0.209) (0.209)

10 stocks
(a) 0.782 0.840 0.816 0.781 0.784 0.780 0.774 0.791 0.791 0.768 0.746 0.725 0.814 0.813 0.811
(b) 0.774 0.834 0.810 0.773 0.776 0.773 0.766 0.784 0.784 0.759 0.739 0.721 0.807 0.807 0.805
(c) (0.302) (0.250) (0.286) (0.258) (0.241) (0.242) (0.248) (0.254) (0.255) (0.312) (0.274) (0.264) (0.224) (0.212) (0.212)

20 stocks
(a) 0.782 0.840 0.816 0.788 0.791 0.787 0.782 0.794 0.799 0.774 0.750 0.732 0.823 0.827 0.819
(b) 0.774 0.834 0.810 0.780 0.784 0.780 0.774 0.787 0.792 0.766 0.742 0.728 0.816 0.821 0.813
(c) (0.302) (0.250) (0.286) (0.275) (0.244) (0.248) (0.266) (0.263) (0.263) (0.312) (0.271) (0.263) (0.235) (0.213) (0.217)

30 stocks
(a) 0.782 0.840 0.816 0.788 0.795 0.792 0.787 0.800 0.804 0.772 0.758 0.743 0.820 0.825 0.813
(b) 0.774 0.834 0.810 0.781 0.788 0.785 0.779 0.793 0.797 0.763 0.749 0.737 0.813 0.819 0.807
(c) (0.302) (0.250) (0.286) (0.282) (0.252) (0.257) (0.267) (0.260) (0.266) (0.315) (0.273) (0.275) (0.248) (0.223) (0.232)

40 stocks
(a) 0.782 0.840 0.816 0.790 0.802 0.797 0.791 0.805 0.807 0.770 0.770 0.756 0.816 0.827 0.813
(b) 0.774 0.834 0.810 0.782 0.795 0.790 0.783 0.798 0.799 0.762 0.762 0.749 0.809 0.821 0.807
(c) (0.302) (0.250) (0.286) (0.286) (0.248) (0.254) (0.269) (0.255) (0.269) (0.315) (0.273) (0.279) (0.256) (0.224) (0.238)
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Table S.9: Probability of positive excess returns for portfolios of MKT , RAND, BEST , PMFG’s
central nodes (PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Probabilities over 7071 periods;
(b) Average probabilities calculated over 6821 samples (corresponding to as many sub-periods each of 250
observations); (c) Standard deviations for the samples as in (b). The benchmark for yearly excess returns
is the S&P 500 Composite index.

# of MKT RAND BEST PMFG-c PMFG-p
measure

stocks u ns s u ns s u ns s u ns s u ns s

5 stocks
(a) 0.777 0.623 0.618 0.628 0.623 0.622 0.707 0.664 0.664 0.617 0.587 0.574 0.654 0.640 0.639
(b) 0.770 0.616 0.614 0.622 0.619 0.619 0.703 0.660 0.660 0.608 0.585 0.573 0.653 0.640 0.639
(c) (0.255) (0.325) (0.302) (0.132) (0.170) (0.171) (0.233) (0.221) (0.221) (0.274) (0.234) (0.235) (0.189) (0.224) (0.224)

10 stocks
(a) 0.777 0.623 0.618 0.679 0.642 0.638 0.713 0.671 0.671 0.658 0.579 0.555 0.689 0.662 0.661
(b) 0.770 0.616 0.614 0.673 0.638 0.635 0.707 0.670 0.669 0.648 0.580 0.559 0.684 0.660 0.658
(c) (0.255) (0.325) (0.302) (0.166) (0.217) (0.218) (0.223) (0.239) (0.238) (0.262) (0.234) (0.235) (0.211) (0.255) (0.257)

20 stocks
(a) 0.777 0.623 0.618 0.710 0.651 0.638 0.726 0.666 0.664 0.702 0.585 0.541 0.716 0.663 0.654
(b) 0.770 0.616 0.614 0.703 0.648 0.635 0.720 0.665 0.663 0.692 0.582 0.545 0.709 0.658 0.649
(c) (0.255) (0.325) (0.302) (0.197) (0.240) (0.243) (0.231) (0.246) (0.244) (0.254) (0.245) (0.252) (0.230) (0.280) (0.283)

30 stocks
(a) 0.777 0.623 0.618 0.741 0.645 0.630 0.739 0.671 0.674 0.730 0.576 0.535 0.722 0.662 0.650
(b) 0.770 0.616 0.614 0.733 0.641 0.628 0.734 0.668 0.672 0.720 0.573 0.539 0.715 0.656 0.644
(c) (0.255) (0.325) (0.302) (0.202) (0.261) (0.260) (0.227) (0.250) (0.245) (0.252) (0.244) (0.271) (0.240) (0.288) (0.288)

40 stocks
(a) 0.777 0.623 0.618 0.749 0.651 0.626 0.744 0.673 0.680 0.743 0.585 0.554 0.727 0.658 0.647
(b) 0.770 0.616 0.614 0.740 0.647 0.623 0.739 0.668 0.677 0.734 0.581 0.556 0.719 0.652 0.642
(c) (0.255) (0.325) (0.302) (0.210) (0.268) (0.267) (0.225) (0.251) (0.244) (0.258) (0.247) (0.281) (0.254) (0.287) (0.285)

S.3 Portfolio variance and remonetized quan-

tities

In Fig.S.3 are reported the portfolio performances when weights are com-
puted with the Markowitz method with short-selling. One can note that
the results are almost undistinguishable from the one for the case with no
short-selling, reported in Fig.3 of the main paper.

As further quantification of risk let us here report in Figs. S.4, S.5 and
S.6 the variance of portfolio returns at various time lags from 1 to 250 days.
One can observe that the variance of the portfolios made of peripheral stocks
(�) is always lower than that of portfolios made of central stocks (O) and it
is comparable or lower than that of portfolios made of all 300 stocks (thick
line), with as little as m = 10 stocks.
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Results
Average performance of di↵erent portfolios. We measured the
performance of portfolios composed of m = 5, 10, 20, 30 stocks
selected in the peripheral regions of MST and PMFG graphs
and compared it with that of portfolios of m stocks selected
from the central region, or m stocks chosen at random, or m
stocks characterized by the best performance over the period
preceding the investment date. All these portfolios were also
compared with the performance of the whole ‘market’ of the
300 stocks. Figure 2 reports results for the signal-to-noise
ratios for the case of a basket of m stocks from the PMFG
is weighted uniformly. We can observe that peripheral port-
folios systematically outperform central ones, and also out-
perform portfolios made of randomly chosen stocks and those
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Fig. 3. Demonstration that portfolios made with peripheral stocks (⇤) perform

better than portfolios made with central stocks (O ) also in the case of weights ob-

tained by solving the Markowitz problem with no short-selling. Symbols and axes are

the same as in Fig. 2.
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Fig. 4. Demonstration that portfolios made with peripheral stocks (⇤) perform

better than portfolios made with central stocks (O ) also in the case of weights ob-

tained by solving the Markowitz problem with short-selling. Symbols and axes are the

same as in Fig. 2.

made of stocks achieving the best performance over the pre-
vious period. Notably, the performance of peripheral port-
folios is comparable -and often better- than the market per-
formance obtained from all 300 daily stocks. Let us stress
that peripheral portfolios, with as little as five stocks, already
achieve competitive outcomes. Very similar results are ob-
tained for portfolios set up by using the MST s instead of the
PMFGs, however the portfolio compositions are di↵erent re-
vealing that the two filtered graphs provide alternative invest-
ment options (further details are provided in the supporting
information). We also considered portfolios weighted by using
the Markowitz method with and without short-selling. Fig-
ures 3 and 4 report their performance. We note that the
results are similar to those with uniform weights, with ‘pe-
ripheral’ portfolios systematically outperforming portfolios of
‘central’, ‘random’ and ‘best’ stocks, and performing compet-
itively with portfolios selected from the whole market. The
main di↵erence is that Markowitz weighting significantly im-
proves the performance of all portfolios with the exception
of central ones. In particular, the Markowitz method mostly
improves the performance of the ‘market’ portfolio with all
300 stocks. However, it should be stressed that Markowitz
solutions for a large number of stocks tend to be avoided
by the operators because a large system is harder to con-
trol and could become more costly to manage [2]. Further-
more, in the case of Markowitz portfolios with short-selling,
we observed that the leverage, measured as the sum of all
weights in absolute value, is extremely large for ‘market’ port-
folios of 300 stocks (290%). Conversely, Markowitz solutions
for PMFG peripheral portfolios exhibit very limited leverage
levels of: 100%, 102%, 109%, 116%, 124% respectively for
m = {5, 10, 20, 30, 40}. Therefore PMFG peripheral portfo-
lios are less exposed to risk, because leverage itself is a measure
of risk with high leverages making the investment more vul-
nerable to large losses. In addition we note that, for the case
of Markowitz solutions with all 300 companies and no short-
selling, the average number of non-null weights is 32 (with
interquartile range between 24 and 41). The analogous aver-
ages for PMFG peripheral portfolios, for m = 5, 10, 20, 30, 40,
are respectively equal to 4.9, 9.1, 15.5, 19.8, 22.9, with very
narrow interquartile ranges, showing that the basket of stocks
selected from PMFG peripheries is already well balanced also
from the Markowitz perspective. PMFG peripheral portfolios
are also characterized by small average ‘maximum weights’; in
the case with no short sales these are 0.42, 0.30, 0.23, 0.21,
0.19 respectively for m = {5, 10, 20, 30, 40} with narrow con-
fidence intervals. The case with short sales is identical to all
practical e↵ects. From these results, we also conclude that a
reasonable number of peripheral companies should be around
m = 20, ensuring in this way competitive signal-to-noise ra-
tios, together with few non-null Markowitz weights with rela-
tively small maximum weights and small leverages in case of
short sales. A comparison with the performance of the bench-
mark S&P 500 Composite index reveals that PMFG periph-
eral portfolios have larger average yearly excess returns than
the central ones and comparable values with the market ones
(see supporting information).3 Similarly the Sharpe Informa-
tion Ratio (information ratio of the excess yearly returns) also
shows that PMFG peripheral portfolios perform better than
the central ones (see supporting information). Consistently,
the ‘beta coe�cients’ [2] reveal an anti-cyclic pattern for the
excess returns of PMFG peripheral portfolios with respect to
the benchmark S&P 500 Composite index, i.e. they increase
when the market goes down and vice-versa, thus showing a fair

3The excess return is the di↵erence between portfolios and benchmark returns; its average is also
known as ‘alpha coe�cient’ [2].

Footline Author PNAS Issue Date Volume Issue Number 3

Figure S.3: Demonstration that portfolios made with peripheral stocks (�)
perform better than portfolios made with central stocks (O ) also in the case
of weights obtained by solving the Markowitz problem with short-selling.
Portfolio sizes are respectively m = 5, 10, 20, 30 stocks; weights are uniform.
The plots report the ‘signal-to-noise ratio’ r̄(τ)

s(τ)
(average return divided by its

standard deviation) for τ = 1, .., 250 days following the investment day. The
performance is compared with: (/) portfolios made of m randomly chosen
stocks; (.) portfolios made with the m stocks that have achieved the best
performance over the period preceding the investment date. The thick line
is a ‘market portfolio’ made by taking all 300 stocks.
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Figure S.3: Comparison between the variance of di↵erent portfolios with uni-
form weights. The symbol ⇤ indicates portfolios made of the m = 5, 10, 20, 30
most peripheral stocks (i.e. with largest X +Y ). O indicates portfolios made
of the m most central stocks (i.e. with smallest X +Y ). These are compared
with: (thick line) ‘market portfolios’ made of all 300 stocks; (/) portfolios
made of m randomly chosen stocks; (.) portfolios made of the m stocks that
have achieved the best performance over the period preceding the investment
date.
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Figure S.4: Comparison between the variance of different portfolios with uni-
form weights. The symbol� indicates portfolios made of the m = 5, 10, 20, 30
most peripheral stocks (i.e. with largest X+Y ). O indicates portfolios made
of the m most central stocks (i.e. with smallest X+Y ). These are compared
with: (thick line) ‘market portfolios’ made of all 300 stocks; (/) portfolios
made of m randomly chosen stocks; (.) portfolios made of the m stocks that
have achieved the best performance over the period preceding the investment
date.
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Figure S.4: Comparison between the variance of di↵erent portfolios obtained
by solving the Markowitz problem with no short-selling. Labels are the same
as in Fig. S.3: the composition of portfolios is the same while the weighting
is di↵erent.
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Figure S.5: Comparison between the variance of different portfolios obtained
by solving the Markowitz problem with no short-selling. Labels are the same
as in Fig. S.4: the composition of portfolios is the same while the weighting
is different.
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Figure S.5: Comparison between the variance of di↵erent portfolios obtained
by solving the Markowitz problem with short-selling. The labels are the same
as in Fig. S.3.
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Figure S.6: Comparison between the variance of different portfolios obtained
by solving the Markowitz problem with short-selling. The labels are the same
as in Fig. S.4.
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S.4 Comparison of performances by using dif-

ferent centrality measures

In the paper we introduced the hybrid centrality measure X + Y to select
stocks in the peripheral or central parts of the filtered graphs. We mentioned
in the paper that the selection through this measure gives consistently bet-
ter results than the use of the centrality measures in isolation. Let us here
compare performances obtained with the hybrid measure with the ones ob-
tained by using Betweenness Centrality on the weighted PMFG graph (Cw

BC)
and Eigenvector Centrality on the weighted PMFG graph (Cw

EC). This is
reported in Figure S.7 for the Betweenness Centrality measure with portfo-
lios made by weighting stocks uniformly and in Figure S.8 for the case of
Markowitz weights with no-short-selling. Figure S.9 reports the results for
the Eigenvector Centrality measure with portfolios made by weighting stocks
uniformly and Figure S.10 for the case of Markowitz weights with no-short-
selling. As one can see, performances obtained by using the hybrid measure
are consistently better than the ones obtained by using the centrality mea-
sures in isolation. Let us stress, that despite the different performances, the
main result of the paper that portfolios made of peripheral stocks are less
risky and more rewarding than portfolios made of central stocks is always
retrieved for all centrality measures and their combination.
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Fig. 1. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Betweenness Centrality index (Cw
BC ) on PMFG to select peripheral

or central vertices is less e↵ective than the use of the hybrid measure X + Y in-

troduced in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average

return divided by its standard deviation) for ⌧ = 1, .., 250 days following the in-

vestment day. Peripheral portfolios from X + Y hybrid measure are indicated with

(⇤). Central portfolios from X + Y hybrid measure are indicated with (O ). Pe-

ripheral portfolios from Betweenness Centrality index are indicated with (⇧). Central

portfolios from Betweenness Centrality index are indicated with (4). Portfolio sizes

are respectively m = 5, 10, 20, 30 stocks; weights are uniform.
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Fig. 2. Demonstration that the for uniformly weighted portfolios, the use of Be-

tweenness Centrality index (Cw
BC ) on PMFG to select peripheral or central vertices is

less e↵ective than the use of the hybrid measure X+Y introduced in the paper. The

plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return divided by its standard

deviation) for ⌧ = 1, .., 250 days following the investment day. Peripheral portfolios

from X +Y hybrid measure are indicated with (⇤). Central portfolios from X +Y
hybrid measure are indicated with (O ). Peripheral portfolios from Betweenness Cen-

trality index are indicated with (⇧). Central portfolios from Betweenness Centrality

index are indicated with (4). Portfolio sizes are respectively m = 5, 10, 20, 30
stocks; weights are uniform.

0 42 84 126 168 210 252
0.0

0.2

0.4

0.6

0.8

1.0

market days

m = 5

r̄
s

0 42 84 126 168 210 252
0.0

0.2

0.4

0.6

0.8

1.0

market days

m = 10

r̄
s

0 42 84 126 168 210 252
0.0

0.2

0.4

0.6

0.8

1.0

market days

m = 20

r̄
s

0 42 84 126 168 210 252
0.0

0.2

0.4

0.6

0.8

1.0

market days

m = 30

r̄
s

Fig. 3. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Eigenvector Centrality index (Cw
E ) on PMFG to select peripheral or

central vertices is less e↵ective than the use of the hybrid measure X +Y introduced

in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return di-

vided by its standard deviation) for ⌧ = 1, .., 250 days following the investment day.

Peripheral portfolios from X + Y hybrid measure are indicated with (⇤). Central

portfolios from X + Y hybrid measure are indicated with (O ). Peripheral portfo-

lios from Eigenvector Centrality index are indicated with (⇧). Central portfolios from

Eigenvector Centrality index are indicated with (4). Portfolio sizes are respectively

m = 5, 10, 20, 30 stocks; weights are uniform.
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Figure S.7: Demonstration that Markowitz weighted portfolios, constructed
by using Betweenness Centrality index (Cw

BC) on PMFG to select periph-
eral or central vertices are less effective than portfolios constructed by using
the hybrid measure X + Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ r̄(τ)

s(τ)
(average return divided by its standard deviation)

for τ = 1, .., 250 days following the investment day. Peripheral portfolios
from X + Y hybrid measure are indicated with (�). Central portfolios from
X + Y hybrid measure are indicated with (O). Peripheral portfolios from
Betweenness Centrality index are indicated with (�). Central portfolios from
Betweenness Centrality index are indicated with (4). Portfolio sizes are
respectively m = 5, 10, 20, 30 stocks.
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Fig. 1. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Betweenness Centrality index (Cw
BC ) on PMFG to select peripheral

or central vertices is less e↵ective than the use of the hybrid measure X + Y in-

troduced in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average

return divided by its standard deviation) for ⌧ = 1, .., 250 days following the in-

vestment day. Peripheral portfolios from X + Y hybrid measure are indicated with

(⇤). Central portfolios from X + Y hybrid measure are indicated with (O ). Pe-

ripheral portfolios from Betweenness Centrality index are indicated with (⇧). Central

portfolios from Betweenness Centrality index are indicated with (4). Portfolio sizes

are respectively m = 5, 10, 20, 30 stocks; weights are uniform.
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Fig. 2. Demonstration that the for uniformly weighted portfolios, the use of Be-

tweenness Centrality index (Cw
BC ) on PMFG to select peripheral or central vertices is

less e↵ective than the use of the hybrid measure X+Y introduced in the paper. The

plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return divided by its standard

deviation) for ⌧ = 1, .., 250 days following the investment day. Peripheral portfolios

from X +Y hybrid measure are indicated with (⇤). Central portfolios from X +Y
hybrid measure are indicated with (O ). Peripheral portfolios from Betweenness Cen-

trality index are indicated with (⇧). Central portfolios from Betweenness Centrality

index are indicated with (4). Portfolio sizes are respectively m = 5, 10, 20, 30
stocks; weights are uniform.
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Fig. 3. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Eigenvector Centrality index (Cw
E ) on PMFG to select peripheral or

central vertices is less e↵ective than the use of the hybrid measure X +Y introduced

in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return di-

vided by its standard deviation) for ⌧ = 1, .., 250 days following the investment day.

Peripheral portfolios from X + Y hybrid measure are indicated with (⇤). Central

portfolios from X + Y hybrid measure are indicated with (O ). Peripheral portfo-

lios from Eigenvector Centrality index are indicated with (⇧). Central portfolios from

Eigenvector Centrality index are indicated with (4). Portfolio sizes are respectively

m = 5, 10, 20, 30 stocks; weights are uniform.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Figure S.8: Demonstration that uniformly weighted portfolios, constructed
by using Betweenness Centrality index (Cw

BC) on PMFG to select periph-
eral or central vertices are less effective than portfolios constructed by using
the hybrid measure X + Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ r̄(τ)

s(τ)
(average return divided by its standard deviation)

for τ = 1, .., 250 days following the investment day. Peripheral portfolios
from X + Y hybrid measure are indicated with (�). Central portfolios from
X + Y hybrid measure are indicated with (O). Peripheral portfolios from
Betweenness Centrality index are indicated with (�). Central portfolios from
Betweenness Centrality index are indicated with (4). Portfolio sizes are
respectively m = 5, 10, 20, 30 stocks.
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Fig. 1. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Betweenness Centrality index (Cw
BC ) on PMFG to select peripheral

or central vertices is less e↵ective than the use of the hybrid measure X + Y in-

troduced in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average

return divided by its standard deviation) for ⌧ = 1, .., 250 days following the in-

vestment day. Peripheral portfolios from X + Y hybrid measure are indicated with

(⇤). Central portfolios from X + Y hybrid measure are indicated with (O ). Pe-

ripheral portfolios from Betweenness Centrality index are indicated with (⇧). Central

portfolios from Betweenness Centrality index are indicated with (4). Portfolio sizes

are respectively m = 5, 10, 20, 30 stocks; weights are uniform.
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Fig. 2. Demonstration that the for uniformly weighted portfolios, the use of Be-

tweenness Centrality index (Cw
BC ) on PMFG to select peripheral or central vertices is

less e↵ective than the use of the hybrid measure X+Y introduced in the paper. The

plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return divided by its standard

deviation) for ⌧ = 1, .., 250 days following the investment day. Peripheral portfolios

from X +Y hybrid measure are indicated with (⇤). Central portfolios from X +Y
hybrid measure are indicated with (O ). Peripheral portfolios from Betweenness Cen-

trality index are indicated with (⇧). Central portfolios from Betweenness Centrality

index are indicated with (4). Portfolio sizes are respectively m = 5, 10, 20, 30
stocks; weights are uniform.
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Fig. 3. Demonstration that the for Markowitz weighted portfolios with no-short-

selling, the use of Eigenvector Centrality index (Cw
E ) on PMFG to select peripheral or

central vertices is less e↵ective than the use of the hybrid measure X +Y introduced

in the paper. The plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return di-

vided by its standard deviation) for ⌧ = 1, .., 250 days following the investment day.

Peripheral portfolios from X + Y hybrid measure are indicated with (⇤). Central

portfolios from X + Y hybrid measure are indicated with (O ). Peripheral portfo-

lios from Eigenvector Centrality index are indicated with (⇧). Central portfolios from

Eigenvector Centrality index are indicated with (4). Portfolio sizes are respectively

m = 5, 10, 20, 30 stocks; weights are uniform.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Figure S.9: Demonstration that Markowitz weighted portfolios with no-
short-selling, constructed by using Eigenvector Centrality index (Cw

E ) on
PMFG to select peripheral or central vertices are less effective than portfo-
lios constructed by using the hybrid measure X+Y introduced in the paper.
The plots report the ‘signal-to-noise ratio’ r̄(τ)

s(τ)
(average return divided by

its standard deviation) for τ = 1, .., 250 days following the investment day.
Peripheral portfolios from X + Y hybrid measure are indicated with (�).
Central portfolios from X + Y hybrid measure are indicated with (O). Pe-
ripheral portfolios from Eigenvector Centrality index are indicated with (�).
Central portfolios from Eigenvector Centrality index are indicated with (4).
Portfolio sizes are respectively m = 5, 10, 20, 30 stocks.
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Fig. 4. Demonstration that the for uniformly weighted portfolios, the use of Eigen-

vector Centrality index (Cw
E ) on PMFG to select peripheral or central vertices is less

e↵ective than the use of the hybrid measure X + Y introduced in the paper. The

plots report the ‘signal-to-noise ratio’
r̄(⌧)
s(⌧)

(average return divided by its standard

deviation) for ⌧ = 1, .., 250 days following the investment day. Peripheral portfolios

from X +Y hybrid measure are indicated with (⇤). Central portfolios from X +Y
hybrid measure are indicated with (O ). Peripheral portfolios from Eigenvector Cen-

trality index are indicated with (⇧). Central portfolios from Eigenvector Centrality

index are indicated with (4). Portfolio sizes are respectively m = 5, 10, 20, 30
stocks; weights are uniform.

Footline Author PNAS Issue Date Volume Issue Number 3

Figure S.10: Demonstration that the uniformly weighted portfolios, con-
structed by using Eigenvector Centrality index (Cw

E ) on PMFG to select
peripheral or central vertices are less effective than portfolios constructed by
using the hybrid measure X+Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ r̄(τ)

s(τ)
(average return divided by its standard deviation)

for τ = 1, .., 250 days following the investment day. Peripheral portfolios
from X + Y hybrid measure are indicated with (�). Central portfolios from
X + Y hybrid measure are indicated with (O). Peripheral portfolios from
Eigenvector Centrality index are indicated with (�). Central portfolios from
Eigenvector Centrality index are indicated with (4). Portfolio sizes are re-
spectively m = 5, 10, 20, 30 stocks.
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S.5 Markowitz Portfolio Selection Problem

Markowitz seminal work [7] and subsequent Capital Asset Pricing Model
(CAPM) contributions [8, 9, 10, 11, 12, 13, 14] propose to reduce risk by
minimizing the variance of a portfolio subject to some constraits. A portfo-
lio variance is a function of stocks’ variances, covariances and correlations.
Markowitz portfolio optimization problem can be written in a general form
as:

min
q

q
T

V q

s.t.:

g(q) ≥ 0

h(q) = 0

(S.1)

where V is the covariance matrix, q is a vector of weights representing,
for each security, the percentage of the total wealth invested; q

T
V q, the

objective function, is the total portfolio variance. Inequality and equality
constraints, are g(q) ≥ 0 and h(q) = 0. The problem consists in minimiz-
ing the portfolio’s risk, assumed to be adequately estimated by the portfolio
expected variance, subject to some budget constraint (e.g. q

T
u = 1), the at-

tainment of a certain expected return performance (e.g. q
T
r̄ ≥ r∗, where r̄ is

a vector of securities’s expected returns, q
T
r̄ is the portfolio return and r∗ is

a desired return performance), or other constraints. Other main assumptions
of the model are returns being jointly normally distributed (when used in a
constraint), correlations and variances being stable over time; no transac-
tion costs; investors are rational, price takers, profit maximizing, risk-averse,
endowed with complete unbiased information, able to lend and borrow unlim-
ited amounts of funds at the risk free rate of interest; securities are infinitely
divisible.

The solution of the problem is the vector q, which is a function of sample
variances, covariances, correlations and any other parameter introduced in
the constraint (such as average returns). Correlations influence the curva-
ture of the Efficient Frontier of Investments, i.e. the locus of a portfolio’s
minimum expected variances for any level of targeted expected return.

We define the Markowitz problem without short sales (Pns) and with
short sales (Ps) as:
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Pns

min
qns

1

2
q

T

ns
V̄w qns

s.t.:

qns ≥ 0

q
T

ns
u = 1

Ps

min
qs

1

2
q

T

s
V̄w qs

s.t.:

q
T

s
r̄ ≥ q

∗

ns

T

r̄

q
T

s
u = 1

where qns is constrained to be non-negative (being short-selling not allowed);
r̄ is the vector of expected returns; q∗

ns
is the vector of weights solving Pns.

The solutions are unique: q∗
ns corresponds to the minimum-variance point

over the Efficient Frontier and is also known as the global minimum variance
portfolio.

In the present paper the two problems have been solved numerically us-
ing Matlab function “quadprog”, setting the number of maximum iterations
(MaxIter) at 2000 and termination tolerance on the constraint violation
(TolCon) at 2.2204e − 014. The starting point for Pns was q

0

ns
= 1

N
u; and

for Ps was q
0

s
= q

∗

ns
. In all instances the optimization was successful and a

solution was found within few iterations.

The Markowitz problem has been solved by using the average correlations
with shrinkage R̄w, defined in Eq. 1 in the main paper. Consistently with
R̄w, we have defined the average weighted covariance matrix with shrinkage
as

V̄w = Pw
1
2

R̄w Pw
1
2

(S.2)

where Pw is a diagonal matrix with average weighted variances over the

main diagonal defined as
(
¯̂sw
k

)2
= 1

τ+1

t∑
h=t−τ

(
ŝw
kh

)2
. Matrix V̄w is generally

full-rank and numerically stable. The condition number of V̄w is similar to
that of R̄w. Note that a sum of covariance matrices does not generally enjoy
the same properties as V̄w.

S.6 Comparison of portfolio composition

While MST s might be preferable to PMFGs for the greater simplicity of
their graphic representation, the latter offers a richer description of the sys-
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Table S.10: Indexes of coincidence between MST and PMFG peripheries.

MST vs. PMFG peripheries. No short sales. MST vs. PMFG peripheries. Short sales.

5 stocks 10 stocks 20 stocks 30 stocks 40 stocks 5 stocks 10 stocks 20 stocks 30 stocks 40 stocks

mean 33.27% 37.91% 43.34% 48.17% 52.75% 33.22% 37.71% 42.71% 46.94% 50.86%

CI2.5 0.00% 1.97% 10.84% 17.27% 22.92% 0.00% 2.41% 12.23% 19.72% 26.23%

CI97.5 86.76% 81.08% 79.35% 79.45% 82.00% 86.31% 78.98% 74.86% 73.65% 73.83%

tem of relations between stocks.
In order to quantify the differences in the selection of peripheral port-

folios from MST and PMFG let us introduce a measure of coincidence.
Specifically, let q1, q2 ∈ <N×1 be two vectors solving the Markowitz problem

subject to two different sets of constraints, with
N∑
i=1

qji = 1, for j = {1, 2}.

We introduce a measure of coincidence between q1 and q2 in order to com-

pare the composition of the two portfolios. Let lj =
N∑
i=1

|qji | be the amount

of total transactions implied by qj. Then we define the following index of
coincidence:

c12 =

N∑
i=1

1
2

[1 + sign (q1
i ) + sign (q2

i )]×min (|q1
i |, |q2

i |)
√
l1 × l2

(S.3)

c12 = 1 if and only if q1 and q2 are identical and c12 = 0 if, ∀i = {1, 2, . . . , N},
q1
i and q2

i are either both zero, have different signs or one is nonnull when
the other is zero.

For all time periods, we have compared MST vs. PMFG peripheral
portfolios: the table reports the average and 95% confidence intervals of the
corresponding coincidence indices, which are reported in Table S.10. The
coincidence index shows that, on average, a large share of MST and PMFG
peripheral portfolios is not coincident. The average coincidence index in-
creases with the number of stocks.
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S.7 Indices of centrality and peripherality

Indices of centrality and peripherality have been calculated with the follow-
ing MATLAB code.

Complex indices of centrality and peripherality for
the vertices of a network

% Calculates centrality indices as used in the paper
% F. Pozzi, T. Di Matteo, T. Aste, “Spread of risk across
% financial markets: better to invest in the peripheries”.
%
% INPUT
% G is a Planar Maximally Filtered Graph, stored in the form of a
% symmetric, square, N-by-N sparse matrix filtering a correlation
% matrix (data must be correlations).
%
% OUTPUT
% X, Y, XpY and XmY are, respectively, X, Y, (X + Y) and (X - Y)
% in the paper. A vertex characterized by high (low) ranking in terms
% of (X + Y) is likely to be a central (peripheral) vertex; a vertex
% characterized by high (low) ranking in terms of (X - Y) is likely
% to possess many unimportant (few important) connections. “High
% ranking” means “low score” (i.e. the most central vertex is assigned
% a small score). In detail:

%
% A small value of X indicates high connectedness whereas a large
% value indicates low connectedness
%
% A small value of Y indicates low eccentricity whereas a large
% value indicates high eccentricity
%
% A small value of XpY indicates high overall centrality whereas a
% large value indicates low overall centrality
%
% A small value of XmY indicates many low-quality connections
% whereas a large value indicates few high-quality connections
%
% Note: this code makes use of David Gleich’s MATLAB BGL
% (FEX 10922, available at
% www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl)
%
% EYAMPLE using pmfg by Tomaso Aste (FEX 27360, available at
% www.mathworks.com/matlabcentral/fileexchange/27360-pmfg)
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% y = corrcoef(cumsum(randn(100, 30)));
% G = pmfg(y);
% [X Y XpY XmY] = centrinds(G);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [X Y XpY XmY] = centrinds(G)
PMFG Top = (G ∼= 0) * 1; % Topological planar
PMFG GeoW = G; % Geodesic planar - weights
PMFG GeoW(PMFG GeoW ∼= 0) = 1 + ...

PMFG GeoW(PMFG GeoW ∼= 0); % weights in [0, 2]
PMFG GeoD = G; % Geodesic planar - distances
PMFG GeoD(PMFG GeoD ∼= 0) = sqrt(2 * (1 - ...

PMFG GeoD(PMFG GeoD ∼= 0))); % distances in [0, 2]

ShPTop = all shortest paths(PMFG Top); % Top. Sh. Paths
ShPGeo = all shortest paths(PMFG GeoD); % Geom. Sh. Paths

% 1. Topological Degree
DgrTopPMFG = full(sum(PMFG Top));

% 2. Geometrical Degree: sum of weights (possibly negative)
DgrGeoPMFG = full(sum(PMFG GeoW));

% 3. Betweenness (based on Topological Shortest Paths)
BtwTopPMFG = betweenness centrality(PMFG Top);

% 4. Betweenness (based on Geometrical Shortest Paths)
BtwGeoPMFG = betweenness centrality(PMFG GeoD);

% 5. Eccentricity (based on Topological Shortest Paths)
ExxTopPMFG = max(ShPTop); % eccentricity of vertexes

% 6. Eccentricity (based on Geometrical Shortest Paths)
ExxGeoPMFG = max(ShPGeo); % eccentricity of vertexes

% 7. Closeness (based on Topological Shortest Paths)
ClsTopPMFG = mean(ShPTop);

% 8. Closeness (based on Geometrical Shortest Paths)
ClsGeoPMFG = mean(ShPGeo);
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% 9. Topological Eigenvector Centrality
[eigvec, eigval] = eigs(PMFG Top); eigval = sum(eigval);
index = find(eigval == max(max(eigval)));

if all(round(eigvec(:, index) * 1e8) <= 0);
EigTopPMFG = -eigvec(:, index);

else
EigTopPMFG = eigvec(:, index);

end;

% 10. Geometrical Eigenvector Centrality
[eigvec, eigval] = eigs(PMFG GeoW); eigval = sum(eigval);
index = find(eigval == max(max(eigval)));

if all(round(eigvec(:, index) * 1e8) <= 0);
EigGeoPMFG = -eigvec(:, index);

else
EigGeoPMFG = eigvec(:, index);

end;

% Calculate rankings
DgrGeoPMFG rnks = tiedrank(-DgrGeoPMFG);
DgrTopPMFG rnks = tiedrank(-DgrTopPMFG);
BtwTopPMFG rnks = tiedrank(-BtwTopPMFG)’;
BtwGeoPMFG rnks = tiedrank(-BtwGeoPMFG)’;
ExxGeoPMFG rnks = tiedrank(ExxGeoPMFG);
ExxTopPMFG rnks = tiedrank(ExxTopPMFG);
ClsGeoPMFG rnks = tiedrank(ClsGeoPMFG);
ClsTopPMFG rnks = tiedrank(ClsTopPMFG);
EigGeoPMFG rnks = tiedrank(-EigGeoPMFG)’;
EigTopPMFG rnks = tiedrank(-EigTopPMFG)’;

% Calculate indices
n = size(G, 1);
X = (DgrGeoPMFG rnks + DgrTopPMFG rnks + ...

BtwGeoPMFG rnks + BtwTopPMFG rnks - 4) / 4 / (n - 1);
Y = (ExxGeoPMFG rnks + ExxTopPMFG rnks + ...

ClsGeoPMFG rnks + ClsTopPMFG rnks + ...
EigGeoPMFG rnks + EigTopPMFG rnks - ) / 6 / (n - 1);

XpY = X + Y; XmY = X - Y;
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