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Theoretical Details

We used the semiconductor Bloch equations (SBEs) to study SF from a high-density electron-

hole (e-h) plasma in the presence of many-body Coulomb interactions. The usual form of the

SBEs1 is for a bulk semiconductor or a 2D electron gas, when the states can be labeled by a 3D

or 2D wave vector ~k. Here we rederive SBEs following the same basic approximations but in a

more general form, which accommodates the effects of a finite well width and the quantization of

motion in a strong magnetic field.

We begin with a general Hamiltonian in the two-band approximation and e-h representation,

H =
∑
α

[(
E0
g + Ee

α

)
a†αaα + Eh

αb
†
ᾱbᾱ

]
+

1

2

∑
αβγδ
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αβγδa

†
αa
†
βaδaγ + V hh

ᾱβ̄γ̄δ̄b
†
ᾱb
†
β̄
bδ̄bγ̄ + 2V eh

αβ̄γδ̄a
†
αb
†
β̄
bδ̄aγ

)
− E(t)

∑
α

(
µαa

†
αb
†
ᾱ + µ∗αbᾱaα

)
, (1)

where E0
g is the unperturbed bandgap, a†α and b†ᾱ are the creation operators for the electron state α

and hole state ᾱ, respectively, E(t) is the optical field, µα is the dipole matrix element, and Vαβγδ are

Coulomb matrix elements, for example, V ee
αβγδ =

∫
d~r1

∫
d~r2Ψe∗

α (~r1)Ψe∗
β (~r2) e2

ε|~r1−~r2|Ψ
e
γ(~r1)Ψe

δ(~r2).

Here we denote the hole state which can be recombined with a given electron state α optically by

ᾱ, and assume that there is a one-to-one correspondence between them. For the interband Coulomb

interaction, V eh
αβ̄γδ̄a

†
αb
†
β̄
bδ̄aγ is the only non-zero matrix element due to the orthogonality between

the Bloch functions of the conduction and valence bands2. The electron and hole wave functions

can be written as Ψe
α(~r) = ψeα(~r)uc0(~r) and Ψh

ᾱ(~r) = ψhᾱ(~r)u∗v0(~r), respectively. In the problems we

study, the conduction band and valence band states connected by an optical transition always have
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the same envelope wave function, so we take ψhᾱ(~r) = ψe∗α (~r). Then the Coulomb matrix elements

are related with each other through V hh
ᾱβ̄γ̄δ̄ = V ee

γδαβ and V eh
αβ̄γδ̄ = −V ee

αδγβ , and we can drop the

superscript by defining Vαβγδ ≡ V ee
αβγδ.

Using the above Hamiltonian, we can obtain the equations of motion for the distribution

functions neα = 〈a†αaα〉 and nhα = 〈b†ᾱbᾱ〉, and the polarization Pα = 〈bᾱaα〉. Using the Hartree-Fock

approximation (HFA) and the random phase approximation (RPA), we arrive at the SBEs:

ih̄
d

dt
Pα =

(
E0
g + EeR

α + EhR
α

)
Pα +

(
neα + nhα − 1

) µαE(t) +
∑
β

VαββαPβ

+ ih̄
d

dt
Pα

∣∣∣∣∣
scatt

,(2)

h̄
d

dt
neα = −2 Im

µαE(t) +
∑
β

VαββαPβ

P ∗α
+ h̄

d

dt
neα

∣∣∣∣∣
scatt

, (3)

h̄
d

dt
nhα = −2 Im

µαE(t) +
∑
β

VαββαPβ

P ∗α
+ h̄

d

dt
nhα

∣∣∣∣∣
scatt

, (4)

where EeR
α =

(
Ee
α −

∑
β Vαββαn

e
β

)
and EhR

α =
(
Eh
α −

∑
β Vαββαn

h
β

)
are the renormalized ener-

gies, and the scattering terms account for higher-order contributions beyond the HFA and other

scattering processes such as scattering with LO-phonons.

These equations, together with Maxwell’s equations for the electromagnetic field, can be

applied to study the full nonlinear dynamics of interaction between the e-h plasma and radiation.

Here we derive the gain for given carrier distributions neα and nhα, which was used to plot Fig. 5.

Assuming a monochromatic and sinusoidal time dependence for the field E(t) = E0e
−iωt and the

polarization Pα(t) = P0αe
−iωt, we can find Pα from Eq. (2) and define the quantity χα(ω) = P0α/E0,

which satisfies the equation below:

χα(ω) = χ0
α(ω)

1 +
1

µα

∑
β

Vαββαχβ(ω)

 , (5)
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where

χ0
α(ω) =

µα
(
neα + nhα − 1

)
h̄ω −

(
E0
g + EeR

α + EhR
α

)
+ ih̄γα

. (6)

Here we have written the dephasing term phenomenologically as dPα/dt|scatt = −γαPα. The

optical susceptibility is then

χ(ω) =
1

V

∑
α

µ∗αχα(ω) , (7)

where V is the normalization volume. The gain spectrum is given by1

g(ω) =
4πω

nbc
Im[χ(ω)] , (8)

where nb is the background refractive index, and c is the speed of light. We use the above general

results to analyze optical properties under different conditions.

In a quantum well of thickness Lw, the envelope functions for electrons and holes are ψe,h
n,~k

(~r)

= ϕn(z) exp
(
i~k · ~ρ

)
/
√
A, where ~ρ = (x, y), ϕn(z) is the envelope wave function in the growth

direction for the n-th subband, and A is the normalization area. To calculate the Coulomb matrix

element Vαββα, we define Ṽαβ ≡ Vαββα and put α =
{
n,~k, s

}
, β =

{
n′, ~k′, s′

}
, where s denotes the

spin quantum index. Then one gets

Ṽn,~k,s;n′,~k′,s′ = V 2D(q)Fnn′n′n(q)δss′ , (9)

where q = |~q| = |~k − ~k′|, V 2D(q) = 2πe2/εAq, ε is the dielectric function, and the form factor

Fnn′n′n(q) is defined as

Fn1,n2,n3,n4(q) =
∫
dz1

∫
dz2ϕ

∗
n1(z1)ϕ∗n2(z2) exp (−q |z1 − z2|)ϕn3(z1)ϕn4(z2) . (10)
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Throughout the paper, we will assume that only the lowest subband for electrons and holes is

occupied. In this case, we can define Ṽ (q) = V 2D(q)F1111(q). The dielectric function ε(~q, ω),

which describes the screening of the Coulomb potential, is given by the Lindhard formula for a

pure 2D case1; it can be generalized to the quasi-2D case as

ε(~q, ω) = 1 + Ṽ (q) (Πe(~q, ω) + Πh(~q, ω)) , (11)

where Πe(h)(~q, ω) is the polarization function of an electron or hole, which is given by

Π(~q, ω) = 2
∑
~k

n~k+~q − n~k
ω + i0+ − E~k+~q + E~k

. (12)

Here, we dropped the subscripts e or h, n~k is the distribution function, the factor of 2 accounts for

the summation over spin, and the spin index is suppressed. For simplicity, we will choose the static

limit, namely, ω = 0.

Given the dielectric function ε(q, 0), the screened Coulomb matrix element is Ṽs(q) = Ṽ (q)/ε(q, 0).

For simplicity, we will still write it as Ṽ (q). Applying Eq. (5) to the case above, we get the equation

for χ~k(ω):

χ~k(ω) = χ0
~k
(ω)

1 +
1

µ~k

∑
~k′

Ṽ
(∣∣∣~k − ~k′∣∣∣)χ~k′(ω)

 , (13)

where χ0
~k
(ω) becomes

χ0
~k
(ω) =

µ~k

(
ne~k + nh~k − 1

)
h̄ω −

(
E0
g + EeR

~k
+ EhR

~k

)
+ ih̄γ~k

. (14)

To solve Eq. (13), we notice that χ0
~k
(ω) does not depend on the direction of ~k, so χ~k(ω) will

not depend on it, either. Then, after converting the summation in Eq. (13) into the integral, the
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integration over the azimuthal angle is acting on Ṽ
(∣∣∣~k − ~k′∣∣∣) only. If we define

Ṽ (k, k′) =
1

2π

∫ 2π

0
dφṼ

(√
k2 + k′2 − 2kk′ cosφ

)
, (15)

then Eq. (13) can be written as

χk(ω) = χ0
k(ω)

[
1 +

A

2πµk

∫ ∞
0

k′dk′Ṽ (k, k′)χ′k(ω)

]
. (16)

After discretizing the integral, we have a system of linear equations for χk(ω), which can be solved

by using LAPACK3. The band structure for our sample consisting of undoped 8-nm In0.2Ga0.8As

wells and 15-nm GaAs barriers on a GaAs substrate is calculated using the parameters given by

Vurgaftman et al.4. The strain effect is included using the results of Sugawara et al.5. Examples of

calculated gain spectra are shown in Figs. 5a and 5b.

For a quantum well structure in a strong perpendicular magnetic field, the electronic states

are fully quantized. Considering only the lowest subband in the quantum well, the equation for the

susceptibility is written as

χν,s = χ0
ν,s

[
1 +

1

µν,s

∑
ν′
Vν,ν′χν′,s

]
, (17)

where ν is the Landau level index, s is the spin index, and Vν,ν′ is the Coulomb matrix element

given by

Vν,ν′ =
e2

2πε

∫ 2π

0
dθ
∫ ∞

0
dq

∣∣∣∣∫ dxeiqx cos θφν(x)φ∗ν′(x+ qa2
H sin θ)

∣∣∣∣2 , (18)

where φν(x) is the x-dependent part of the wavefunction of the ν-th Landau level and a2
H = h̄c/eB.

The renormalized electronic energies in the expression for χ0
ν,s are

EeR
ν,s = Ee

ν,s −
∑
ν′
Vν,ν′n

e
ν′ , (19)
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and a similar equation holds for holes. The gain is calculated as

g(ω) =
4πω

nbc

1

πa2
H

Im

[∑
ν

µ∗ν,sχν,s

]
. (20)

An example of the calculated gain for B = 17 T is shown in Figs. 5c and 5d.
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