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1 Detailed information of the samples from the FCON 1000 

Project 

Database Quantity Male/Female Age (years) 
Atlanta 27 12/15 29.9 8.6 

Baltimore 23 8/15 29.3 5.5 
Beijing_Zang 193 75/118 21.2 1.8 

Berlin_Margulies 23 12/11 30.1 5.1 
Cambridge_Buckner 192 71/121 21.1 2.3 

Cleveland 31 11/20 43.5 11.1 
Dallas 24 12/12 42.6 20.1 
ICBM 36 15/21 38.2 17.6 

Leiden_2180 10 10/0 23.4 2.5 
Leiden_2200 19 11/8 21.7 2.6 

Leipzig 37 16/21 26.2 5.0 
Milwaukee_b 46 15/31 53.5 5.8 

Munchen 11 6/5 66.6 3.4 
NewHeaven_a 18 10/8 31.6 10.3 
NewHeaven_b 16 8/8 26.9 6.3 

Newark 18 9/9 24.3 4.0 
Orangeburg 20 15/5 40.7 11.0 

Oulu 22 7/15 21.3 0.6 
PaloAlto 17 2/15 32.5 8.1 

Pittsburgh 14 8/6 36.0 8.6 
Queensland 18 11/7 26.3 3.7 
Saintlouis 27 13/14 25.3 2.3 

Whole Database 842 357/485 28.3 12.3 
 

Table S1. Detailed information of 22 databases from the FCON 1000 Project 
 
 
 
 
 
 
 
 
 
 
 

 



2 Names and abbreviations of AAL brain regions 

Names and abbreviations of Regions Of Interest (ROIs). 

Region Abbr. Region Abbr. 

Amygdala AMYG Orbitofrontal cortex (middle) ORBmid 

Angular gyrus ANG Orbitofrontal cortex (superior) ORBsup 

Anterior cingulate gyrus ACG Pallidum PAL 

Calcarine cortex CAL Paracentral lobule PCL 

Caudate CAU Parahippocampal gyrus PHG 

Cuneus CUN Postcentral gyrus PoCG 

Fusiform gyrus FFG Posterior cingulate gyrus PCG 

Heschl gyrus HES Precentral gyrus PreCG 

Hippocampus HIP Precuneus PCUN 

Inferior occipital gyrus IOG Putamen PUT 

Inferior frontal gyrus (opercula) IFGoperc Rectus gyrus REC 

Inferior frontal gyrus (triangular) IFGtriang Rolandic operculum ROL 

Inferior parietal lobule IPL Superior occipital gyrus SOG 

Inferior temporal gyrus ITG Superior frontal gyrus (dorsal) SFGdor 

Insula INS Superior frontal gyrus (medial) SFGmed 

Lingual gyrus LING Superior parietal gyrus SPG 

Middle cingulate gyrus MCG Superior temporal gyrus STG 

Middle occipital gyrus MOG Supplementary motor area SMA 

Middle frontal gyrus MFG Supramarginal gyrus SMG 

Middle temporal gyrus MTG Temporal pole (middle) TPOmid 

Olfactory OLF Temporal pole (superior) TPOsup 

Orbitofrontal cortex (inferior) ORBinf Thalamus THA 

Orbitofrontal cortex (medial) ORBmed  

 
Table S2. Names and abbreviations of AAL brain regions 

 
 
 
 
 
 
 
 



3 Entropy property proofs 

3.1 Why the discrete entropy can take place of the relative entropy? 

In the main text, the entropy is defined as the relative entropy1, which is the KL 
(Kullback-Leibler) divergence from the correlation distribution to a reference 
measure (the Lebesgue measure) (B) . In our work, this can also be 
considered as a differential entropy1. When calculating, however, we use an 
entropy appropriate to a discrete distribution (that results from binning the 
data). We shall refer to this as `the discrete entropy . Here we give the reasons 
why we can use the discrete entropy to take the place of the relative entropy, 
the differential entropy, and does not lead to errors. 
Proof: 
Let P and m denote the correlation distribution and the reference measure. 
We assume that P(dx) = f(x)m(dx) . We then define B  as the Lebesgue 
measure in [ 1,1] and  as the counting measure that separate [ 1,1] 
evenly into k parts, with a sum of 2. Thus, D (P||B) = ( ) log ( ) ( ) = ( ) log ( ) ,           (1) 

and D (P|| ) = ( ) log ( ) ( ) = log( ) ,           (2) 

where P = ( )/( ) / .              (3) 

Since  log = log( ) log( )        (4) 

and log( ) is a constant, we need only calculate log( ),                (5) 
if we compare the difference of KL divergence D (P|| ) with two different 
correlation distributions, P  and P . In addition, log( )  is the 
discrete Shannon entropy2. As the  will converge to B with k increasing, D (P|| ) also converges to D (P||B) as k increases. Therefore, we can 
use the discrete entropy log( ) to replace the relative entropy in our 
story without errors. 
 



3.2 Entropy of the whole brain is not less than the average of every single 

brain region s entropy. 

Method I: Calculate the entropy directly using all 4005 brain region pairs. 
Method II: Calculate the entropy of every brain region first, then average them. 
Method I calculates the entropy of the whole brain, while Method II calculates 
the average of every single brain s entropy. 
The entropy obtained by Method I is not less than that of Method II. 
Proof:  
Let [ 1,1] be separated into n parts and let  stand for the probability that 
the correlation of the pairs connecting the j th brain region occurs in the i th 
part of [ 1,1]. Define H(P) as the entropy calculated by Method I. Thus, H(P) = H , , .           (6) 

Since the entropy H is a concave function of its argument3,  H( , , ) ( , ).        (7) 

The right hand side of the last inequality is simply the entropy calculated by 
Method II, where every term in the sum is the entropy of a single brain region. 
Therefore, the entropy extracted by Method 1 cannot be not less than that of 
Method II. Moreover, equality only happens when all brain regions have the 
same entropy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.3 Entropy will grow higher with more intervals in [-1,1] 

In the previous parts of this Supplementary Information, we separated [ 1,1] 
into 20 intervals. If we separate it into more parts, the entropy will be larger. 
Proof: 
According to the property of Shannon entropy,  H( , , , , , , ) = H( + + , , + + ) + ( + + ) ( , , ). (8) 

The left side of the last equality is the entropy with mn parts in [ 1,1], while 
the first term in the right side of the equality is the entropy with n parts. 
Moreover, the last term of the equality is not less than zero. Thus, the entropy 
with mn parts is larger than that with n parts. In other words, if there are 
more parts in [ 1,1], the entropy will be higher. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Entropy vs choice of atlas 

4.1 Atlases with different numbers of brain regions 

In the main text, the atlas we used was the AAL template, with 90 brain regions. 
We have investigated the relationship between atlas choice, the number of 
brain regions and the value of the functional entropy. We used different atlases 
with various numbers of brain regions on one sample, which was from a young 
healthy male, where the quality of the MRI was quite good. Figure S1 shows 
the entropy results from different atlases (red nodes) and a fit of the data by an 
exponential (blue line). The relationship between entropy and the number of 
brain regions, N, is Entropy = 1.64N . + 3.305. According to this equation, 
the entropy asymptotically approaches a constant as the number of brain 
regions tends to infinity. The limiting value of the functional entropy of this 
individual is 3.305.  

 
Figure S1  
Entropy versus the number of brain regions. The red nodes are from an entropy 
calculation based on atlases with different numbers of brain regions. The blue line is a fit 
through the nodes from an exponential function. 

  
Note that not all samples were suited to calculations of the entropy, using more than 2000 
brain regions, because more brain regions lead to more noise. Thus, if we want to extract 
an accurate entropy with more brain regions, we need high quality MRI samples. Not all of 
the samples have sufficient quality, e.g., some samples are from 1.5T MRI or are affected 
by some head motions. 
 



4.2 Atlases with a fixed number of brain regions 

We further note that if we use different templates, but fix the number of brain 
regions, the results are quite stable. To see this consider Figure S2, where we 
have chosen the AAL atlas and separated it in different ways. We have 
considered 10 different atlases (all have 1024 brain regions) and extract the 
entropy of 20 normal young individuals, based on the various atlases. We have 
found no significant entropy differences for each sample, with various atlases. 
In Figure S2, different symbols label the entropy from different brain region 
atlases. The difference between the entropy from various atlases is sufficiently 
small that we need to amplify the scale to distinguish them. Thus, the entropy 
results are quite stable. 
 

 
Figure S2 
10 different atlases were chosen to separate the AAL atlas into more parts. We calculated 
the entropy in samples from 20 normal people with ages in the range 20 to 26. There are 
no significant differences with various atlases. 
 
 
 
 
 
 



5 Functional entropy and the mean correlation coefficient 

In the main text we introduced the idea of functional entropy. The functional 
entropy in our work can be considered as a kind of second order moment of 
the correlation coefficient distribution. In the main text, we have shown that the 
entropy is closely related to age. Originally, we used the mean correlation 
coefficient, as has been commonly used, and which can be considered as a 
first order moment of the correlation coefficient distribution. However, the mean 
correlation coefficient does not significantly change with age (results for this 
are shown in Figure S3). The data are similar to those we apply in the entropy 
study. The blue nodes are for males, the red ones for females. If we remove 
data of the youngest and oldest, say younger than 12 and older than 72, a plot 
of the mean correlation coefficient against age has a slope for both males and 
females, which is zero to five significant figures. The correlations between the 
mean correlation coefficient and age are -0.0537 for males and 0.0279 for 
females with p values of 0.2262 and 0.5118 respectively (Student's 
t-distribution for the Pearson correlation coefficient, with 610 and 634 degrees 
of freedom, respectively). Thus the first order moment appears to play no role 
in a study of ageing. We thus considered a second order moment, namely the 
functional entropy in our investigations.  
 

 
Figure S3  
Mean correlation coefficient versus age. The red nodes are from females while blue nodes 
come from males.  
 
Moreover, brain signals are found to demonstrate increased variability with 
age4, 5. We note that information entropy has a large value when there is a high 
level of randomness6 and higher randomness is equivalent higher variability7. 
The above suggests that the notion of entropy will be useful in investigating the 



neurobiology of ageing. Thus, we have focused on the functional entropy of 
the brain in  the present study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Functional entropy vs different running windows 

In the main text, we used an age window of 25 years to determine Fig. 2b. 
Here, we demonstrate that choosing windows from 19 to 30 years do not 
significantly affect any conclusions we draw. In Figure S4, we show the results 
with an age window ranging from 19 to 30 years. We conclude that the results 
are stable and not greatly affected by the age window size. The crossover age 
is 50 years in all panels. 
 

 
Figure S4 
The running average of the functional entropy, with averaging performed over differently 
sized age windows. The numbers in the upper left corners of each figure are the size of 
the window, in years.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 Fucntional entropy in schizophrenia patients 

In the main text, we focused on normal individuals. Additionally, we can 
determine the functional entropy of individuals with mental disorders, such as 
schizophrenia. To proceed, we selected a sample from schizophrenia patients, 
with a mean age of 24 years. To compare the differences between normal 
people and schizophrenia patients, we selected another two groups from our 
original dataset. One is from normal people with a mean age of 24 years. The 
other is from elderly people with a mean age of 69 years. The distribution of all 
the three groups, by gender, is approximately half males and half females. We 
list the correlation coefficient distributions in Figure S5, where blue represents 
normal young individuals, red represents schizophrenia patients and white 
shows elderly people. It can be seen that the distribution of correlation 
coefficients for schizophrenia patients is narrower than that of normal people, 
while the distribution of correlation coefficients of the elderly people is broader, 
as claimed in the main text. In the language of functional entropy, the 
schizophrenia patients have lower entropy while the elderly people have 
higher entropy. As shown in some surveys8, older people have a low chance of 
getting schizophrenia. The entropy difference between elderly people and 
schizophrenia patients may be the origin of this phenomenon, if the entropy 
difference between different classes of individuals plays the role of a risk 
difference. This point will be discussed in detail elsewhere. 
 

 
Figure S5 
A histogram of the correlation coefficients of three groups of individuals: normal young 
(blue), normal elderly (white) and schizophrenia patients, denoted SCZD (red). The 
groups of normal young individuals and schizophrenia patients both have a mean age of 
24 years, while the mean of the elderly group is 69 years. The gender distribution of the 
three groups is approximately half males and half females. 



8 Functional entropy in the left, right and inter 

hemispheres. 

In the main text, we focused on the functional entropy, based on the whole 
brain (from all 4005 pairs of different brain regions). Moreover, we can consider 
the functional entropy in the inter-hemisphere and intra-hemisphere. Similarly, 
we also apply the AAL atlas with 90 brain regions. Thus, in the left and right 
hemisphere, we have 990 (C ) pairs, while there exist 2025 (45x45) pairs in 
the inter-hemisphere connections. Using the same calculational method for the 
functional entropy, we have also determined the functional entropy in the left, 
right and inter hemispheres. As shown in Figure S6 (left-hemisphere), Figure 
S7 (right-hemisphere) and Figure S8 (inter hemisphere), we can extract similar 
results to the ones based on whole brain entropy. The functional entropy in the 
left, right and inter hemisphere will also increase with ageing with a crossover 
at age 50. In addition, the functional entropy based on the inter hemisphere is 
lower than that based on the intra hemisphere, since the inter hemispheric 
functional and physical connections are lower than those of the intra 
hemisphere, this leads to lower correlation coefficients in the inter hemisphere. 
Moreover, the correlation between the functional entropy based on the inter 
hemisphere and age are lower than ones based on the intra hemisphere.  
 

 
Figure S6 Functional entropy (of left hemisphere) vs age.  
Panel (a): Functional entropy (of left hemisphere) of individuals versus their age 
(averaged over males and females). A mean increase of the entropy of 0.0011 bits per 
year was found from the data. Panel (b): A plot of the running average of the entropy, with 
a window of width 25 years, vs age. Note that there is a crossover in the male/female 



entropies in the vicinity of 50 years. Panels (c) and (d): Entropy vs age of males and 
females with rates of increase of 0.0014 and 0.0014 bits per year, respectively. For the 
combined male and female groups, the linear correlation between entropy and age is 
statistically significant as indicated by their p values (1.29 x 10-9, 4.02 x 10-12 and 5.41 x 
10-11, using Student's t-distribution for the Pearson correlation coefficient, degrees of 
freedom: 1246, 610 and 634, respectively). 

 
Figure S7 Functional entropy (of right hemisphere) vs. age.  
Panel (a): Functional entropy (of right hemisphere) of individuals vs their age (averaged 
over males and females). An average increase of the entropy of 0.0012 bits per year was 
found from the data. Panel (b): A plot of the running average of the entropy, with a window 
of width 25 years vs age. Note that there is a crossover in the male/female entropies in the 
vicinity of 50 years. Panels (c) and (d): Entropy vs age of males and female with rates of 
increase of 0.0015 and 0.0016 bits per year, respectively. For the combined male and 
female group, the linear correlation between entropy and age is statistically significant as 
indicated by their p values (1.20 x 10-6, 2.27 x 10-8 and 2.57 x 10-9, using Student's 
t-distribution for the Pearson correlation coefficient, degrees of freedom, 1246, 610 and 
634, respectively). 
 



 
Figure S8 Functional entropy (of inter hemisphere) vs age.  
Panel (a): Functional entropy (of inter hemisphere) of individuals vs their age (averaged 
over males and females). An average increase of the entropy of 0.0011 bits per year was 
found from the data. Panel (b): A plot of the running average of the entropy, with a window 
of width 25 years vs age. Note that there is a crossover in the male/female entropies in the 
vicinity of 50 years. Panels (c) and (d): Entropy vs age of males and female with an rate of 
increase of 0.0014 and 0.0010 bits per year, respectively. For the combined male and 
female group, the linear correlation between entropy and age is statistically significant as 
indicated by their p values (1.93 x 10-4, 1.45 x 10-5e and 9.06 x 10-4, using Student's 
t-distribution for the Pearson correlation coefficient, degrees of freedom: 1246, 610 and 
634, respectively). 
  



9 Increasing functional entropy in a single database 

In the main text, we combined 26 databases together to obtain an increase of 
functional entropy with age. To remove effects of any differences between 
different databases, we have carried out tests, such as removing some 
databases, to check the robustness of our results. We obtained very similar 
results, including an increase of functional entropy with age. Additionally, the 
crossover at age 50 persists. Additionally, we can find the increase functional 
entropy in the data from a single database. In our dataset, there exist two 
databases covering an age range of more than 50 years. They are the ICBM 
and Taiwan databases. As shown in Figure S9 and Figure S10, the data in the 
two databases also show an increasing functional entropy with age. Since the 
sample numbers of the two databases are 36 and 48, the correlations between 
the functional entropy and age are not statistically significant. The results for 
these databases partially certify the notion of increasing functional entropy with 
age. 
 

 
Figure S9 Functional entropy of individuals versus their age from ICBM 
database 



 
Figure S10 Functional entropy of individuals vs their age from the Taiwan 
database 
  



10 Age distribution of our dataset 

 
Figure S11 Age distribution of our datasets. 
The sample number shows the number of samples with the same age. Most samples are 
from people in their twenties. Moreover, we have at least one sample in every year from 6 
to 76 years old. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 Computational model of a brain network 

In the main text, we used a computational model from Deco et al s work9 to 
verify our result about functional entropy. 
 

11.1 Neuron dynamics 

The global structure of the model is illustrated in Figure S12. Every brain 
region served as a node in a large scale network, which consists of a 
population of excitatory pyramidal neurons and a population of GABAergic 
inhibitory neurons, which are all-to-all connected. The communication between 
every two nodes is through synaptic connections between excitatory neurons 
in those areas.  
For each brain area, an integrate-and-fire neuron model with excitatory (AMPA 
and NMDA) and inhibitory (GABA) synaptic receptors was applied. The 
dynamics of the membrane potential V(t) are described by: ( ) = ( ( ) ) ( ),   if ( ) <   ( ) = ,                       if ( )                    (9)                       
The total synaptic current  is given by the sum of glutamatergic AMPA 
external background excitatory currents ( , ), AMPA ( , ) and 
NMDA ( , ) recurrent excitatory currents, and GABAergic recurrent 
inhibitory currents ( ): = , + , + , + ,                         (10) 
where 

, (t) = , (V(t) ) , ( ),                       

, (t) = , (V(t) ) , ( ),                

, (t) = , ( ( ) )( ) , ( ),                (t) = (V(t) ) ( ).                         (11) 

The gating variables ( ) are the fractions of open channels of neurons and 

are given by: , ( ) = , ( ) + ( ),                               , ( ) = , ( ) + ( ),                        



, ( ) = , ( ), + , ( ) 1 , ( ) ,            , ( ) = , ( ), + ( ),                          ( ) = ( ) + ( ),                                   (12) 

The sums over the k index represent all of the spikes emitted by presynaptic 

neuron j (at times ). The description and value of most parameters are 

shown in Table S3.  
 
Each local area contains 100 excitatory neurons and 100 inhibitory neurons. 
The connection strengths between and within the populations are determined 
by dimensionless strength . Illustrated in Figure S12, there are 4 different 
intra-connection strength: �excitation (AMPA and NMDA)  within excitatory 
neurons  ;� excitation (AMPA and NMDA) from excitatory neuron to 
inhibitory neuron = 1 ; � inhibition (GABA)  from inhibitory neuron to 
excitatory neuron = 1 ; � inhibition (GABA)  within inhibitory neurons = 1. We vary  systematically to see the implications for the global 
functional entropy. The inter-regional connection strength  is 
proportional to  number of fibers linking every two regions. The 
neuroanatomical matrix whose element is fiber number, is obtained by 
Diffusion Tensor Imaging. Here, we used averaged structural matrix from 46 
healthy people, which is showed in Figure S13. 
 
All neurons always received an external background input from = 800 
external neurons emitting independent Poisson spike trains at a rate of 3 Hz. 
More specifically, for all neurons inside a given population , the resulting 
global spike train, which is still Poissonian, had a time-varying rate ( ), 
governed by ( ) = ( ( ) ) + 2 ( ),                           (13) 

where = 300 , = 2.4 , = 0.2 is the standard deviation of ( ), 
and ( ) is normalized Gaussian white noise 
.  

11.2 BOLD signal 

The simulation of the fMRI BOLD signal is computed by means of the 
Balloon-Windkessel hemodynamic model10. The BOLD-signal of each region 
is driven by the level of neuronal activity summed over all neurons in both 
populations (excitatory and inhibitory populations) in that particular region. In 
all our simulations, neuronal activity is given by the rate of spiking activity in a 
time window of 1 ms. In brief, for the th region, neuronal activity z causes 



an increase in a vasodilator signal s that is subject to autoregulatory feedback. 
Inflow f  responds in proportion to this signal with concomitant changes in 
blood volume v and deoxyhemoglobincontent q . The equations relating 
these biophysical variables are: ( ) = z k s (f 1), 

( ) = s , 

( ) = f / , 

( ) = ( ( ) / ) /
,                                      (14) 

where  is the resting oxygen extraction fraction. The BOLD signal is taken to 
be a static nonlinear function of volume and deoxyhemoglobin that comprises 
a volume-weighted sum of extra- and intravascular signals: y = 7 (1 q ) + 2 1 + (2 0.2)(1 v ) ,                 (15) 

where V = 0.02  is the resting blood volume fraction. The biophysical 
parameters were taken as = 0.2, k = 0.65, = 0.41, = 0.98, =0.32, = 0.34.  
 

11.3 Simulation of the functional entropy 

After we obtained the simulated BOLD time series, the global signal (average 
over all regions) was regressed out. Figure S14 shows typical temporal 
evolution of the simulated BOLD signal (after regression) for several brain 
regions. We then calculated the simulated functional connectivity by 
calculating the correlation matrix of the BOLD time series. Figure S15 and S16 
plot an example of stimulated functional connectivity matrix and corresponding 
distribution of correlation, respectively. Using the calculation method of 
functional entropy, we could compare the simulated functional entropy with that 
from fMRI data.  
When we increase intra-excitatory connection strength  with other 
parameters fixed, the firing rate of excitatory neurons in the whole brain 
increase. (Firing-rate amplification of inhibitory neurons can be ignored 
compared to that of excitatory neurons.) Based on the fact that the firing rate of 
one excitatory neuron, in resting state, is about 3 Hz and that the model of 
one neuron here could also described the dynamics of several neurons or a 
neuron mass, we can calculate the actual excitatory neuron number in each 
brain region by the 100 times mean firing rate divided by 3Hz. (Here we just 
use the averaged firing rate of all excitatory neurons in the whole brain, not in 
each brain region.) Figure S17 illustrates the positive correlation between 
actual excitatory neuron number and intra-excitatory connection strength. The 



two red dashed lines show the range of connection strength [1.78,1.81], which 
makes the corresponding entropy match the human data. Based on the least 
squares line (black dashed line), the neuron number range is limited to 
[888,1130]  (indicated by green text arrows). 
 

 
Table S3.Neural and synaptic parameters 

 
 
 

 Excitatory 

neuron 
Inhibitory 

neuron 
Synapse 

Membrane capacitance  0.5 nF 0.2 nF Excitatory reversal potential  0 mV 

Leak conductance       25 nS 20 nS Inhibitory reversal potential  70 mV 

Resting potential  70 mV 70 mV Decay time  2 ms 
Threshold potential  50 mV 50 mV Rise time ,  2 ms  

Reset potential  55 mV 55 mV Decay time ,  100 ms  
Refractory time  2 ms 1 ms Decay time  10 ms 
Synaptic 

conductance 
,  2.496 nS 1.944 nS  0.5 kHz ,  0.104 nS 0.081 nS  0.062 ,  0.327 nS 0.258 nS  0.28 

 2.45 nS 1.2 nS  



 
Figure S12 
Schematic representation of the brain network. Each brain area is comprised of excitatory 
neurons (red triangles) and inhibitory interneurons (blue circles). ���� represent the 
four different intra-connection during each brain area, and � describes the 
inter-connection between different brain area, which depends on DTI. 
 



 
Figure S13 
Neuroanatomical connectivity matrix, obtained by DTI after averaging across 46 human 
subjects. 

 



Figure S14 
Simulated BOLD signal for thalamus (blue), Inferior temporal gyrus (red) and Insula(green) 
when intra-excitatory connection strength = 1.81.      

 
Figure S15 
Simulated functional connectivity matrix when intra-excitatory connection strength = 1.81. 

 



Figure S16 
The distribution of correlation coefficients when the intra-excitatory connection strength = 1.81. 

 
 

 
Figure S17 
Excitatory neuron number versus intra-excitatory connection strength .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12 Functional entropy before human maturity 

In this part, we focus on the increase functional entropy bit per year before 
human maturity. As shown in Figure S18, the increase functional entropy bit 
before 25 years old are higher than that during 25 and 50 years old in both 
males and females. For males, the increase functional entropy bit per year is 
0.0014 bit/year before 25 years old and 0.0004 bit/year during 25 and 50 years 
old, while the females hold 0.0023 bit/year and 0.0000 bit/year. In conclusion, 
functional entropy grows higher during childhood and adolescence, and the 
increasing functional entropy rate will become lower after maturity. 
 

 
Figure S18 
The figure represents the functional entropy trend with ageing. The left panel is from 
males, while the right one comes from females. The two green dashed lines in each panel 
stand for age 25 and 50. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 Functional entropy with estrogen in females  

In this part, we consider the relationship with the functional entropy and the 
estrogen.  Other studies11, 12 have reported that estrogen protects brain, so 
we compare the functional entropy trend before and after menarche. Since the 
average of menarche is 13 years old13, we separate the samples before 
menopause into two groups, before and after 13 years old. As shown in Figure 
S19, females before 13 years old hold a higher increasing functional entropy. 
In particular, functional entropy increases 0.0118 bits per year before 13, but 
0.0007 bit/year after that. This may be related to the estrogen level in females, 
which implies that estrogen protects brain. 
 

 
Figure S19 
The figure represents the functional entropy trend with ageing in females. The two green 
dashed lines stand for age 13 and 50. 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 Similar entropy gender pattern found in gray matter 

volume size 

We have 496 samples (252 males/ 244 females) with T1-image data. We 
applied the Voxel-based morphometry14 (VBM8) to extract the gray matter size 
of all the AAL brain regions. As shown in Figure S20, the gray matter size will 
decrease with ageing in both males and females. Now we calculate the 
decrease cubic millimeter per year by linear regression analysis. Since 50 
years old is a quite important threshold in the main text, we separate the 
samples into two groups, lower and older than 50 years old. For males, the 
gray matter size decreases 1620 mm3 per year before 50 and 3090 mm3 per 
year after 50, while that of females decreases 1930 mm3 per year before 50 
and 2960 mm3 per year after 50. The decrease size will be larger in the group 
after 50 than that before 50 no matter in males or females. It should be 
emphasized that the decrease size per year in females is larger than that in 
males before 50, while this will go to the opposite direction after 50 years old. 
This is quite similar with the pattern of the entropy in males and females. 
 

 
Figure S20 
The figure represents the gray matter size trend with ageing. The left panel is from males, 
while the right one comes from females. 
 



  



15 Results with flatting age distribution 

As shown in Section 10, the age distribution of the dataset in this paper is not 
flat, which may leads to some errors. Thus, we randomly selected some 
subjects with flatting age distribution (six individuals per age), and found that 
the significant results were still present, functional entropy increased with age, 
as shown in Figure S21. 
 

 
Figure S21 
With different randomly selected subjects with flatting age distribution, the significant 
results were still present, functional entropy increased with age. 
  



16 Understanding the functional entropy: a mathematical 

description 

In this subsection, we present a mathematical description of the functional 
entropy defined in the main text. Let x(t) be a resting fMRI time course of the 
brain. This is defined on a function space (with respect to time), , which is a 
subspace of the Lebesgue function space L ( , ), where T can be either the 
continuous time set [0, S] or the discrete time set {1,2, , S}.  We assume 
that a probability measure, P, is defined on  with its -algebra  induced by 
the norm of L ( , ). In the following, we need not know the explicit forms of 
the probability distributions of the random functions, to define our entropy. One 
particular fMRI time course from one of the regions of interest, which were 
considered, is regarded as a state point in the probability space { , , P}. Let x( ) and y( ) be two independent random time courses following the same 
distribution. Their correlation coefficient can be regarded as a functional with 
respect to : (x, y) = ( ( ) )( ( ) )( ) ( )                (16) 

with x = ( ) , std(x) = [ ( ) ] . The functional entropy we 

defined is actually that of the random (scale) variable (x, y) that is induced by 
the two independent random functions x( ) and y( ) . Thus, we write the 
entropy as H( (x, y)). The entropy of a region can be regarded as the specific 
conditional entropy of (x, y) when y is fixed, namely H( (x, y)|y = y( )). The 
mean of a region s entropy can be regarded as the conditional entropy of (x, y) with respect to the random function y(t), and we write this entropy as H( (x, y)|y). 
 
To specify the meaning of the definition of functional entropy given, we restrict 
the function space  to all periodic functions with the same constant 
frequency, . Then x(t) can be written as x(t) = a cos( t + ) and y(t) 
can be written as y(t) = b cos( t + ). For sufficiently large S, the mean of 
both x and y are approximately zero. Their correlation coefficient, as S , 
becomes (x, y) = [ ( ) ( )][ ( )] [ ( )] cos( ).       (17) 

Additionally, (x, y) = cos( ) also holds if S is an integer multiple of the 
period. Thus, the correlation coefficient between two periodic oscillations with 
the same period is the cosine of the phase difference. In this scenario, the 
function space can be embedded in a phase space (a one dimensional torus) 



 (namely,[0,2 ]). Let { , F, P} be the probability space induced by { , , P}, 
let  and  be two independent random variables in it, and let z = cos(). Then, the entropy of z is H(z), and the region s entropy is the specific 
conditional entropy, H(z| = ) , and the mean regional entropy is the 
conditional entropy H(z| ). Note that in the definition of the entropy, the 
Lebesgue measure of z = cos( ) is the trivial one defined in [-1, 1], 
denoted by m ( ) . The difference between the entropy of z and its 
conditional entropy is clearly the mutual information between  and z: I(z, ) = H(z) H(z| ).                (18) 
Let = | |, then, z is equivalent to , considering the torus  with 2 + . With a properly-defined Lebesgue measure of , i.e., the measure 
induced by that of z, namely m ( ), the entropy and conditional entropy of 

then equal those of z. Let us pick the measures of these variables, in order to 
define the (relative) entropy. That is: First, pick a joint measure of ( , ) 
(denoted by m ( , ) = ( ) ( ), a joint measure of two independent 
and identical measures, where ( )  is determined below), and a joint 
measure of ( , ), denoted by m ( , ( )), such that they are 
preserved through the transformation between them, (i.e., letting T be the 
transform from ( , ) to ( , ), then for any measurable set A in the 
space of ( , )), m ( ) = ( ( )) holds); Second, pick the measure ( , = | |) induced by m ( , ) and denoted by m ( , ); Finally, ( ) is chosen to guarantee that the embedded measure of  equals to m ( ). Thus, we have 2D m( ) = D , m ( , ) = D , m ( , ) D , m ( , )= D( | m ( , )) + D( m( )).         (19) 
We conclude that D( | m ( , )) D( m( )). This implies that the mean 
regional entropy is a lower-bound of the entropy of the phase random variable 
under the measure preserving transformation. In addition, if different measures 
were picked, there would be constant differences in the above inequality 
induced by the expectation of the derivative of different Lebesgue measures 
(see the relative entropy part above in 3.1). 
 
In particular, if we pick the trivial measure on the torus, , and let f( ) be the 
probability density function (pdf) of , then after simple algebra, we have the 
conditional pdf of  with respect to  as p( | ) = f( ) + f( + ) 0.           (20) 
We then have H( | ) = E{log{[f( ) + f( + )]}.            (21) 
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18 Appendix: Matlab code of entropy 

Code of the entropy of the whole brain: 
% Entropy of the whole brain 

function [Entropy_value]=Brain_Entropy(CorrMat) 

% Input is the correlation matrix of the resting state BOLD signal. 

% Output is the entropy value. 

IntervalNumber=20;% Interval number in [-1,1] 

  

% Extract the upper triangular matrix of CorrMat 

CorrMatSize=size(CorrMat); 

CorrMatLength=CorrMatSize(1); 

CorrList=zeros(1,CorrMatLength*(CorrMatLength-1)/2);% Correlation list 

k=0; 

i=1; 

while i<=CorrMatLength 

    j=i+1; 

    while j<=CorrMatLength 

        k=k+1; 

        CorrList(1,k)=CorrMat(i,j); 

        j=j+1; 

    end 

    i=i+1; 

end 

  

% Entropy calculation 

EntropyList=zeros(IntervalNumber,1); 

i=1; 

while i<=IntervalNumber 

    TempPosi1=find((CorrList>-1+2/IntervalNumber*(i-1))& (CorrList<=-1+2/IntervalNumber*i)); 

    EntropyList(i,1)=length(TempPosi1); 

    i=i+1; 

end 

EntropyList=EntropyList./sum(EntropyList); 

TempPosi2=find(EntropyList~=0); 

Entropy_value=-sum(EntropyList(TempPosi2).*log(EntropyList(TempPosi2)))/log(2); 

 

Code of the entropy of the inter hemisphere: 
% Entropy of the inter hemisphere (The odd rows of the correlation matrix is from the left hemisphere.) 

function [Entropy_value]=Brain_Entropy_Inter(CorrMat) 

% Input is the correlation matrix of the resting state BOLD signal. 

% Output is the entropy value. 

IntervalNumber=20;% Interval number in [-1,1] 



  

% Extract the inter part of CorrMat 

 CorrMatSize=size(CorrMat); 

CorrMatLength=CorrMatSize(1); 

CorrList=zeros(1,CorrMatLength*CorrMatLength/4);% Correlation list 

k=0; 

i=1; 

while i<=CorrMatLength/2 

    j=1; 

    while j<=CorrMatLength/2 

        k=k+1; 

        CorrList(1,k)=CorrMat(2*i-1,2*j); 

        j=j+1; 

    end 

    i=i+1; 

end 

  

% Entropy calculation 

EntropyList=zeros(IntervalNumber,1); 

i=1; 

while i<=IntervalNumber 

    TempPosi1=find((CorrList>-1+2/IntervalNumber*(i-1))& (CorrList<=-1+2/IntervalNumber*i)); 

    EntropyList(i,1)=length(TempPosi1); 

    i=i+1; 

end 

EntropyList=EntropyList./sum(EntropyList); 

TempPosi2=find(EntropyList~=0); 

Entropy_value=-sum(EntropyList(TempPosi2).*log(EntropyList(TempPosi2)))/log(2); 

 

Code of the entropy of the left hemisphere: 
% Entropy of the Left hemisphere (The odd rows of the correlation matrix is from the left hemisphere.) 

function [Entropy_value]=Brain_Entropy_Left(CorrMat) 

% Input is the correlation matrix of the resting state BOLD signal. 

% Output is the entropy value. 

IntervalNumber=20;% Interval number in [-1,1] 

  

% Extract the left part of CorrMat 

CorrMatSize=size(CorrMat); 

CorrMatLength=CorrMatSize(1); 

CorrList=zeros(1,CorrMatLength*(CorrMatLength/2-1)/4);% Correlation list 

k=0; 

i=1; 

while i<=CorrMatLength/2 

    j=i+1; 



    while j<=CorrMatLength/2 

        k=k+1; 

        CorrList(1,k)=CorrMat(2*i-1,2*j-1); 

        j=j+1; 

    end 

    i=i+1; 

end 

  

% Entropy calculation 

EntropyList=zeros(IntervalNumber,1); 

i=1; 

while i<=IntervalNumber 

    TempPosi1=find((CorrList>-1+2/IntervalNumber*(i-1))& (CorrList<=-1+2/IntervalNumber*i)); 

    EntropyList(i,1)=length(TempPosi1); 

    i=i+1; 

end 

EntropyList=EntropyList./sum(EntropyList); 

TempPosi2=find(EntropyList~=0); 

Entropy_value=-sum(EntropyList(TempPosi2).*log(EntropyList(TempPosi2)))/log(2); 

 

Code of the entropy of the right hemisphere: 
% Entropy of the Right hemisphere (The odd rows of the correlation matrix is from the left hemisphere.) 

function [Entropy_value]=Brain_Entropy_Right(CorrMat) 

% Input is the correlation matrix of the resting state BOLD signal. 

% Output is the entropy value. 

IntervalNumber=20;% Interval number in [-1,1] 

  

% Extract the right part of CorrMat 

CorrMatSize=size(CorrMat); 

CorrMatLength=CorrMatSize(1); 

CorrList=zeros(1,CorrMatLength*(CorrMatLength/2-1)/4);% Correlation list 

k=0; 

i=1; 

while i<=CorrMatLength/2 

    j=i+1; 

    while j<=CorrMatLength/2 

        k=k+1; 

        CorrList(1,k)=CorrMat(2*i,2*j); 

        j=j+1; 

    end 

    i=i+1; 

end 

  

% Entropy calculation 



EntropyList=zeros(IntervalNumber,1); 

i=1; 

while i<=IntervalNumber 

    TempPosi1=find((CorrList>-1+2/IntervalNumber*(i-1))& (CorrList<=-1+2/IntervalNumber*i)); 

    EntropyList(i,1)=length(TempPosi1); 

    i=i+1; 

end 

EntropyList=EntropyList./sum(EntropyList); 

TempPosi2=find(EntropyList~=0); 

Entropy_value=-sum(EntropyList(TempPosi2).*log(EntropyList(TempPosi2)))/log(2); 

 

Code of the entropy of all the brain regions: 
% Entropy of all the brain regions 

function [Entropy_Region_value]=Brain_Region_Entropy(CorrMat) 

% Input is the correlation matrix of the resting state BOLD signal. 

% Output is the entropy value of different regions. 

IntervalNumber=20;% Interval number in [-1,1] 

  

CorrMatSize=size(CorrMat); 

CorrMatLength=CorrMatSize(1);% Region Number 

Entropy_Region_value=zeros(CorrMatLength,1); 

iRegionNumber=1; 

while iRegionNumber<=CorrMatLength 

% Extract the CorrList from CorrMat 

CorrList=zeros(1,CorrMatLength-1);% Correlation list 

k=0; 

i=1; 

while i<=CorrMatLength 

    if i~=iRegionNumber 

        k=k+1; 

        CorrList(1,k)=CorrMat(i,iRegionNumber); 

    end 

    i=i+1; 

end 

  

% Entropy calculation 

EntropyList=zeros(IntervalNumber,1); 

i=1; 

while i<=IntervalNumber 

    TempPosi1=find((CorrList>-1+2/IntervalNumber*(i-1))& (CorrList<=-1+2/IntervalNumber*i)); 

    EntropyList(i,1)=length(TempPosi1); 

    i=i+1; 

end 

EntropyList=EntropyList./sum(EntropyList); 



TempPosi2=find(EntropyList~=0); 

Entropy_Region_value(iRegionNumber,1)=-sum(EntropyList(TempPosi2).*log(EntropyList(TempPosi2))

)/log(2); 

iRegionNumber=iRegionNumber+1; 

end 
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