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In directed networks, reciprocal links have dramatic effects on dynamical processes, network
growth, and higher-order structures such as motifs and communities. While the reciprocity of bi-
nary networks has been extensively studied, that of weighted networks is still poorly understood,
implying an ever-increasing gap between the availability of weighted network data and our under-
standing of their dyadic properties. Here we introduce a general approach to the reciprocity of
weighted networks, and define quantities and null models that consistently capture empirical reci-
procity patterns at different structural levels. As we show, counter-intuitively, previous reciprocity
measures based on the similarity of mutual weights are uninformative. By contrast, our measures
allow to consistently classify different weighted networks according to their reciprocity, track the
evolution of a network’s reciprocity over time, identify patterns at the level of dyads and vertices,
and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards
(anti-)reciprocation.

PACS numbers: Valid PACS appear here
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RECIPROCITY OF BINARY NETWORKS

Before considering the reciprocity of weighted networks, we briefly recall the basic definitions in the binary case,
that were originally introduced to describe the mutual relations taking place between vertex pairs [1, 2].

Reciprocity as the fraction of bidirectional links

For binary, directed networks the reciprocity is defined as the fraction of links having a “partner” pointing in the
opposite direction:

rb ≡ L↔

L
(1)

where L =
∑

i ̸=j aij and L↔ =
∑

i ̸=j aijaji. The above quantity, rb, is not independent on the link density (or

connectance) c ≡ L
N(N−1) =

∑
i ̸=j aij

N(N−1) ≡ ā: on the contrary, it can be shown that c is the expected value of rb under the

Directed Random Graph Model (DRG in what follows) [3, 4]. In the DRG, a directed link is placed with probability
p between any two vertices, i.e. ⟨aij⟩DRG = p, ∀ i, j (with i ̸= j). This implies

⟨rb⟩DRG ≡ ⟨L↔⟩
⟨L⟩

=
N(N − 1)p2

N(N − 1)p
= p ≡ L

N(N − 1)
= c (2)

showing that the expected value of rb coincides with the fundamental parameter of this null model, and hence depends
on L and N . In order to assess whether there is positive or negative reciprocity, one should compare the measured
rb with its expected value ⟨rb⟩DRG. This means that rb cannot be used to consistently rank networks with different
values of L and N , because they have different reference values. Also, and consequently, rb cannot be used to track
the evolution of a network that changes in time, because L and/or N will also change [3].

Reciprocity as a correlation coefficient

This is why a different definition of reciprocity was proposed [3], trying to control for the time-varying properties
by means of the Pearson correlation coefficient between the transpose elements of the adjacency matrix [5]:

ρb ≡
∑

i ̸=j(aij − c)(aji − c)∑
i ̸=j(aij − c)2

=
rb − c

1− c
=

rb − ⟨rb⟩DRG

1− ⟨rb⟩DRG
. (3)

A symmetrical adjacency matrix (as those for binary, undirected networks) represents a network with the highest
values of rb and ρ (both equal to 1), whereas a fully asymmetrical one, with zero values mirroring unit values on
opposite sides of the main diagonal (like a triangular matrix), displays the lowest value, being rb = 0 and ρ =
−c/(1− c)) [3]. This meaningful definition of reciprocity automatically discounts density effects, i.e. the expectation
value of rb (under the DRG). As a result, consistent rankings and temporal analyses become possible in terms of ρ.

RECIPROCITY OF WEIGHTED NETWORKS

In what follows we provide additional information about the possible generalization of the reciprocity to the weighted
case.

From binary to weighted: the first route

By looking at eq.(3), it is not clear whether a generalization to the weighted case should start from the first term
on the left (i.e. as a correlation coefficient) or from the last term on the right (i.e. as the normalized excess from a
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FIG. 1. A double-star network, with only one reciprocated pair of weights.

random expectation). This ambiguity comes from the fact that, for weighted networks, those two terms are no longer
equivalent (as we now show). We therefore start by attempting the first route, and then consider the second one.
If we follow the binary recipe from left to right, we define the weighted reciprocity as the Pearson correlation

coefficient (where, as usual, w̄ =
∑

i ̸=j wij

N(N−1) = Wtot

N(N−1) ). After some algebra, this implies

ρ ≡
∑

i̸=j(wij − w̄)(wji − w̄)∑
i ̸=j(wij − w̄)2

=
r − cw

1− cw
(4)

where, in order to produce a result formally equivalent to eq.(3), we have defined the weighted analogues of r and c
as follows:

r ≡
∑

i ̸=j wijwji∑
i ̸=j w

2
ij

, cw ≡ w̄2∑
i̸=j w

2
ij/N(N − 1)

(5)

Note that the equivalence ā = c, valid for the binary case, no longer holds: w̄ ̸= cw. The previous expressions generalize
the binary ones and reduce to them when substituting the aij ’s in place of the wij ’s. Moreover, interestingly enough,
the coefficient cw can be expressed as a function of the weights’ distribution mean, m, and standard deviation, s, or,
in an equivalent way, as a function of the so-called coefficient of variation, cv = s/m, as

cw =
m2

m2 + s2
=

1

1 + c2v
. (6)

We could be tempted to interpret cw as the weighted counterpart of the binary connectance and, r as the weighted
counterpart of eq.(1). However, we can show a simple case for which the above “product-over-squares” definition
above fails in measuring our intuitive notion of reciprocity. Let us consider a simple network like that in Fig. 1.
If we calculate r by choosing w12 = w21, we obtain

r1 =
2w2

12

2w2
12 +

∑
i,j ̸=(1,2),(2,1) w

2
ij

(7)

where the sum in the denominator includes all the weights different from the central ones. Now, let us imagine a
second situation where w21 = w12 + 1; the calculations, now, would give

r2 =
2w12(w12 + 1)

w2
12 + (w12 + 1)2 +

∑
i,j ̸=(1,2),(2,1) w

2
ij

(8)
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and we would intuitively require that r2 < r1, for every choice of the involved weights, because of the greater disparity
between the two central flows. However, it can be shown that under certain circumstances exactly the opposite result
is obtained, by simply changing the non-central weights. In fact, by choosing the latter to satisfy the condition

∑
i,j ̸=(1,2),(2,1)

w2
ij > w12 (9)

the very counter-intuitive result r2 − r1 > 0 is obtained. This shows that eq.(4) is not a good choice for a weighted
extension of eq.(3).
Before considering the alternative route, we observe that we could also imagine to define a slightly different corre-

lation coefficient, only between the two triangular blocks of the weighted adjacency matrix: the upper-diagonal one
and the lower-diagonal one. This would be defined as

ρ
′
≡

∑
i<j(wij − w̄u)(wji − w̄l)√∑

i<j(wij − w̄u)2
∑

i<j(wji − w̄l)2
(10)

where w̄u ≡
∑

i>j wij

N(N−1) is the upper-diagonal mean and w̄l ≡
∑

i>j wji

N(N−1) is the lower-diagonal mean. Again, this definition

has an undesirable performance. This is evident if we imagine a matrix whose transposed entries are defined as wij

and wji ≡ λwij (with i < j). In this case, we would have

ρ
′
=

∑
i<j(wij − w̄u)(λwij − λw̄u)√∑

i<j(wij − w̄u)2
∑

i<j(λwij − λw̄u)2
= 1 (11)

independently of the value of λ! So we could arbitrarily rise or lower the value of λ, thus making the matrix more
and more asymmetric, without measuring this effect at all. Note that this circumstance is impossible in the binary
case, as all weights are forced to be either zero or one, and therefore the only allowed value for λ is one.
The two examples above show that correlation-based definitions of reciprocity, while having a satisfactory behaviour

in the binary case, become problematic in the weighted one. Unfortunately, the few attempts that have been proposed
so far in order to characterize the reciprocity of weighted networks [6–9] are all based on measures of correlation or
symmetry between mutual weights. Later, we show that symmetry-based measures are also flawed. Together with our
results above, this means that all the available measures fail in providing a consistent and interpretable characterizaton
of the reciprocity of weighted networks.

From binary to weighted: the second route

We now consider the second route, i.e. a definition that starts from generalizing the last term in eq.(3). This means
that we are now free to first generalize r in a satisfactory way, rather than as a forced effect of the correlation-based
definition, and then calculate its expected value under some appropriate null model. To this end, we note that the
binary nature of the variables defining rb allows us to rewrite it in a very suggestive way:

rb ≡ L↔

L
=

∑
i ̸=j aijaji∑
i ̸=j aij

=

∑
i ̸=j min[aij , aji]∑

i ̸=j aij
. (12)

The previous relation is consistent with the intuitive meaning of reciprocity, as a measure of the quantity of
mutually-exchanged flux between vertices. So we can extend this definition to the weighted case, to obtain

r ≡ W↔

W
=

∑
i ̸=j min[wij , wji]∑

i ̸=j wij
. (13)

where we have defined the total reciprocated weight as W↔ ≡
∑

i ̸=j min[wij , wji]. This definition does not suffer from
the same limitations of the previous one. On the contrary, the more the difference between mutual links, the less the
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FIG. 2. The quantity r as a function of λ.

reciprocity, because the numerator would not change, while the denominator would become larger. Note that r ≤ 1:
in fact, since we are considering pairs of nodes at a time, we can rewrite it as

r =

∑
i<j (min[wij , wji] + min[wij , wji])∑
i<j (min[wij , wji] + max[wij , wji])

. (14)

Another advantage of this second definition is the possibility of mutuating from it the concept of reciprocated
strength in the same way as the concept of reciprocated degree was defined:

k↔i ≡
∑
j(̸=i)

aijaji → s↔i ≡
∑
j(̸=i)

min[wij , wji] (15)

so that a very impressive definition of reciprocity can be given, as

rb =

∑
i k
↔
i

L
→ r =

∑
i s
↔
i

W
. (16)

A further feature of this quantity is its scale-invariance: if all the weights are multiplied by a scale factor, wij → λwij ,
r does not change, as shown below:

rλ =

∑
i ̸=j min[λwij , λwji]∑

i ̸=j λwij
=

λ
∑

i ̸=j min[wij , wji]

λ
∑

i ̸=j wij
= r. (17)

Moreover, in the case we had a matrix with transposed entries defined as wij and wji ≡ λwij (with i < j) as in the
example considered before, we would find

r =


∑

i<j 2wij∑
i<j(λ+1)wij

= 2
(λ+1) , if λ > 1∑

i<j 2wij∑
i<j 2wij

= 1, if λ = 1∑
i<j 2λwij∑

i<j(λ+1)wij
= 2λ

(λ+1) , if λ < 1

(18)

thus obtaining a continuous function with a global maximum in λ = 1 as it should be (see Fig. 2).
It follows that the appropriate weighted generalization of eq.(3) is

ρNM ≡ r − ⟨r⟩NM

1− ⟨r⟩NM
(19)

where r is defined by eq.(13) and its expected value has to be computed according to a chosen null model (NM).
Indeed, this choice also gives us the possibility to choose different null models, and compare their effects on ρ. From
r ≤ 1, it follows that ρ ≤ 1.
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NULL MODELS

In this section we describe in detail the three null models we considered in order to carry out our analysis. We adopt
the formalism of Exponential Random Graphs or p∗ models, which allows to obtain maximally random ensembles
of networks with specified constraints. Exponential random graphs were first introduced in social network analysis
[1, 2, 10, 11] and then recently rephrased within a maximum-entropy approach typical of statistical physics [12].
We adopt the latter notation, as it is more practical when, rather than approaching the problem using approximate
techniques such as Markov Chain Monte Carlo or pseudo-likelihood [10, 11], one can solve the model analytically and
obtain exact results as we do below.
Exponential Random Graphs are very useful when one needs to understand, as in our case, the expected effects of a

given set of topological properties, C⃗ (such as the total weight, or the strength sequence) on the structure of networks.
Recently, a method based on the maximum-likelihood principle was proposed [13] in order to fit exponential random
graphs to a real-world graph G∗ exactly [13]. This method provides null models which specify the effects of one or
more constraints on the structure of the particular network G∗, and hence allows to empirically detect patterns in
the latter, identified as deviations from the model’s predictions [13]. In the method, maximum-entropy exponential

random graphs are generated by specifying an ensemble G of allowed graphs, and by looking for the probability P (G|θ⃗)
of generating a single graph G in the ensemble in such a way that the Shannon entropy

S(θ⃗) ≡ −
∑
G∈G

P (G|θ⃗) lnP (G|θ⃗) (20)

is maximum, under the constraints that the probability is properly normalized,
∑

G∈G P (G|θ⃗) = 1, ∀θ⃗, and that the
expected value

⟨C⃗⟩θ⃗ ≡
∑
G∈G

C⃗(G)P (G|θ⃗) (21)

of the set C⃗ of enforced topological properties equals the particular value C⃗∗ ≡ C⃗(G∗) observed on the real network
G∗:

⟨C⃗⟩θ⃗∗ = C⃗∗. (22)

In the above expressions, θ⃗ is a vector of Langrange multipliers allowing to tune the value of ⟨C⃗⟩θ⃗, and θ⃗∗ is the

specific value of θ⃗ that makes ⟨C⃗⟩θ⃗ coincide with C⃗∗, as dictated by the maximum-likelihood principle [14]. The
solution to the above constrained maximization problem is

P (G|θ⃗∗) = e−H(G|θ⃗∗)

Z(θ⃗∗)
(23)

where

H(G|θ⃗∗) = θ⃗∗ · C⃗(G) (24)

is sometimes called the graph Hamiltonian and

Z(θ⃗∗) =
∑
G∈G

e−H(G|θ⃗∗) (25)

is the partition function, ensuring that the probability is properly normalized. The above formal results translate into

specific quantitative expectations when a particular choice of the constraints, C⃗, is made.
Once the numerical values of the Lagrange multipliers are found, they can be used to find the ensemble average,

⟨X⟩∗, of any topological property X of interest:
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⟨X⟩∗ =
∑
G∈G

X(G)P (G|θ⃗∗). (26)

The exact computation of the expected values can be very diffcult. For this reason it is often necessary to rest on
the linear approximation method even if, in what follows, the only approximation will be that of treating the expected
value of a ratio, as the ratio of the expected values: ⟨n/d⟩ ≃ ⟨n⟩/⟨d⟩.
The next subsections will be devoted to the description of the null modes used in the main text.

The Directed Weighted Random Graph (WRG) model

We start with the simplest case, which is the most direct generalization of the binary, undirected random graph
(Erdős-Rényi) model. For an ensenble of binary, undirected networks, it was shown [12] that, if the only constraint C
is the total number L of links (i.e. H(G, θ) = θL), then the probability P (G|θ) coincides with that of the Erdős-Rényi
Random Graph Model. In the latter, each pair of vertices is connected with the same probability p, all pairs of vertices
being sampled independently of each other. In the framework of exponential random graphs, the probability p is
simply a function of θ.
The random graph model has already been generalized to the undirected, weighted case [15], by considering an

ensemble of networks with non-negative, integer-valued edge weights (wij ∈ N, ∀ i, j) and imposing, as the only
constraint, the total weight, W =

∑
i<j wij . The result is the Undirected Weighted Random Graph model [15], where

each pair of vertices is still independent as in its binary counterpart, and connected by an edge of weight w with
probability q(w) = pw(1− p), where p ≡ e−θ.
Here we introduce the directed version of the weighted random graph. The hamiltonian of the WRG is

H(G|θ) = θW = θ
∑
i ̸=j

wij ; (27)

thus, the partition function becomes

Z(θ) =
∑
G∈G

e−H(G|θ) =
∑
G∈G

e−θ
∑

i ̸=j wij =
∏
i ̸=j

+∞∑
wij=0

e−θwij =
∏
i ̸=j

(1− e−θ)−1 (28)

(provided that e−θ < 1), that is a product over the N(N−1) independent random variables, identified with the orderd
pairs of the network’s N nodes. So, every (non-negative, integer-valued) weighted network in the grandcanonical
ensemble has the following probability

P (G) =

∏
i̸=j e

−θwij∏
i ̸=j(1− e−θ)−1

≡
∏
i ̸=j

pwij (1− p) ≡
∏
i ̸=j

qij(wij) (29)

by defining p ≡ e−θ. Note that this parameter has a precise probabilistic meaning, making even more evident the
above prescription, p < 1. In fact, ⟨aij⟩ =

∑+∞
wij=0 aijqij(wij) = p = 1− qij(0). According to the maximum-likelihood

principle [13, 14], p has to be calculated in terms of the observed quantities, by maximizing the function

lnL(θ) = lnP (G∗|θ) =
∑
i ̸=j

[
w∗ij ln(e

−θ) + ln(1− e−θ)
]

(30)

with respect to θ. The solution to this optimization problem can be found by isolating θ in the above equation

W (G∗) =
∑
i ̸=j

e−θ
∗

1− e−θ∗
≡ N(N − 1)

p∗

1− p∗
= ⟨W ⟩p∗ (31)
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and, then, by inverting eq. 31 (note that the condition expressed by eq. 22 is satisfied because ⟨wij⟩ =
∑+∞

wij=0 wijqij(wij) =
p

1−p ):

p∗ =
W (G∗)

W (G∗) +N(N − 1)
. (32)

To calculate ρ we need the expected value of r. Looking at its definition, we need the expected value of the minimum
between wij and wji:

⟨r⟩ ≡ ⟨W↔⟩
⟨W ⟩

=

∑
i ̸=j⟨min[wij , wji]⟩

⟨W ⟩
. (33)

By considering that wij and wji are independent random variables, the cumulative distribution for the minimum
is relatively easy to calculate:

P (min[wij , wji] ≥ w) = P (wij ≥ w)P (wji ≥ w) = pwpw; (34)

from this, it follows that its expected value is

⟨min[wij , wji]⟩WRG =

+∞∑
w=1

P (min[wij , wji] ≥ w) =
p2

1− p2
. (35)

Now, the expected value (that is, the ensemble average) of r, computed in correspondence of the maximum-likelihood
parameters, can be found by using the result of eq. 32:

⟨r⟩∗WRG =

∑
i ̸=j

(p∗)2

1−(p∗)2∑
i̸=j

p∗

1−p∗
=

p∗

1 + p∗
. (36)

The Directed Weighted Configuration Model (WCM)

This second null model is the weighted version of the Directed Configuration Model, fully specified by the in-degree
and out-degree sequences [12, 13]. The weighted counterparts of these constraints are the in-strength and out-strength
sequences [16]:

H(G|θ⃗) =
∑
i

(αis
out
i + βis

in
i ) =

∑
i ̸=j

(αi + βj)wij ; (37)

the partition function of the WCM is

Z(θ⃗) =
∑
G∈G

e−H(G|θ⃗) =
∑
G∈G

e
∑

i̸=j −(αi+βj)wij =
∏
i ̸=j

+∞∑
wij=0

e−(αi+βj)wij =
∏
i ̸=j

[
1− e−(αi+βj)

]−1
(where θ⃗ ≡ {α⃗, β⃗} and provided that e−(αi+βj) < 1). Again, it is a product over N(N − 1) independent random
variables. The reason becomes clearer when considering the WCM: when the contraints are local, that is expressable
as linear combinations of the adjacency matrix elements, the partition function factorizes and the probability of a
given configuration factorizes as well, as a product of the independent random variables probability coefficients [13].
In this case every (non-negative, integer-valued) weighted network in the grandcanonical ensemble has a probability
of the following form

P (G) =

∏
i̸=j e

−(αi+βj)wij∏
i ̸=j

[
1− e−(αi+βj)

]−1 ≡
∏
i̸=j

p
wij

ij (1− pij) ≡
∏
i ̸=j

(xiyj)
wij (1− xiyj) ≡

∏
i̸=j

qij(wij) (38)
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by defining pij ≡ e−(αi+βj) = e−αie−βj ≡ xiyj . Now, two parameters per vertex have to be calculated in terms of the
observed quantities: the maximum-likelihood principle [13] prescribes to maximize

lnL(θ⃗) = lnP (G∗|θ⃗) =
∑
i ̸=j

[
w∗ij ln(xiyj) + ln(1− xiyj)

]
(39)

with respect to x⃗ and y⃗. The solution to the optimization problem can be found by solving the system

 souti (G∗) =
∑

j ̸=i

x∗i y
∗
j

1−x∗i y∗j
= ⟨souti ⟩θ⃗∗ , ∀i

sini (G∗) =
∑

j ̸=i

x∗j y
∗
i

1−x∗j y∗i
= ⟨sini ⟩θ⃗∗ , ∀i

(40)

(again, the condition expressed by eq. 22 is satisfied because ⟨wij⟩ =
∑+∞

wij=0 wijqij(wij) =
pij

1−pij
≡ xiyj

1−xiyj
). The

expected value of the minimum between wij and wji can be easily found by generalizing eq. 35

⟨min[wij , wji]⟩WCM =
pijpji

1− pijpji
(41)

and the expected value of r, computed in correspondence of the maximum-likelihood parameters, can be found by
using the results of eq. 40:

⟨r⟩∗WCM =

∑
i ̸=j

p∗ijp
∗
ji

1−p∗ijp∗ji∑
i ̸=j

p∗ij
1−p∗ij

. (42)

The Balanced Configuration Model (BCM)

In addition to the WCM, we further developed a version of it that is intended to model networks where the
observed differences between souti and sini are interpreted as statistical fluctuations around a balanced condition,
i.e. ⟨souti ⟩ = ⟨sini ⟩. We can start from the WCM equations, to specify them in this particular case. The condition
souti ≃ sini implies that xi ≃ yi ≡ zi and this reduce the number of equations to solve, from 2N to N :

souti + sini =
∑
j ̸=i

2zizj
1− zizj

=⇒ stoti (G∗) =
∑
j ̸=i

2z∗i z
∗
j

1− z∗i z
∗
j

, ∀i. (43)

This, in turn, implies that pij = pji = zizj and that ⟨wij⟩ = ⟨wji⟩. So, under the BCM, the expected value of the
minimum and of r become, respectively,

⟨min[wij , wji]⟩BCM =
p2ij

1− p2ij
(44)

and

⟨r⟩∗BCM =

∑
i<j

(p∗ij)
2

1−(p∗ij)2∑
i<j

p∗ij
1−p∗ij

(45)

which is nothing more that a simplified version of eq. 42.
The fundamental insight given by the BCM is that, in networks with node balance, i.e. where ⟨souti ⟩ = ⟨sini ⟩, the

expected weights are symmetric:

⟨wij⟩∗BCM =
zizj

1− zizj
= ⟨wji⟩∗BCM (46)
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This means that, in networks where the observed differences between souti and sini are consistent with statistical
fluctuations around a balanced condition, one automatically expects symmetric weights, even without introducing
any tendency towards reciprocation. This shows that measures of reciprocity based on the symmetry of mutual
weights necessarily receive spurious contributions from other sources of flow balance. This observation concludes
our statement that previously attempted correlation- and symmetry-based measures [6–9] cannot properly separate
reciprocity from other factors.

FROM NULL MODELS TO TRUE MODELS

The three previous null models are defined in terms of constraints as the total weight, the in- and out-strength
sequences and the total-strength sequence. So, not being included in the list of the constraints, the reciprocity r and
the index ρ were a sort of target quantities, to test the power of the considered null models in reproducing them.
Now, we can make a step forward and include some information about the reciprocity structure of the network.

The Weighted Reciprocity Model (WRM)

We start by generalizing the WCM, by adding to its hamiltonian a sort of “global reciprocity” defined over the
whole network, thus fixing the total number of reciprocal links. This means to consider, as a further constraint, the
quantity

W↔ =
∑
i ̸=j

min[wij , wji] =
∑
i

s↔i (47)

to obtain the following Hamiltonian

H(G|θ⃗) =
∑
i

(αis
out
i + βis

in
i ) + γW↔ (48)

(where θ⃗ ≡ {α⃗, β⃗, γ}). The resolution of this null model is considerably simplified by considering an equivalent way
of rewriting it,

H(G|θ⃗) =
∑
i

[αis
→
i + βis

←
i + (αi + βi + γ)s↔i ] (49)

having posed, to uniform the formalism, min[wij , wji] ≡ w↔ij and having defined

souti ≡ s→i + s↔i =⇒ wij ≡ w→ij + w↔ij ,

sini ≡ s←i + s↔i =⇒ wij ≡ w←ji + w↔ij . (50)

Now, the most challenging calculation is about the partition function. This can be done by rewriting the hamiltonian
solely in terms of the variables w→ij , w

←
ij and w↔ij ,

H(G|θ⃗) =
∑
i<j

[(αi + βj)w
→
ij + (αj + βi)w

←
ij + (αi + βj + αj + βi + 2γ)w↔ij ] (51)

and considering the admissible states for them:

(w→ij , w
←
ij , w

↔
ij ) = {(0, 0, N), (N+, 0, N), (0, N+, N)} (52)

where N ≡ [0 . . .∞) and N+ ≡ [1 . . .∞). So the partition function becomes
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Z(θ⃗) =
∑
G∈G

e−H(G|θ⃗) =
∑

(w→ij , w
←
ij , w

↔
ij )

e−H(G|θ⃗) =
∏
i<j

(1− xixjyiyj)

(1− xiyj)(1− xjyi)(1− xixjyiyjz2)
≡

∏
i<j

ZWRM
ij (θ⃗) (53)

(having posed xi ≡ e−αi , yi ≡ e−βi and z ≡ e−γ) and, consequently, the probability coefficient for the generic
configuration G is

P (G) =
∏
i<j

(xiyj)
wij (xjyi)

wjiz2w
↔
ij

ZWRM
ij (θ⃗)

. (54)

Now, the maximum-likelihood principle prescribes to maximize

lnP (G∗|θ⃗) =
∑
i<j

[w∗ij ln(xiyj) + w∗ji ln(xjyi) + (2w↔ij )
∗ ln z − lnZWRM

ij (θ⃗)] (55)

with respect to x⃗, y⃗ and z. The solution to the previous optimization problem can be found by solving the system


souti (G∗) =

∑
j ̸=i⟨wij⟩θ⃗∗ = ⟨souti ⟩θ⃗∗ , ∀i

sini (G∗) =
∑

j ̸=i⟨wji⟩θ⃗∗ = ⟨sini ⟩θ⃗∗ , ∀i
W↔(G∗) =

∑
i<j 2⟨w↔ij ⟩θ⃗∗ = ⟨W↔⟩θ⃗∗

(56)

where

⟨wij⟩θ⃗∗ =
x∗i y
∗
j (1− x∗jy

∗
i )

(1− x∗i y
∗
j )(1− x∗i x

∗
jy
∗
i y
∗
j )

+
x∗i x

∗
jy
∗
i y
∗
j (z
∗)2

1− x∗i x
∗
jy
∗
i y
∗
j (z
∗)2

, (57)

⟨wji⟩θ⃗∗ =
x∗jy
∗
i (1− x∗i y

∗
j )

(1− x∗jy
∗
i )(1− x∗i x

∗
jy
∗
i y
∗
j )

+
x∗i x

∗
jy
∗
i y
∗
j (z
∗)2

1− x∗i x
∗
jy
∗
i y
∗
j (z
∗)2

, (58)

⟨w↔ij ⟩θ⃗∗ =
x∗i x

∗
jy
∗
i y
∗
j (z
∗)2

1− x∗i x
∗
jy
∗
i y
∗
j (z
∗)2

. (59)

Now, the expected value of the minimum between wij and wji is ⟨min[wij , wji]⟩∗WRM = ⟨w↔ij ⟩θ⃗∗ . Even if it is
possible to write down the analytical expression of the expected value of r, by using it, this can be avoided, by
considering that

⟨r⟩∗WRM =
⟨W↔⟩θ⃗∗
⟨W ⟩θ⃗∗

=
W↔(G∗)

W (G∗)
= r; (60)

this, in turn, implies that

ρ∗WRM =
r − ⟨r⟩∗WRM

1− ⟨r⟩∗WRM

≡ r − r

1− r
= 0. (61)

So, by definition, the index ρ is trivially reproduced by the WRM.
Note also that the only difference between the predicted quantities ⟨w↔ij ⟩WCM and ⟨w↔ij ⟩WRM lies in the presence

of the extra-parameter z in the second expression. Recalling that z < 1, if the hidden variables x⃗ and y⃗ are kept
fixed, changing z means lowering the expected reciprocal weight with respect to the WCM prediction. This makes
the WRM best suited to reproduce networks that are anti-reciprocal (i.e., less reciprocal than the WCM prediction).
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The Non-Reciprocated Strength Model (NSM)

A second null model including the information about the global reciprocity structure of the network can be defined,
starting by the WRM hamiltonian. This time, the imposed constraints are the in- and out-strength sequences,
diminished by the reciprocal strength sequence (see eq. 50), and the total number of reciprocal links:

H(G|θ⃗) =
∑
i

(αis
→
i + βis

←
i ) + γW↔ =

∑
i<j

[(αi + βj)w
→
ij + (αj + βi)w

←
ij + 2γw↔ij ].

Following the calculations of the WRM, the partition function is

Z(θ⃗) =
∑
G∈G

e−H(G|θ⃗) =
∑

(w→ij , w
←
ij , w

↔
ij )

e−H(G|θ⃗) =
∏
i<j

(1− xixjyiyj)

(1− xiyj)(1− xjyi)(1− z2)
≡

∏
i<j

ZNSM
ij (θ⃗) (62)

(having posed xi ≡ e−αi , yi ≡ e−βi and z ≡ e−γ). The probability coefficient for a generic configuration, G, is

P (G) =
∏
i<j

(xiyj)
w→ij (xjyi)

w←ij z2w
↔
ij

ZNSM
ij (θ⃗)

(63)

and the maximum-likelihood principle prescribes to maximize

lnP (G∗|θ⃗) =
∑
i<j

[(w→ij )
∗ ln(xiyj) + (w←ij )

∗ ln(xjyi) + (2w↔ij )
∗ ln z − lnZNSM

ij (θ⃗)] (64)

with respect to x⃗, y⃗ and z. The solution to the previous optimization problem can be found by solving the system


s→i (G∗) =

∑
j ̸=i⟨w→ij ⟩θ⃗∗ = ⟨s→i ⟩θ⃗∗ , ∀i

s←i (G∗) =
∑

j ̸=i⟨w←ij ⟩θ⃗∗ = ⟨s←i ⟩θ⃗∗ , ∀i
W↔(G∗) =

∑
i<j 2⟨w↔ij ⟩θ⃗∗ = ⟨W↔⟩θ⃗∗

(65)

where

⟨w→ij ⟩θ⃗∗ =
x∗i y
∗
j (1− x∗jy

∗
i )

(1− x∗i y
∗
j )(1− x∗i x

∗
jy
∗
i y
∗
j )

+
(z∗)2

1− (z∗)2
, (66)

⟨w←ij ⟩θ⃗∗ =
x∗jy
∗
i (1− x∗i y

∗
j )

(1− x∗jy
∗
i )(1− x∗i x

∗
jy
∗
i y
∗
j )

+
(z∗)2

1− (z∗)2
, (67)

⟨w↔ij ⟩θ⃗∗ =
(z∗)2

1− (z∗)2
. (68)

As for the WRM

⟨r⟩∗NSM =
⟨W↔⟩θ⃗∗
⟨W ⟩θ⃗∗

=
W↔(G∗)

W (G∗)
= r; (69)

this, in turn, implies that

ρ∗NSM =
r − ⟨r⟩∗NSM

1− ⟨r⟩∗NSM

≡ r − r

1− r
= 0. (70)
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The Reciprocated Strength Model (RSM)

Until now, we have defined three null models with no constraints about the reciprocity (the WRG, the WCM
and the BCM) and two null models with the total number of reciprocal links (thus implementing a global notion of
reciprocity), as a constraint.
Now, we can define more refined null models, by considering, as constraints, the local notion of reciprocity, as

defined by eq. 15. We start by considering the following hamiltonian:

H(G|θ⃗) = αW +
∑
i

δis
↔
i (71)

(where θ⃗ ≡ {α, δ⃗}). The resolution of the null model described by this hamiltonian is, again, considerably simplified
by considering the equivalent expression

H(G|θ⃗) =
∑
i<j

[αw→ij + αw←ij + (2α+ δi + δj)w
↔
ij ]; (72)

by summing over the states defined in eq. 52 we find the partition function

Z(θ⃗) =
∑
G∈G

e−H(G|θ⃗) =
∑

(w→ij , w
←
ij , w

↔
ij )

e−H(G|θ⃗) =
∏
i<j

(1 + x)

(1− x)(1− x2zizj)
(73)

(having posed x ≡ e−α, zi ≡ e−δi) the probability coefficient for the generic configuration G is

P (G) =
∏
i<j

xw→ij +w←ij +2w↔ij (zizj)
w↔ij (1− x2zizj)(1− x)

(1 + x)
=

=
∏
i<j

xwij+wji(zizj)
w↔ij (1− x2zizj)(1− x)

(1 + x)
(74)

and the likelihood function is, of course, the logarithm of the previous probability coefficient. The solution to this
optimization problem prescribes to solve the following system

{
s↔i (G∗) =

∑
j ̸=i⟨w↔ij ⟩θ⃗∗ = ⟨s↔i ⟩θ⃗∗ , ∀i

W (G∗) =
∑

i ̸=j⟨wij⟩θ⃗∗ = ⟨W ⟩θ⃗∗
(75)

where

⟨wij⟩θ⃗∗ =
x∗

(1− (x∗)2)
+

(x∗)2z∗i z
∗
j

1− (x∗)2z∗i z
∗
j

, (76)

⟨w↔ij ⟩θ⃗∗ =
(x∗)2z∗i z

∗
j

1− (x∗)2z∗i z
∗
j

. (77)

This model allows to solve for the x value analitically. In fact, by summing eq. 76 over the ordered pairs of nodes,
we find

W (G∗) =
N(N − 1)x∗

(1− (x∗)2)
+W↔(G∗) (78)

and by solving this second-order equation w.r.t. x, and taking the positive solution, we have the maximum-likelihood
estimation of this parameter. Also this model exactly reproduces the observed reciprocity, because W↔(G∗) =

⟨W↔⟩θ⃗∗ and W (G∗) = ⟨W ⟩θ⃗∗ . This means that ρRSM = r−⟨r⟩RSM

1−⟨r⟩RSM
≡ r−r

1−r = 0 and the local quantities as the

reciprocal strength sequence are now trivially reproduced.



14

The Weighted Reciprocated Configuration Model (WRCM)

The last step is the definion of a very general null model, to finally include those local quantities not fixed by the
NSM and the RSM. This implies a slight generalization of the formulas in the previous two paragraphs. The graph
hamiltonian becomes

H(G|θ⃗) =
∑
i

(αis
→
i + βis

←
i + γis

↔
i ) (79)

where, now, θ⃗ ≡ {α⃗, β⃗, γ⃗} and

s→i ≡
∑
j( ̸=i)

w→ij , s
←
i ≡

∑
j( ̸=i)

w←ij , s
↔
i ≡

∑
j(̸=i)

w↔ij (80)

with obvious meaning of the symbols (defined above). The partition function now becomes

Z(θ⃗) =
∏
i<j

(1− xixjyiyj)

(1− xiyj)(1− xjyi)(1− zizj)
≡

∏
i<j

ZWRCM
ij (θ⃗) (81)

and the likelihood is

lnP (G∗|θ⃗) =
∑
i<j

[(w→ij )
∗ ln(xiyj) + (w←ij )

∗ ln(xjyi) + (w↔ij )
∗ ln(zizj)− lnZWRCM

ij (θ⃗)]. (82)

The solution to this optimization problem, with respect to x⃗, y⃗ and z⃗, can be found by solving the following system:


s→i (G∗) =

∑
j ̸=i⟨w→ij ⟩θ⃗∗ = ⟨s→i ⟩θ⃗∗ , ∀i

s←i (G∗) =
∑

j ̸=i⟨w←ij ⟩θ⃗∗ = ⟨s←i ⟩θ⃗∗ , ∀i
s↔i (G∗) =

∑
j ̸=i⟨w↔ij ⟩θ⃗∗ = ⟨s↔i ⟩θ⃗∗ , ∀i

(83)

where

⟨w→ij ⟩θ⃗∗ =
x∗i y
∗
j (1− x∗jy

∗
i )

(1− x∗i y
∗
j )(1− x∗i x

∗
jy
∗
i y
∗
j )

, (84)

⟨w←ij ⟩θ⃗∗ =
x∗jy
∗
i (1− x∗i y

∗
j )

(1− x∗jy
∗
i )(1− x∗i x

∗
jy
∗
i y
∗
j )

, (85)

⟨w↔ij ⟩θ⃗∗ =
z∗i z
∗
j

1− z∗i z
∗
j

. (86)

By the definition of the WRCM model, we not only recover the result that the global reciprocity is equal to the
observed one (implying r ≡ ⟨r⟩WRCM and ρWRCM ≡ 0, also valid for the WRM): now, all the vertex-level, strength
sequences are exactly reproduced, impyling that the reciprocity is reproduced at a local level.
The WRCM is now powerful enough to allow for the analysis of the weighted motifs (to understand which all

the dyadic information has to be fixed) and for the community detection, especially for those networks where the
reciprocity plays an important role in shaping its structure.
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MODELS: A SUMMARY

The first six models explained in the previous sections can be recovered from the last and most general one (the
WRCM) by means of simple substitutions in the graph hamiltonian (as shown by the following table).

Non-reciprocal models
αi = βi = γ; γi = 2γ, ∀i WRCM → WRG
αi = βi; γi = αi + βi, ∀i WRCM → BCM
αi ̸= βi; γi = αi + βi, ∀i WRCM → WCM

Global-reciprocity models
αi ̸= βi; γi = αi + βi + γ, ∀i WRCM → WRM
αi ̸= βi; γi = γ, ∀i WRCM → NSM

Local-reciprocity models
αi = βi = α; γi = αi + βi + δi, ∀i WRCM → RSM

THE JACKKNIFE METHOD

The jackknife method [17, 18] is an expedient to mimic resampling and it is usually used to estimate the variance
of a given function of the population mean, f(⟨x⟩) (being x the random variable of interest). Doing this in the least
biased way, would imply to have a whole collection of samples. However, we observe only a single realization. How
can compensate for the lack of such observations? We can build a set of artificial samples by considering the following
sets:

sJ1 = {x2, x3 . . . xM},
sJ2 = {x1, x3 . . . xM},

...

sJM = {x1, x2 . . . xM−1}; (87)

that is a list of vectors for each of which a single observation has been removed. Then, we calculate the so called
jackknife averages

s̄1
J =

∑
i ̸=1 xi

M − 1
, s̄2

J =

∑
i ̸=2 xi

M − 1
. . . ¯sM

J =

∑
i ̸=M xi

M − 1
, (88)

the estimates of the first two moments

µJ
1 ≡

∑
i f(s̄i

J )

M
; µJ

2 ≡
∑

i f(s̄i
J)2

M
, (89)

from which the estimate of the jackkinfe-standard deviation follows

σJ
f ≃

√
µJ
2 − (µJ

1 )
2, (90)

and, finally [18],

σf(⟨x⟩) ≃
√
M − 1 σJ

f . (91)

How can we implement all this for our weighted networks? The quantity we are interested in is ρ. It is a function
of the expected value of r, taken over the whole grandcanonical ensemble: ⟨r⟩. By applying the jackknife method, we
can build L artificial samples by removing one weight at a time. By rewriting the above formulas, the final estimates
become



16

ρNM =
r − ⟨r⟩NM

1− ⟨r⟩NM
, (92)

σ2
ρNM

=
L∑
i

(ρi, NM − ρNM )2 =
σ2
r

(1− ⟨rNM ⟩)2
, (93)

where NM can be WRG, WCM , BCM , WRM , NSM , RSM , WRCM and where the sum over the index i means
that we are summing over the realizations with the i-th weight removed.

DESCRIPTION OF THE DATASET

In what follows a brief description of the analysed networks is given.
Interbank network. This is the network of the Italian interbank monetary exchanges [19], in the year 1999. We

analysed the monthy transactions for May (N = 215, L = 5269), June (N = 215, L = 5229), August (N = 215,
L = 5071), October (N = 215, L = 4712) and December (N = 215, L = 4685). Food webs. We analysed eight
different food webs [20–22], from different ecosystems (lagoons, marshes, lakes, bays, estuaries, grasses, rivers), with a
prevalence of aquatic habitats: Chesapeake Bay (N = 34, L = 177) and Mondego Bay (N = 46, L = 400), Everglades
Marshes (N = 69, L = 916), Maspalomas Lagoon (N = 24, L = 82), Michigan Lake (N = 39, L = 221), St. Marks
Seagrass (N = 54, L = 536), Crystal River Creek (N = 24, L = 125 and N = 24, L = 100). Neural networks.
We analysed the neural network [23] of C. Elegans (N = 297, L = 2345). Social networks. We analysed three
different social networks [24–30]: BK-Office, BK-Tech and BK-Fraternity. BK-Tech and BK-Fraternity are completely
connected (that is, L = N(N − 1)). Bernard and Killworth (and, later, also with the help of Sailer), collected five
sets of data on human interactions in bounded groups. BK-Office (N = 40, L = 1558) is the network of the human
interactions (conversations) frequency between the employees of a small business-office, as recorded at time intervals
of fifteen minutes (during two four-days periods), by an external observer, along a fixed route through the office
itself. BK-Tech (N = 34, L = 1122) is the network of the human interactions (conversations) frequency between
collaborators in a technical research group at a West Virginia University, as recorded at time intervals of half-hour
(during one five-days working week), by an external observer. BK-Fraternity (N = 58, L = 3306) is the network
of the human interactions (conversations) frequency between the students living in a fraternity at a West Virginia
College, as recorded by an external observer at time intervals of fifteen minutes (during a five-days week, twenty-one
hours per day) who walked through the public areas of the building. The World Trade Network. We analyse the
series of yearly bilateral data on exports and imports among world countries from the database in ref.[31], from 1948
to 2000 (N ∈ [82, 186] and L ∈ [2539, 19903]).
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