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Figure S.1: Same figure as Fig. 1 in the main paper but, in this case, with
the ticker symbol of each stock reported.



S.1 Peripheral vs. central nodes: frequencies

In this section we show that the center of PM F'G is dominated by a small
number of central stocks whereas the periphery exhibits larger variations.

For each date we select the most central (peripheral) stocks defined as the
5% companies characterized by smallest (largest) values of X + Y - a total
of 15 stocks for each date. By aggregating all the dates and counting the
number of times a stock is selected as ‘central’ or ‘peripheral’, we assign a
frequency to each of the 2286 stocks analyzed over the whole period. The
resulting cumulative frequency is reported in Fig. [S.2 We see that the two
curves for central and peripheral stocks are rather different. For instance,
for central stocks, the 229 largest frequencies (corresponding to 10% of all
stocks) account for 83% of all “most central stocks”; conversely, for peripheral
stocks, the 229 largest frequencies account for only 50% of the total. This
means that central stocks are more stable in central positions than peripheral
stocks in peripheral positions.
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Figure S.2: Cumulated frequencies, for each security, of centers and periph-
eries: 229 central stocks represent 83% of total frequencies for central stocks;
the same number of peripheral stocks represents just 50% of all frequencies
for peripheral stocks.



Table S.1: Average yearly returns for portfolios of M KT, RAND, BEST, PMFG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). In round brackets the standard deviations are
reported for all 7071 yearly returns.

# of MKT RAND BEST PMFG-c PMFG-p
StOCkS u ns s u ns S u ns s u ns S u ns S
5stocks | 0152 0137 0142 | 0151 0142 0.041 | 0236 0182 0183 | 0.144 0122 0.118 | 0165 0.5  0.153
0 SLOEKS | (0.195)  (0.148) (0.156) | (0.250) (0.211) (0.211) | (0.359) (0.285) (0.286) | (0.272) (0.235) (0.234) | (0.219) (0.196) (0.196)
10 stocks | 0152 0137 0.142 | 0154 0030 0138 | 0214 0159 0.159 | 0142 0.118 0114 | 0.163 0148  0.147
(0.195) (0-148) (0.156) | (0:223) (0-189) (0.190) | (0-318) (0:221) (0.222) | (0.251) (0-212) (0.207) | (0-196) (0-174) (0.174)
20 stocks | 0152 0137 0142 | 0152 0139 0138 | 0194  0.150 0150 | 0.142 0118  0.112 | 0159  0.143 0141
Stocks 1(01195)  (0.148)  (0.156) | (0.209) (0.176) (0.176) | (0.286) (0.204) (0.205) | (0.236) (0.197) (0.192) | (0.185) (0.161) (0.161)
30 stocks | 0152 0137 0142 | 0151 0138 0136 | 0186  0.147 0150 | 0.142 0118 0.113 | 0158 0142 0.139
(0-195) (0.148) (0.156) | (0-202) (0-170) (0.171) | (0-274) (0.196) (0.198) | (0.230) (0-187) (0-186) | (0-183) (0-157) (0.158)
10 stocks | 0152 0137 0142 | 0152 0138 0.036 | 0179 0146 0150 | 0.144 0123  0.118 | 0157  0.140 0137
Stocks 10.195)  (0.148)  (0.156) | (0.201) (0.166) (0.168) | (0.263) (0.188) (0.192) | (0.226) (0.179) (0.181) | (0.182) (0.156) (0.157)

S.2 Measures of performance and risk

We report here a selection of measures of performance and risk for portfo-
lios “M KT (all 300 stocks), “RAND” (random stocks), “BEST” (of stocks
achieving best performance on the year preceding the investment), “PM FG-
¢’ (PMFG central stocks) and “PM FG-p” (PM FG peripheral stocks).

Table reports the average yearly returns and the associated standard
deviation computed over the whole period of 7071 days. Analogously, Ta-
ble reports the average yearly excess returns (defined as the difference
between the portfolio returns and returns of the benchmark S&P 500 Com-
posite index) over the whole period of 7071 days. In both tables it is evident
how peripheral nodes perform systematically better than central nodes both
in terms of averages and standard deviations; they perform equivalently or
better than “M KT” and “RAND”, both in terms of averages and stan-
dard deviations (except for standard deviations of excess returns, which are
slightly worse although associated with usually higher averages); their aver-
ages are smaller than in the case of “BEST” but they have smaller standard
deviations.

By looking at the generalized Hurst exponent [1, 2, 8] 4] of yearly re-
turns and yearly excess returns, we observe differences in long-term memory
for different portfolios. Results, for the generalized Hurst exponent H (1),
computed using [5], are reported in Tables and . Let us recall that
the generalized Hurst exponent must be equal to 0 for a white noise process
and 0.5 for a random walk, and deviations from 0.5 reveal deviations from a
Brownian motion. We find that returns obtained from “M KT” are charac-
terized by highest H (1) while those from “RAN D” are characterized by very
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Table S.2: Average yearly excess returns for portfolios of M KT, RAND, BEST, PMFG’s central
nodes (PM FG-c) and PM FG’s peripheral nodes (PM FG-p). In round brackets the standard deviations
are reported for all 7071 yearly excess returns. Excess returns have been here calculated as the difference
between yearly portfolio returns and S&P 500 Composite index returns.

# of MKT RAND BEST PMFG-c PMFG-p
stocks u ns S u ns S u ns S u ns S u ns S
5 stocks | 0053 0038 0043 | 0.052  0.043  0.042 | 0137 0083 0084 | 0045 0023 0019 | 0.066  0.055  0.054
i (0.073) (0.127) (0.151) | (0.172) (0-154) (0.155) | (0-283) (0-234) (0.235) | (0169) (0-149) (0-156) | (0-181) (0-174) (0.175)
10 stocks | 0053 0038 0.043 | 0055 0.040 0040 | 0.115 0060  0.060 | 0.043 0019 0015 | 0.064 0049  0.048
SWOCKS | (0:073)  (0.127)  (0.151) | (0.128) (0.135) (0.139) | (0:238) (0.154) (0.157) | (0.138) (0.125) (0.145) | (0.146) (0.150) (0.152)
90 stocks | 0-053  0.038  0.043 | 0053 0040 0039 | 0.095 0.051 0051 | 0.043 0019 0013 | 0.060 0.041  0.042
i (0.073)  (0.127) (0.151) | (0-105) (0-128) (0.138) | (0-197) (0.136) (0.141) | (0-114) (0.121) (0-151) | (0.120) (0-137) (0.141)
30 stocks | 0053 0038 0.043 | 0052 0.039 0037 | 0.087 0048 0051 | 0.043 0019 0014 | 0.059 0043  0.040
SWOCKS | (0.073)  (0.127)  (0.151) | (0.092) (0.127) (0.140) | (0.184) (0:131) (0.139) | (0.105) (0.122) (0.158) | (0.107) (0.132) (0.139)
10 stocks | 0-053 0.038  0.043 | 0053 0039 0037 | 0.081  0.047 0051 | 0.045 0024 0019 | 0. 0041 0.038
i (0.073) (0.127) (0.151) | (0.088) (0.126) (0.142) | (0-172) (0.129) (0.138) | (0-100) (0-124) (0-159) | (0.099) (0-130) (0-138)

Table S.3: Generalized Hurst exponents of yearly returns for portfolios of MKT, RAND, BEST,
PMFG’s central nodes (PMFG-c) and PMFG’s peripheral nodes (PM FG-p). Standard deviations are
small and therefore omitted.

# of

stocks

RAND

ns

PMFG-c

ns

PMFG-p

ns S

5 stocks
10 stocks
20 stocks
30 stocks
40 stocks

0.018
0.018
0.028
0.042
0.040

0.329
0341
0.348
0.352

0.23

0.246
0.209
0.208
0.204

0.143
0.152
0.186
0.212
0.230

low values of H(1); returns from “BEST” exhibit relatively high H(1), but
smaller than “M KT, while returns from PM F'Gs are characterized by rela-
tively small H (1), but larger than “RAN D”. It has been pointed out that the
Hurst exponent can successfully detect the level of development /liquidity of
a market [I], 2] and it has been argued that it could be used as a tool to detect
market instabilities [4]. Generally speaking, we can affirm that small H (1)
should be associated with lower risk of large persistent deviations. Further
studies will be devoted to understand the relation between scaling exponents
and portfolio investment risk.

Tables and report the Information Ratio (IR) and the Sharpe
(Information) Ratio (SIR). The Information Ratio is calculated as average
divided by standard deviation of yearly returns; the Sharpe (Information)
Ratio - also called revised Sharpe Ratio [0] - is the information ratio of the
excess yearly returns (the benchmark being the S&P 500 Composite index).
(We do not use a risk-free rate as benchmark because our portfolios contain
only stocks and no risk-free alternative.)



Table S.4: Generalized Hurst exponents of yearly excess returns for portfolios of M KT, RAND,
BEST, PMFG’s central nodes (PM FG-c) and PM FG’s peripheral nodes (PM FG-p). Standard devia-
tions are small and therefore omitted.

# of MKT RAND BEST PMFG-c PMFG-p

stocks u ns S u ns S u ns S u ns S u ns S

5 stocks | 0.449 0.431 0.392 | 0.008 0.010 0.010 | 0.316 0.325 0.324 | 0.209 0.202 0.194 | 0.132 0.138 0.137
10 stocks | 0.449 0.431 0.392 | 0.008 0.011 0.012 | 0.342 0.330 0.328 | 0.219 0.217 0.200 | 0.127 0.144 0.142
20 stocks | 0.449 0.431 0.392 | 0.010 0.013 0.017 | 0.336 0.333 0.335 | 0.204 0.180 0.176 | 0.142 0.166 0.162
30 stocks | 0.449 0.431 0.392 | 0.027 0.028 0.029 | 0.358 0.337 0.342 | 0.229 0.179 0.172 | 0.167 0.188 0.184
40 stocks | 0.449 0.431 0.392 | 0.025 0.023 0.029 | 0.366 0.345 0.342 | 0.229 0.186 0.168 | 0.169 0.204 0.191

Table S.5: Information Ratio for portfolios of M KT, RAND, BEST, PMFG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Information Ratio over the whole period
of 7071 days; (b) Average Information Ratio calculated over 6821 samples (corresponding to as many
sub-periods each of 250 observations); (c) Standard deviations for the samples as in (b). The Information
Ratio has been here calculated for the yearly returns without benchmark.

# of MKT RAND BEST PMFG-c PMFG-p
measure
StOCkS u ns s u ns S u ns S u ns S u ns S
: (a 0782 0.926 0908 | 0.603 0671  0.669 | 0.657 0.639 0638 | 0528 0519 0507 | 0.754 0785  0.782
5stocks | (1 1955 2023 2,018 | 0872  0.959 0954 | 1.093 1.073 1073 | 1.002 0912 0869 | 1.063 1.129  1.127
(c) | (1.893) (1.745) (2.055) | (0.898) (0.929) (0.927) | (1.419) (1.281) (1.282) | (1.382) (1.238) (1.211) | (0.883) (0.965) (0.966)
(a 0782 0.926 0908 | 0.690 0.737 0730 | 0.672 0.723  0.717 | 0.565 0559  0.548 | 0.830 0.850  0.844
10 stocks | (1, 1955 2023 2018 | 1132 1143 1130 | 1.229 1.329 1322 | 1200 1.014 0915 | 1.345 1374  1.362
() | (1.893) (1.745) (2.055) | (1.123) (1.127) (1.126) | (1.489) (1.510) (1.513) | (1479) (1.282) (1.166) | (1.139) (1.166) (1.167)
(a) 0782 0.926 0908 | 0.728 0792 0782 | 0678 0.736  0.732 | 0.601 0.602 0584 | 0.859  0.891  0.875
20 stocks | () 1955 2023 2018 | 1.356  1.342 1300 | 1.366 1519 1539 | 1337 1093 0984 | 1617 1.628  1.584
(c) | (1.893) (1.745) (2.055) | (1.317) (1.299) (1.286) | (1.556) (1.695) (1.710) | (1.529) (1.296) (1.155) | (1.426) (1.391) (1.388)
. (a 0782 0926 0908 | 0.747 0813 0795 | 0.678 0750 0.757 | 0.618 0.634  0.608 | 0.861 0900  0.878
30 stocks | (1, 1955 2023 2018 | 1.521 1451 1378 | 1460 1572  1.624 | 1403 1194 1062 | 1.761  1.778  1.696
() | (1.893) (1.745) (2.055) | (1.491) (1.399) (1.370) | (1.604) (1.653) (1.708) | (1.555) (1.379) (1.256) | (1.615) (1.556) (1.524)

(a) 0782 0.926 0908 | 0.759 0.835 0810 | 0.683 0.774 0.780 | 0.635 0.686 0.654 | 0.861  0.895  0.870
40 stocks | (1) 1.955 2023 2018 | 1585 1513 1428 | 1520 1.644 1.722 | 1450 1292 1.138 | 1.853 1816 1.712
() | (1.893) (1.745) (2.055) | (1.523) (1.438) (1.411) | (1.614) (1.641) (1.765) | (1572) (1.413) (1.296) | (1.715) (1.606) (1.568)

We report in (a) the measures computed over the whole period of 7071

days; the averages of all subperiods in (b) and the standard deviation of the
measures observed over all subperiods in (c).
The IR of peripheral nodes performs better than that of central nodes,
“RAND” and “BEST” and analogously to that of “M KT”. The SIR of pe-
ripheral portfolios performs better than that of central nodes and “RAN D”
but worse than that of “BEST” and “MKT"”.

Table reports the beta coefficients calculated over the yearly returns,
with S&P 500 Composite index as benchmark. Let us recall that ‘beta’ is
a measure of systematic risk of a portfolio in comparison with the market.
Values of beta smaller than one indicate that the portfolio’s excess returns
have an anti-cyclic behavior with respect to the benchmark market. In (a)
the measures computed over 7071 periods (since the standard deviation of
beta coefficients is always very small it is omitted); the averages of the beta



Table S.6: Sharpe Information Ratio for portfolios of M KT, RAND, BEST, PM FG’s central nodes
(PMFG-c) and PMFG’s peripheral nodes (PMFG-p). (a) Sharpe Information Ratio over the whole
period of 7071 days; (b) Average Sharpe Information Ratio calculated over 6821 samples (corresponding
to as many sub-periods each of 250 observations); (c) Standard deviations for the samples as in (b). The
Sharpe Information Ratio has been here calculated as the information ratio of the excess yearly returns
(the benchmark being the S&P 500 Composite index).

#ol | e MKT RAND BEST PMFG-¢ PMFG-p
St()()kb' ) u ns s u ns s u ns S u ns S u ns S
i (a 0731 0298 0284 | 0301 0278 0273 | 0484 0356 0357 | 0.264 0.154 0125 | 0365 0314 0311
5stocks | (1 1596 0.691  0.707 | 0342 0339 0335 | 0.705 0562  0.561 | 0406 0.260 0226 | 0481 0444  0.443
(¢) | (1.814) (1.794) (1.705) | (0.340) (0.460) (0.461) | (0.873) (0.822) (0.821) | (0.967) (0.750) (0.736) | (0.598) (0.741) (0.743)
(a) 0.731 0298 0284 | 0426 0300 0.284 | 0482 0392 0384 | 0.313 0156 0101 | 0435 0328 0317
10 stocks | (p) 1596 0.691 0707 | 0512 0406 0397 | 0.752  0.631 0625 | 0582 0242  0.159 | 0.605 0512  0.503
() | (1.814) (1.794) (1.705) | (0.482) (0.703) (0.705) | (0.962) (0.882) (0.880) | (1.052) (0.798) (0.770) | (0.732) (0.942) (0.943)
(a) 0731 0298 0284 | 0508 0313 0282 | 0482 0375 0362 | 0.374 0159 0089 | 0498 0323  0.297
20 stocks | (b) 1596 0.691  0.707 | 0.680 0505 0471 | 0.836  0.695 0.672 | 0732 0272  0.147 | 0.744 0556  0.532
(c) | (1.814) (1.794) (1.705) | (0.683) (0.921) (0.930) | (1.070) (1.081) (1.038) | (1.033) (0.935) (0.954) | (0.908) (1.113) (L.111)
) (a 0.731 0298 0284 | 0562 0309 0.267 | 0472 0369 0367 | 0409 0.159  0.090 | 0.547 0322  0.285
30 stocks | (1, 1596 0.691  0.707 | 0799 0517 0463 | 0.873 0706  0.702 | 0.828  0.291  0.150 | 0.850  0.584  0.538
(¢) | (1.814) (1.794) (1.705) | (0.828) (1.042) (1.035) | (1.068) (1.161) (1.107) | (1.042) (1.020) (1.128) | (1.032) (1.195) (1.179)
) (a) 0731 0298 0284 | 0.606 0311 0264 | 0468 0363 0365 | 0445 0194 0122 | 0585 0314 0274
40 stocks | (1) 1596 0.691  0.707 | 0.899  0.558 0490 | 0.906 0707  0.737 | 0913 0337 0209 | 0.941 0587  0.529
() | (1.814) (1.794) (1.705) | (0.891) (1.115) (1.098) | (1.094) (1.170) (1.180) | (1.063) (1.047) (1.184) | (1.144) (1.232) (1.209)

coefficients calculated over 7071 — 250 = 6821 subperiods of length 250 days
are reported in (b) and the standard deviation of the beta coefficients ob-
served during all subperiods in (c). We observe that “BEST” and central
nodes provide the worst performance, being unable to diversify market risk
and often amplifying it. Peripheral nodes provide beta coefficients superior
to “RAND” and comparable to “MKT”. Beta coefficients of peripheral
portfolios with uniform weights are much smaller than those obtained with
any other portfolio with uniform weighting.

Tables and report the probability of respectively positive yearly
returns and positive excess yearly returns. We report in (a) the measures
computed over 7071 periods (since the standard deviation of the probabili-
ties is always very small it is omitted); the averages of all subperiods in (b)
and the standard deviation of the probabilities observed over all subperiods
in (c). The probability of positive yearly returns of peripheral nodes is su-
perior to that of “RAND”, “BEST” and central nodes while it is similar
to that of “M KT”. The probability of positive excess yearly returns of pe-
ripheral nodes is superior to that of central nodes and comparable to that of
“RAND”, “BEST” and “MKT”.

Overall we can say that from all previous analyses it emerges clearly
that central nodes perform worse than any other alternative while peripheral
nodes are often better than others, sometimes equivalent and seldom inferior.



Table S.7: Beta coefficients for portfolios of MKT, RAND, BEST, PMFG’s central nodes (PMFG-
¢) and PMFG’s peripheral nodes (PM FG-p). (a) Beta coefficients over 7071 periods; (b) Average Beta
coefficients calculated over 6821 samples (corresponding to as many sub-periods each of 250 observations);
(c) Standard deviations for the samples as in (b). The Beta coefficients have been here calculated for the

yearly returns (the benchmark being the S&P 500 Composite index).

# of MKT RAND BEST PMFG-¢ PMFG-p
measure
StOCkS u ns s u ns s u ns S u ns s u ns s
(a 1018 0591 0525 | 1.023 0832 0827 | 1.274 0922 0925 | 1222 1.023 0979 | 0.741 0627  0.624
5 stocks | (1 1164 0.605 0471 | 1127 0850 0847 | 1.637 1.062 1.070 | 1.318 1134 1112 | 0.773 0624  0.622
() | (0.431) (0.490) (0.485) | (0.452) (0.363) (0.365) | (1.380) (0.969) (0.978) | (0.870) (0.672) (0.697) | (0.688) (0.595) (0.596)
(a) 1018 0591 0525 | 1.026 0781 0765 | 1.209 0895  0.893 | 1.203 0965 0851 | 0.769 0626  0.617
10 stocks | (},) 1164 0605 0471 | 1143 0794 0773 | 1588 0922 0925 | 1.292 1011 0946 | 0.782  0.630  0.622
(c) | (0.431) (0.490) (0.485) | (0.454) (0.372) (0.376) | (1.223) (0.742) (0.739) | (0.762) (0.518) (0.571) | (0.669) (0.552) (0.554)
(a 1018 0591 0525 | 1.020 0729 0692 | 1182 0866 0.851 | 1176  0.880 0.724 | 0.815 0613  0.595
20 stocks | (1, 1164 0605 0471 | 1173 0.749 0699 | 1526 0853  0.831 | 1.302 0956 0.834 | 0.853 0635  0.616
(c) | (0431) (0.490) (0.485) | (0.435) (0.412) (0.421) | (1.052) (0.685) (0.692) | (0.663) (0.504) (0.590) | (0.562) (0.497) (0.504)
) (a 1018 0591 0525 | 1.013 0703 0656 | 1154 0839 0817 | 1162 0817 0657 | 0.849  0.615  0.589
30 stocks | (1, 1164 0.605 0471 | 1154  0.738  0.669 | 1472 0832  0.790 | 1.315  0.894 0.751 | 0.903  0.626  0.596
() | (0.431) (0.490) (0.485) | (0.424) (0.428) (0.438) | (1.026) (0.621) (0.618) | (0.608) (0.527) (0.611) | (0.519) (0.488) (0.502)
) (a) 1018 0591 0525 | 1.018  0.683 0630 | 1127 0799 0780 | 1.153  0.767 0618 | 0.872 0620  0.590
40 stocks | (1) 1164 0605 0471 | 1151 0714 0637 | 1411 0770 0718 | 1322  0.823  0.688 | 0951 0.584
(c) | (0:431) (0.490) (0.485) | (0.436) (0.438) (0.459) | (0.984) (0.573) (0.576) | (0.569) (0.536) (0.613) | (0.465) (0.502)

Table S.8: Probability of positive yearly returns for portfolios of M KT, RAND, BEST, PMFG’s
central nodes (PM F'G-c) and PM FG’s peripheral nodes (PM FG-p). (a) Probabilities over 7071 periods;
(b) Average probabilities calculated over 6821 samples (corresponding to as many sub-periods each of 250

observations); (c) Standard deviations for the samples as in (b).

# of MKT RAND BEST PMFG-c PMFG-p
measure
SfOCkS u ns s u ns S u ns S u ns S u ns s
: (a) 0782 0.840 0816 | 0.760 0.770 0769 | 0.760  0.763 0.7 0.747  0.742 0737 | 0.794 0.802
5 stocks | (b) 0774 0.834 0810 | 0752 0.763  0.762 | 0.751  0.756 0.7 0738 0.735  0.730 | 0.787 0.796
(c) | (0:302) (0:250) (0.286) | (0.241) (0.236) (0.236) | (0.255) (0.254) (0.254) | (0.304) (0.277) (0.274) | (0.217) (0.209)
(a 0782 0840 0816 | 0.781 0784 0780 | 0.774  0.791  0.791 | 0.768  0.746  0.725 | 0.814 0.811
10 stocks | (1, 0774  0.834 0810 | 0.773 0776 0.773 | 0.766  0.784  0.784 | 0.759  0.739  0.721 | 0.807 0.805
(c) | (0:302) (0.250) (0.286) | (0.258) (0.241) (0.242) | (0.248) (0.254) (0.255) | (0.312) (0.274) (0.264) | (0.224) (0.212)
. (a 0782 0.840 0816 | 0.788  0.791 0787 | 0.782  0.794 0799 | 0.774 0750  0.732 | 0.823  0.827  0.819
20 stocks | (}, 0774 0.834 0810 | 0.780  0.784  0.780 | 0.774  0.787  0.792 | 0.766 0742 0.728 | 0.816  0.821  0.813
() ] (0.302) (0.250) (0.286) | (0.275) (0.244) (0.248) | (0.266) (0.263) (0.263) | (0.312) (0.271) (0.263) | (0.235) (0.213) (0.217)
. (a) 0782 0.840 0816 | 0.788 0795 0792 | 0.787  0.800 0.804 | 0.772 0.758  0.743 | 0.820 0825  0.813
30 stocks | (b) 0774 0.834 0810 | 0.781  0.788  0.785 | 0.779  0.793  0.797 | 0.763 0749  0.737 | 0.813 0819  0.807
(c) | (0:302) (0:250) (0.286) | (0.282) (0.252) (0.257) | (0.267) (0.260) (0.266) | (0.315) (0.273) (0.275) | (0.248) (0.223) (0.232)
(a 0782 0.840 0816 | 0.790  0.802 0797 | 0.791  0.805 0.807 | 0.770 0770  0.756 | 0.816 0827  0.813
40 stocks | (1, 0774  0.834 0810 | 0.782 0795 0790 | 0.783  0.798  0.799 | 0.762  0.762  0.749 | 0.809  0.821  0.807
(c) | (0:302) (0.250) (0.286) | (0.286) (0.248) (0.254) | (0.269) (0.255) (0.269) | (0.315) (0.273) (0.279) | (0.256) (0.224) (0.238)




Table S.9: Probability of positive excess returns for portfolios of M KT, RAND, BEST, PMFG’s
central nodes (PM F'G-c) and PM FG’s peripheral nodes (PM FG-p). (a) Probabilities over 7071 periods;
(b) Average probabilities calculated over 6821 samples (corresponding to as many sub-periods each of 250
observations); (¢) Standard deviations for the samples as in (b). The benchmark for yearly excess returns
is the S&P 500 Composite index.

# of MKT RAND BEST PMFG-¢ PMFG-p
measure
S[OCI(S u ns S u ns S u ns S u ns s u ns s
: (a) 0777 0.623 0618 | 0.628 0623 0622 | 0707 0.664 0664 | 0.617 0587 0574 | 0.654  0.640  0.639
5stocks | (1) 0770 0.616  0.614 | 0.622 0619 0619 | 0703  0.660 0.660 | 0.608 0585 0573 | 0.653  0.640  0.639
(¢) | (0.255) (0.325) (0.302) | (0.132) (0.170) (0.171) | (0.233) (0.221) (0.221) | (0.274) (0.234) (0.235) | (0.189) (0.224) (0.224)
(a 0777  0.623 0618 | 0.679 0642 0638 | 0.713  0.671 0671 | 0.658 0579 0555 | 0.689  0.662  0.661
10 stocks | (1, 0770 0.616  0.614 | 0.673  0.638  0.635 | 0.707 0.670  0.669 | 0.648 0580  0.559 | 0.684  0.660  0.658
(¢) ] (0.255) (0.325) (0.302) | (0.166) (0.217) (0.218) | (0.223) (0.239) (0.238) | (0.262) (0.234) (0.235) | (0.211) (0.255) (0.257)
(a) 0777 0.623 0618 | 0.710 0651  0.638 | 0.726  0.666 0.664 | 0.702 0585 0541 | 0.716  0.663  0.654
20 stocks | () 0770 0.616  0.614 | 0.703  0.648  0.635 | 0.720  0.665 0.663 | 0.692 0582 0545 | 0.709  0.658  0.649
() | (0.255) (0.325) (0.302) | (0.197) (0.240) (0.243) | (0.231) (0.246) (0.244) | (0.254) (0.245) (0.252) | (0.230) (0.280) (0.283)
(a) 0777 0.623 0618 | 0.741 0645 0630 | 0.739  0.671 0674 | 0.730 0576 0535 | 0.722  0.662  0.650
30 stocks | (1) 0.770  0.616  0.614 | 0.733  0.641 0628 | 0.734  0.668  0.672 | 0.720 0573 0539 | 0.715  0.656  0.644
(¢) ](0.255) (0.325) (0.302) | (0.202) (0.261) (0.260) | (0.227) (0.250) (0.245) | (0.252) (0.244) (0.271) | (0.240) (0.288) (0.288)
(a 0777  0.623 0618 | 0.749 0651  0.626 | 0.744  0.673 0.680 | 0.743 0585 0554 | 0.727  0.658  0.647
40 stocks | (1, 0770 0.616  0.614 | 0.740  0.647  0.623 | 0.739  0.668 0.677 | 0.734 0581 0556 | 0.719  0.652  0.642
(¢) ] (0.255) (0.325) (0.302) | (0.210) (0.268) (0.267) | (0.225) (0.251) (0.244) | (0.258) (0.247) (0.281) | (0.254) (0.287) (0.285)

S.3 Portfolio variance and remonetized quan-
tities

In Fig[S.3| are reported the portfolio performances when weights are com-

puted with the Markowitz method with short-selling. Omne can note that

the results are almost undistinguishable from the one for the case with no

short-selling, reported in Fig.3 of the main paper.

As further quantification of risk let us here report in Figs. [S.4] and
the variance of portfolio returns at various time lags from 1 to 250 days.
One can observe that the variance of the portfolios made of peripheral stocks
(0) is always lower than that of portfolios made of central stocks (V) and it
is comparable or lower than that of portfolios made of all 300 stocks (thick
line), with as little as m = 10 stocks.
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Figure S.3: Demonstration that portfolios made with peripheral stocks ()
perform better than portfolios made with central stocks (V ) also in the case
of weights obtained by solving the Markowitz problem with short-selling.
Portfolio sizes are respectively m = 5, 10, 20, 30 stocks; weights are uniform.
The plots report the ‘signal-to-noise ratio’ % (average return divided by its
standard deviation) for 7 = 1, .., 250 days following the investment day. The
performance is compared with: (<) portfolios made of m randomly chosen
stocks; () portfolios made with the m stocks that have achieved the best
performance over the period preceding the investment date. The thick line

is a ‘market portfolio” made by taking all 300 stocks.
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Figure S.4: Comparison between the variance of different portfolios with uni-
form weights. The symbol [J indicates portfolios made of the m = 5, 10, 20, 30
most peripheral stocks (i.e. with largest X +Y'). V indicates portfolios made
of the m most central stocks (i.e. with smallest X +Y"). These are compared
with: (thick line) ‘market portfolios’ made of all 300 stocks; (<) portfolios
made of m randomly chosen stocks; () portfolios made of the m stocks that
have achieved the best performance over the period preceding the investment
date.
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Figure S.5: Comparison between the variance of different portfolios obtained
by solving the Markowitz problem with no short-selling. Labels are the same
as in Fig.[S.4k the composition of portfolios is the same while the weighting

is different.
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Figure S.6: Comparison between the variance of different portfolios obtained
by solving the Markowitz problem with short-selling. The labels are the same

as in Fig. [S.4]
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S.4 Comparison of performances by using dif-
ferent centrality measures

In the paper we introduced the hybrid centrality measure X + Y to select
stocks in the peripheral or central parts of the filtered graphs. We mentioned
in the paper that the selection through this measure gives consistently bet-
ter results than the use of the centrality measures in isolation. Let us here
compare performances obtained with the hybrid measure with the ones ob-
tained by using Betweenness Centrality on the weighted PM F'G graph (C})
and Eigenvector Centrality on the weighted PM FG graph (C}%.). This is
reported in Figure for the Betweenness Centrality measure with portfo-
lios made by weighting stocks uniformly and in Figure for the case of
Markowitz weights with no-short-selling. Figure reports the results for
the Eigenvector Centrality measure with portfolios made by weighting stocks
uniformly and Figure for the case of Markowitz weights with no-short-
selling. As one can see, performances obtained by using the hybrid measure
are consistently better than the ones obtained by using the centrality mea-
sures in isolation. Let us stress, that despite the different performances, the
main result of the paper that portfolios made of peripheral stocks are less
risky and more rewarding than portfolios made of central stocks is always
retrieved for all centrality measures and their combination.
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Figure S.7: Demonstration that Markowitz weighted portfolios, constructed
by using Betweenness Centrality index (C) on PMFG to select periph-
eral or central vertices are less effective than portfolios constructed by using
the hybrid measure X + Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ ? (average return divided by its standard deviation)
for 7 = 1,..,250 days following the investment day. Peripheral portfolios
from X +Y hybrid measure are indicated with (OJ). Central portfolios from
X + Y hybrid measure are indicated with (V). Peripheral portfolios from
Betweenness Centrality index are indicated with (¢). Central portfolios from
Betweenness Centrality index are indicated with (A). Portfolio sizes are
respectively m = 5, 10, 20, 30 stocks.
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Figure S.8: Demonstration that uniformly weighted portfolios, constructed
by using Betweenness Centrality index (Ch) on PMFG to select periph-
eral or central vertices are less effective than portfolios constructed by using
the hybrid measure X + Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ ? (average return divided by its standard deviation)
for 7 = 1,..,250 days following the investment day. Peripheral portfolios
from X +Y hybrid measure are indicated with (OJ). Central portfolios from
X + Y hybrid measure are indicated with (V). Peripheral portfolios from
Betweenness Centrality index are indicated with (¢). Central portfolios from
Betweenness Centrality index are indicated with (A). Portfolio sizes are
respectively m = 5, 10, 20, 30 stocks.
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Figure S.9: Demonstration that Markowitz weighted portfolios with no-
short-selling, constructed by using Eigenvector Centrality index (C}) on
PMFG to select peripheral or central vertices are less effective than portfo-
lios constructed by using the hybrid measure X +Y introduced in the paper.
The plots report the ‘signal-to-noise ratio’ % (average return divided by
its standard deviation) for 7 = 1,..,250 days following the investment day.
Peripheral portfolios from X + Y hybrid measure are indicated with (OJ).
Central portfolios from X + Y hybrid measure are indicated with (V). Pe-
ripheral portfolios from Eigenvector Centrality index are indicated with (o).
Central portfolios from Eigenvector Centrality index are indicated with (A).

Portfolio sizes are respectively m = 5,10, 20, 30 stocks.
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Figure S.10: Demonstration that the uniformly weighted portfolios, con-
structed by using Eigenvector Centrality index (C¥) on PMFG to select
peripheral or central vertices are less effective than portfolios constructed by
using the hybrid measure X +Y introduced in the paper. The plots report the
‘signal-to-noise ratio’ % (average return divided by its standard deviation)
for 7 = 1,..,250 days following the investment day. Peripheral portfolios
from X +Y hybrid measure are indicated with (OJ). Central portfolios from
X + Y hybrid measure are indicated with (V). Peripheral portfolios from
Eigenvector Centrality index are indicated with (¢). Central portfolios from
Eigenvector Centrality index are indicated with (A). Portfolio sizes are re-

spectively m = 5, 10, 20, 30 stocks.

18



S.5 Markowitz Portfolio Selection Problem

Markowitz seminal work [7] and subsequent Capital Asset Pricing Model
(CAPM) contributions [8, @, 10, 11}, 12), 13, [14] propose to reduce risk by
minimizing the variance of a portfolio subject to some constraits. A portfo-
lio variance is a function of stocks’ variances, covariances and correlations.
Markowitz portfolio optimization problem can be written in a general form
as:

min qT V q
q
S.t.: (Sl)
g(q) >0
h(q) =0

where V is the covariance matrix, q is a vector of weights representing,
for each security, the percentage of the total wealth invested; qT V q, the
objective function, is the total portfolio variance. Inequality and equality
constraints, are g(q) > 0 and h(q) = 0. The problem consists in minimiz-
ing the portfolio’s risk, assumed to be adequately estimated by the portfolio
expected variance, subject to some budget constraint (e.g. qu= 1), the at-
tainment of a certain expected return performance (e.g. qTF > r*, where T is
a vector of securities’s expected returns, qTT is the portfolio return and r* is
a desired return performance), or other constraints. Other main assumptions
of the model are returns being jointly normally distributed (when used in a
constraint), correlations and variances being stable over time; no transac-
tion costs; investors are rational, price takers, profit maximizing, risk-averse,
endowed with complete unbiased information, able to lend and borrow unlim-
ited amounts of funds at the risk free rate of interest; securities are infinitely
divisible.

The solution of the problem is the vector q, which is a function of sample
variances, covariances, correlations and any other parameter introduced in
the constraint (such as average returns). Correlations influence the curva-
ture of the Efficient Frontier of Investments, i.e. the locus of a portfolio’s
minimum expected variances for any level of targeted expected return.

We define the Markowitz problem without short sales (P,s) and with
short sales (Ps) as:
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where qys is constrained to be non-negative (being short-selling not allowed);
r is the vector of expected returns; q*_ is the vector of weights solving P,.
The solutions are unique: qj, corresponds to the minimum-variance point
over the Efficient Frontier and is also known as the global minimum variance

portfolio.

In the present paper the two problems have been solved numerically us-
ing Matlab function “quadprog”, setting the number of maximum iterations
(MaxIter) at 2000 and termination tolerance on the constraint violation
(T'olCon) at 2.2204e — 014. The starting point for P, was qzs = %u; and
for P, was q: = q;. In all instances the optimization was successful and a
solution was found within few iterations.

The Markowitz problem has been solved by using the average correlations
with shrinkage R, defined in Eq. 1 in the main paper. Consistently with
R", we have defined the average weighted covariance matrix with shrinkage
as ) )

VY =P"’ RY PV’ (S.2)
where PV is a diagonal matrix with average weighted variances over the

— t —_—
main diagonal defined as (§:’)2 = T—_lH > (§":})2 Matrix VYV is generally
h

=t—T1
full-rank and numerically stable. The condition number of V¥ is similar to
that of R¥. Note that a sum of covariance matrices does not generally enjoy
the same properties as V%W.

S.6 Comparison of portfolio composition

While M STs might be preferable to PM F'Gs for the greater simplicity of
their graphic representation, the latter offers a richer description of the sys-
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Table S.10: Indexes of coincidence between MST and PMFG peripheries.

MST vs. PMFG peripheries. No short sales. MST vs. PMFG peripheries. Short sales.
5 stocks 10 stocks 20 stocks 30 stocks 40 stocks | 5 stocks 10 stocks 20 stocks 30 stocks 40 stocks

mean | 33.27%  37.91% 43.34% 48.17% 52.75% | 33.22%  37.71% 42.711% 46.94% 50.86%
Clys | 0.00% 1.97% 10.84% 17.27% 22.92% 0.00% 2.41% 12.23% 19.72% 26.23%
Clyrs | 86.76%  81.08% 79.35% 79.45% 82.00% | 86.31%  78.98% 74.86% 73.65% 73.83%

tem of relations between stocks.

In order to quantify the differences in the selection of peripheral port-
folios from M ST and PMFG let us introduce a measure of coincidence.
Specifically, let ¢, ¢®> € RV*! be two vectors solving the Markowitz problem

N

subject to two different sets of constraints, with > qf =1, for j = {1,2}.
i=1
We introduce a measure of coincidence between ¢! and ¢* in order to com-
N )
pare the composition of the two portfolios. Let I; = > |¢/| be the amount
i=1

of total transactions implied by ¢/. Then we define the following index of
coincidence:

M=

, 1%[1 + sign (q;) + sign (¢7)] x min (|g}, |¢7|)
p— v S-3
it 59

c,, = lif and only if ¢' and ¢? are identical and ¢, = 0 if, Vi = {1,2,..., N},
qi and ¢? are either both zero, have different signs or one is nonnull when
the other is zero.

For all time periods, we have compared M ST vs. PMFG peripheral
portfolios: the table reports the average and 95% confidence intervals of the
corresponding coincidence indices, which are reported in Table The
coincidence index shows that, on average, a large share of M ST and PM FG
peripheral portfolios is not coincident. The average coincidence index in-
creases with the number of stocks.
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S.7 Indices of centrality and peripherality

Indices of centrality and peripherality have been calculated with the follow-
ing MATLAB code.

Complex indices of centrality and peripherality for
the vertices of a network

% Calculates centrality indices as used in the paper
% F. Pozzi, T. Di Matteo, T. Aste, “Spread of risk across

% financial markets: better to invest in the peripheries”.
0y

0
% INPUT
% G is a Planar Maximally Filtered Graph, stored in the form of a
% symmetric, square, N-by-N sparse matrix filtering a correlation
g},w matrix (data must be correlations).

0
% OUTPUT
% X, Y, XpY and XmY are, respectively, X, Y, (X + Y) and (X -Y)
% in the paper. A vertex characterized by high (low) ranking in terms
% of (X +Y) is likely to be a central (peripheral) vertex; a vertex
% characterized by high (low) ranking in terms of (X - Y) is likely
% to possess many unimportant (few important) connections. “High
% ranking” means “low score” (i.e. the most central vertex is assigne
% a small score). In detail:

%o
% A small value of X indicates high connectedness whereas a large
% value indicates low connectedness
%
0
% A small value of Y indicates low eccentricity whereas a large
% value indicates high eccentricity
%
0
% A small value of XpY indicates high overall centrality whereas a
% large value indicates low overall centrality
07

0
% A small value of XmY indicates many low-quality connections
gé whereas a large value indicates few high-quality connections

0
% Note: this code makes use of David Gleich’s MATLAB BGL
% (FEX 10922, available at
% www.mathworks.com/matlabcentral /fileexchange/10922-matlabbg] )
%
% EYAMPLE using pmfg by Tomaso Aste (FEX 27360, available at
% www.mathworks.com /matlabcentral /fileexchange /27360-pmfg)
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% y = corrcoef(cumsum(randn(100, 30)));
% G = pmfg(y);

% [X'Y XpY XmY]| = centrinds(G);

%

0

%%% %% %% % %0 % % %0 % 0% %6 % % 0 %0 %6 %0 %0 %0 % 0% %0 %0 % %0 %0 %6 % % Yo

function [X Y XpY XmY] = centrinds(G)

PMFG_Top = (G ~=0) * 1; % Topological planar

PMFG_GeoW = G; % Geodesic planar - weights

PMFG_GeoW(PMFG_GeoW ~= O% =1+ ..
PMFG_GeoW(PMFG_GeoW ~=0); % weights in [0, 2]

PMFG_GeoD = G; % Geodesic planar - distances

PMFG_GeoD(PMFG_GeoD ~= 0) = sqrt(2 * (1 - ...
PMFG_GeoD(PMFG_GeoD ~= 0))); " distances in [0, 2]

ShPTop = all shortest_paths(PMFG_Top); "0 Top. Sh. Paths
ShPGeo = all_shortest_paths(PMFG_GeoD); % Geom. Sh. Paths

% 1. Topological Degree
DgrTopPMFG = full(sum(PMFG_Top));

% 2. Geometrical Degree: sum of weights (possibly negative)

DgrGeoPMFG = full(sum(PMFG_GeoW));

% 3. Betweenness (based on Topological Shortest Paths)
BtwTopPMFG = betweenness_centrality(PMFG_Top);

% 4. Betweenness (based on Geometrical Shortest Paths)

BtwGeoPMFG = betweenness_centrality(PMFG_GeoD);

% 5. Eccentricity (based on Topological Shortest Paths)

ExxTopPMFG = max(ShPTop); 0 cccentricity of vertexes
% 6. Eccentricity (based on Geometrical Shortest Paths)
ExxGeoPMFG = max(ShPGeo); 7 eccentricity of vertexes

% 7. Closeness (based on Topological Shortest Paths)

ClsTopPMFG = mean(ShPTop);

% 8. Closeness (based on Geometrical Shortest Paths)

ClsGeoPMFG = mean(ShPGeo);
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[eigvec, eigval] = eigs(PMFG_Top); eigval = sum(eigval);

index = find(eigval == max(max(eigval)));
if all(round(eigvec(:, index) * 1e8) <= 0);
EigTopPMFG = -eigvec(:, index);
else
EigTopPMFG = eigvec(:, index);
end;

[eigvec, eigval] = eigs(PMFG_GeoW); eigval = sum(eigval);
index = find(eigval == max(max(eigval)));

if all(round(eigvec(:, indexg * 1e8) <= 0);

EigGeoPMFG = -eigvec(:, index);
else

EigGeoPMFG = eigvec(:, index);
end;

DgrGeoPMFG _rnks = tiedrank(-DgrGeoPMFG);
DgrTopPMFG rnks = tiedrank(-DgrTopPMFG);
BtwTopPMFG _rnks = tiedrank(-BtwTopPMFG)’;
BtwGeoPMFG_rnks = tiedrank(-BtwGeoPMFG)’;
ExxGeoPMFG _rnks = tiedrank(ExxGeoPMFG);
ExxTopPMFG _rnks = tiedrank(ExxTopPMFG);
ClsGeoPMFG_rnks = tiedrank(ClsGeoPMFG);
ClsTopPMFG_rnks = tiedrank(ClsTopPMFG);
EigGeoPMFG _rnks = tiedrank(-EigGeoPMFG)’;
EigTopPMFG rnks = tiedrank(-EigTopPMFG)’;

n = size(G, 1);

X = (DgrGeoPMFG rnks + DgrTopPMFG rnks + ...
BtwGeoPMFG_rnks + BtwTopPMFG.rnks - 4) /4 / (n - 1);

Y = (ExxGeoPMFG _rnks 4+ ExxTopPMFG_rnks + ...
ClsGeoPMFG_rnks + ClsTopPMFG_rnks + ...
EigGeoPMFG._rnks + EigTopPMFG_rnks - ) /6 / (n - 1);

XpY = X + Y; XmY = X - V;
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