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I. REVIEW OF OBLIVIOUS TRANSFER AND PRIVATE QUERIES

An ideal 1-out-of-N oblivious transfer protocol simultaneously guarantees that (a) that the user, Ursula, is able
to retrieve a single element from the N-bit database, and (b) that the database provider, Dave, cannot gain any
information about which element was retrieved. However, it has been shown that, assuming a universal quantum
computer, if a protocol meets condition (b) then condition (a) implies that Ursula can access every element of the
database[1]. As such, it is impossible for a protocol to implement ideal oblivious transfer without making assumptions
in the security model. Alternatively, the class of protocols we refer to as private queries avoids the impossibility proof
by implementing functionality similar to l-out-of-IN OT. Such protocols offer a reduced level of privacy up front,
but this reduction in privacy may allow secure protocols using assumptions that are easier to justify, or in which no
assumptions are required at all. In this section, we briefly review protocols for oblivious transfer and private queries.[1]

In classical information theory, protocols for OT rely on one of two assumptions — that at least some fraction
of the intermediaries used to perform the query are trustworthy[2, 3], or that the adversary has limited classical
computational resources[4]. The former assumption can be difficult to assess, as one must both believe that the
intermediaries will not collude with each other, and that their infrastructure is secured against attacks. The latter
assumption is shared with today’s public key cryptography infrastructure, and is hence well justified in the short
term. However, in the long term, the security of such systems can be compromised by advances in algorithms (e.g.
ref. 5) or hardware such as a quantum computer|[6].

A quantum 1-out-of-2 OT protocol has also recently been proposed using the noisy-storage model[7], where it
is assumed that the dishonest party has a limited ability to store quantum information, and that the amount of
information that can be faithfully stored decreases over time due to noise in the quantum memories (note that this
protocol is loss- and fault-tolerant, as quantum memories are not required by the honest protocol). Since quantum
memories are a basic component in a universal quantum computer, this assumption means that the proof that ideal OT
is not possible[1] does not apply. Thus, perfect privacy is possible under this model, and this has indeed been shown
in the protocol of ref. 7, 8. An experimental demonstration of the protocol in [8] has also recently been performed[9],
showing that it meets the implementability criterion. As with the classical OT protocols relying on assumptions about
the adversaries computational capabilities, this assumption is well justified in the short term given current quantum
memories. However, there is no fundamental principle limiting the adversaries ability to store quantum information,
and recent advances in quantum memories[10-15] threaten the validity of this assumption in the long term.

The private queries approach to OT using cheat sensitivity was first proposed in ref. 16. This protocol does not
satisfy condition (b) above, since a dishonest database could gain complete information about which element Ursula
retrieved. However, the protocol still offers security for Ursula as she has, in principle, the potential to detect Dave’s
attempt to gain information about her query, thus discouraging Dave from cheating. Note that condition (a) was
also not satisfied, as a dishonest user could sacrifice her ability to verify Dave’s honesty in order to obtain a small
number of additional elements (although, this is not a significant loss of privacy for the database if N is large).
An experimental proof-of-principle demonstration of this protocol was subsequently performed[17], however, as Dave
could hide his attempts to cheat if there was significant transmission loss and/or errors in the quantum channel, the
protocol is not practical under realistic conditions. Ref. 18 then proposed a probabilistic n-out-of-IN OT protocol
based on the SARG04 Quantum Key Distribution (QKD) protocol[19], which was then generalized[20]. This protocol
allows Dave to gain information about Ursula’s query, but only at the risk of introducing errors into the element
Ursula retrieved, thereby allowing a dishonest database to be detected. The protocol also did not satisfy condition
(a) above as Ursula gains probabilistic information about elements of the database she does not request. Interesting
features of this protocol are the ability to tolerate loss in the channel, as well as the fact that it is simple to implement
using existing QKD technology. However, noisy channels were left as an open question, preventing implementation



of the protocol in realistic scenarios. Finally, our protocol proposed in this work represents the first cheat sensitive
protocol to be both loss- and fault-tolerant, making it suitable for implementation in a realistic environment.

II. QUANTUM STATE IDENTIFICATION

In our protocol, the database provider, Dave, encodes each qubit into one of four randomly chosen quantum states,
[o), [t1), |do) or |¢1), as shown in Figure 1. The user, Ursula, measures each qubit in either the 0-basis, spanned by
[tho) and |¢o), or the 1-basis, spanned by |t1) and |¢1). After these measurements, Dave tells Ursula whether each
qubit was encoded into one of the 1) states or one of the ¢ states. In order to demonstrate the state identification
process, suppose Ursula measured in the 0-basis, and Dave declares that he sent one of the 1 states. If Ursula’s

measurement result was |¢g), she knows Dave could not have sent |1)g) as these two states are orthogonal. Hence
sin?(0)

Dave must have sent [¢);). This is a conclusive result, and occurs with probability p. = 5. Alternatively, if
Ursula’s measurement result was |tg), she only knows that the state was more likely to have been |¢y) than [i1).
This is an inconclusive result, occurring with probability p; = 1 — p.. As the two potential states are associated
with different classical bit values (as indicated by the subscripts), Ursula only gains probabilistic knowledge from this
2
measurement result. This corresponds to an error rate of e; = % in the ideal case (i.e. when no other sources
of error are present).
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Supplementary Fig. 1: Quantum states used in the private query protocol shown on a plane of the Bloch sphere.

Let us now examine how this state identification process leads to user privacy, considering first the honest protocol.
In the above example where Dave sent one of the ¢ states and Ursula measures in the 0-basis, note that Ursula can
only get a conclusive measurement result if Dave sent the |¢1) state. If Ursula instead measures in the 1-basis, she can
only get a conclusive measurement if Dave sent the |1)y) state. Hence, for any given qubit that Dave sends, Ursula’s
choice of measurement determines whether a conclusive result is possible — she never gets a conclusive result if she
measures in the same basis in which Dave encoded the qubit. Since she never reveals her choice of measurement basis
to Dave, he cannot know which of her measurements gave conclusive results.

Now, let us consider the case in which Dave is dishonest. In this case, Dave wishes to break the correlation between
Ursula’s choice of measurement basis and the conclusiveness of her measurement results. Ideally, he would like to
choose whether Ursula will get a conclusive or inconclusive measurement result, regardless of which measurement she
makes. For ease of discussion, we assume here that Dave can send a quantum state that accomplishes this goal (we
discuss a more realistic attack in Section V). Since Ursula is honest, she makes the same measurements as before, and
interprets them assuming Dave is honest. In the above example, in which Dave declares he sent one of the 1 states,
if Ursula measures in the 0-basis, she will either conclusively identify that Dave sent the |¢) state, or inconclusively
identify that Dave likely sent the |ig) state. If she instead measured in the 1-basis, she will either conclusively identify
that Dave sent the |1g) state, or inconclusively identify that Dave likely sent the |¢);) state. Recall that the classical
bit values that form the raw keys in the protocol are given by the basis of the state that Ursula believes Dave sent
(and correspond to the subscripts in the ket notation). Thus, Ursula’s raw key bits are anti-correlated with her
choice of measurement basis for conclusive results, and correlated for inconclusive results. Hence, if Ursula’s choice
of measurement basis does not determine whether a measurement is conclusive, it instead determines her raw key
bits. In this case, since she never reveals her choice of measurement basis, Dave cannot know her raw key bits. This
leads to the cheat sensitivity in the protocol as the fact that Dave has no knowledge of Ursula’s raw key bits may be
detected during error correction, and if not detected, results in incorrect query responses. A more detailed analysis
of the cheat sensitivity is given in Section V.



III. ERROR CORRECTION

We use a parity-based forward error-correcting code operating on k-bit blocks (corresponding to the k bits used
to compute one oblivious key bit), where Dave sends the parity of several subsets of the k bits to Ursula. The
construction of the code is normally described as a parity check matrix, denoted H, and is known to both Ursula and
Dave. The parity computation for the j* oblivious key bit is then given by:

P =Hd; (mod 2) (1)

where pj is a vector of computed parity bits (which Dave sends to Ursula) and cf] is a vector containing the k bits
that Dave uses to compute a single oblivious key bit. For each oblivious key bit, Ursula has a corresponding k-bit
vector, i, in which each bit stems from a conclusive or an inconclusive measurement that have, respectively, error
rates of e. and e;. Ursula can estimate these error rates over the entire protocol by comparing the parities, pj, she
receives from Dave and the parities she computes locally using ;. Using these error rates, Ursula’s error correction
procedure for each oblivious key bit is as follows:

1. Rule out those combinations of values for the % bits that are not consistent with the values for pj received from
Dave.

2. Divide the remaining possibilities into two sets — those that correspond to an oblivious key bit of 0, and of 1.

3. Based on the measurement results and estimated error rates, calculate the probability that each combination of
values for the k bits is correct. The set with the higher total probability determines the most likely value of the
oblivious key bit.

4. Compute the probability of error in the oblivious key bit, ey.

Note that Ursula can significantly reduce the computation required for error correction by performing this procedure
only if almost all of the k£ bits were measured conclusively. In doing so, she only performs error correction if there is
a possibility that the result will satisfy e, < ty.

The error correcting codes used in this work are given by:

1000010000
0100011100

H;;6=10010011010 (2)
0001010110
0000110001

for 0 = 35.6° and

100001000
010001000

Hys=|001001110 (3)
000101101
000011011

for # = 25°. They were selected using an exhaustive search of potential error-correcting codes for £k < 10. The
probability distribution for ey is computed for each code based on the parameters in Table 2 of the main text, and
the selected codes provide a low probability for ex < ¢p (indicating a small amount of information leakage to Ursula)
as well as a suitable probability for ey < ty (ensuring that Ursula learns a few bits of the oblivious key on average).
Note that both matrices are in reduced row echelon form (i.e. no 1’s appear below the leftmost 1 in any row). This
is due to the fact that the possible k-bit vectors remaining after step 1 of the error correction process (i.e. consistent
with the parity information received from Dave) are given by the possible solutions of the system of linear equations
in Eq. 1, hence any error correction codes that have the same reduced row echelon form behave identically in the error
correction process. The search space was thus limited by only considering matrices in reduced row echelon form.



IV. REQUIREMENTS FOR SECURITY

The security of the experimental results presented in Table 3 and Figure 3 of the main text hold given that the
dishonest party is limited to non-quantum attacks (e.g. an arbitrarily powerful classical computer, which would
be sufficient to break computational protocols using classical information such as [4]). Furthermore, results for the
security of the protocol against several quantum attacks are presented in the Section V. Note that these limitations
on the attacks a dishonest party can perform are a result of the current security analysis of the protocol, and may not
be required in general. It remains an open question as to what limitations on the dishonest party, if any, are required
to achieve a sufficient level of security. Based on the attacks we have studied, we believe that at a fundamental
level, the security of the protocol stems from the complementarity principle (protecting the user’s security) and the
superposition principle (protecting the database’s security). In addition, we note that the error-correcting code in
our protocol can be selected in order to provide less information to Ursula in order to compensate for an increased
information gain from more powerful quantum measurements. Thus, it may be possible to adopt such measurements
as the legitimate procedure for the user, provided that the measurements are feasible technologically.

We also note that the security results are valid only if certain requirements are met. These requirements are listed
below, beginning with those that are required in general, followed by those that are imposed by the current security
analysis:

1. Ursula’s and Dave’s laboratories are secure (i.e. no information leaves their laboratories except as specified in
the protocol). (Required for any protocol.)

2. Quantum theory is correct and complete. (Required for any quantum protocol.)
3. The dishonest party is limited to the attacks covered in the current security analysis (see Section V).

4. In our experimental demonstration, it is also necessary to assume that the user is not able to take advantage
of multi-photon pulses that result from using a source of weak coherent pulses. While this assumption can
be avoided if Dave uses a single photon source, the implementation of weak coherent pulses is much simpler
from a technological perspective. Thus, it is desirable for the protocol to be secure for weak coherent pulses
without the need for additional assumptions. The decoy state techniques used in QKD [21-23] provide security
against an adversary capable of exploiting multi-photon pulses. However, these techniques cannot be directly
applied in cases where the two parties are adversarial, as is the case in private queries, and must be modified to
account for the fact that the two parties need not be honest in the protocol [24]. However, it is not clear that
the techniques in ref. 24 can be applied directly to our protocol. In particular, Ursula may gain an advantage
by manipulating the aggregate statistics of the decoy state protocol by conducting an attack (e.g. by lying
about detections) during a subset of the protocol while acting honestly for the remaining subset. Analyzing and
adapting decoy state techniques for our protocol is thus an interesting open question. It may also be possible
for Dave to base his estimate of the additional information that may have been extracted from multi-photon
pulses on a characterization of his source. Regardless of how Dave quantifies Ursula’s information gain due to
multi-photon pulses it can be accounted for by selecting an appropriate error-correcting code. If the information
gain is sufficiently small, the protocol can provide a suitable level of database security while maintaining a high
success probability for the user.

V. CHEATING STRATEGIES

In this section we discuss the attacks on individual qubits proposed in [18, 20]. The discussion below shows that
the error correction step provides improved security for the protocol against these individual attacks. Optimization of
error correction in view of coherent attacks remains an interesting open question, as does an analysis of fully general
quantum attacks and an information theoretic treatment of our protocol. Furthermore, we comment on the issue
of error rate estimation between adversarial parties. As example cases for these discussions, we consider the mean
parameters (6, pc, e, and e;) measured with g = 0.95 £ 0.47 using standard detectors and the simulated parameters
for low-noise detectors (see Table 2 in the main text). For the measured parameters, we do not consider the observed
variances since they are specific to the system used to implement the honest protocol.



A. User Privacy

Let us first consider an attempt by the database to determine which piece of information Ursula is interested
in. Recall that our protocol does not prevent a dishonest database from gaining some information about Ursula’s
query, but is cheat sensitive in that it gives Ursula the possibility of detecting such an attack. Performing the attack
described below does not require any additional technology, as it simply requires Dave to send quantum states that
either maximize or minimize the probability, p., that Ursula will believe her measurement was conclusive [18]. In
order to determine Ursula’s query, Dave seeks to have Ursula learn only a single bit of the oblivious key whose position
is known to him, thus he maximizes p. for the k bits that form one oblivious key bit in an attempt to convince Ursula
that she knows a particular bit of the oblivious key. He then minimizes p. elsewhere in an attempt to prevent Ursula
from knowing other bits in the oblivious key, in positions unknown to him. As noted in [20], Dave’s ability to control
P improves as the angle between the 0-basis and 1-basis, 8, is decreased, making the attack more powerful. However,
in both cases (i.e. maximization or minimization of p.), the quantum state Dave sends for this attack lies directly
between either pair of 1) or ¢ states shown in Supplementary Figure 1, and thus Ursula will associate a bit value to
the measurement that is completely unknown to Dave. Hence, under this attack, Ursula receives a random bit value
in response to her query, leading to the cheat sensitive property in [18, 20] (and in our protocol), in which incorrect
query results will reveal Dave’s dishonest behavior (i.e. over time, Dave will acquire a reputation of providing poor
query results).

Furthermore, in our protocol the error correction steps provide additional opportunities for Ursula to verify Dave’s
honesty, both weakening the above attack as well as providing the possibility of detecting the weakened attack prior
to Ursula revealing information about her query. Specifically, the consequence of Dave sending quantum states that
minimize p. (in order to prevent Ursula from knowing one or more bits of the oblivious key in random positions) is that
Ursula’s and Dave’s sifted keys are completely uncorrelated (i.e. they have error rates e. = ¢; = 50%). Additionally,
since Dave has no knowledge of Ursula’s sifted key, the parity bits, p; (see Supplementary Eq. 1), that he sends for
error correction will be completely uncorrelated with the parity bits Ursula computes from her measurement results.
This allows Ursula to detect a cheating database, and abort the protocol. While this severely restricts Dave’s ability
to ensure that Ursula does not know bits of the oblivious key in random positions, it does not prevent him from
attempting to convince Ursula that she knows a bit in a particular position of his choosing in addition to any bits she
learns randomly (in this case, Dave is unsure if Ursula’s query corresponds to the position where he conducted the
attack, or to an unknown position that Ursula learned randomly). This is because Dave only needs to maximize p.
in k bits out of kNN bits of the sifted key, which has a negligible effect on the overall error rates for large N. However,
this attack has a limited success probability, and if it fails, it may fail in a way that is suspicious to Ursula, again
allowing Ursula to abort the protocol (see below for a detailed example). Note that the above verifications occur after
the error correction step, but before the shift value is communicated, thus Dave gains no information about Ursula’s
query if the protocol is aborted.

To illustrate the possibility for Ursula to detect an attempt by Dave to convince her that she knows a particular
bit, we consider the parameters discussed above. For k& = 10 and 6 = 35.6°, there is a 37.49% chance that Ursula
will believe all k bits are conclusive given this attack. For k = 9 and # = 25°, this probability increases to 64.93%.
However, for Dave to convince Ursula that she knows a particular bit of the oblivious key, it is not sufficient for her
to believe that all k bits are conclusive, as the error correction procedure must also indicate that her measurement
results are correct or correctable (i.e. the error correction procedure results in a error probability ey < ty, where we
recall that we have selected ty = 1073 as the threshold below which Ursula considers a bit to be known). The attack
thus becomes more difficult with error correction, since the database must also send parity information to Ursula that
is consistent with her measurements. Since Dave’s bit values are completely uncorrelated with Ursula’s measured
bit values, the parity information that Dave sends is essentially random, and Ursula is unlikely to find a low value
for ey. In the above examples, Ursula finds e, < 1073 with only 5.92% probability (for k& = 10 and § = 35.6°) and
12.73% probability (for k = 9 and 6 = 25°), showing that this attack has a limited success probability. In addition,
the case in which Ursula believes all k bits were measured conclusively is of particular interest as it is very unlikely
that she will find a large probability of error in the oblivious key bit after error correction, ey, if the protocol was
performed honestly. However, in the above attack, Dave must send parity information that is uncorrelated with
Ursula’s measurement results, leading to a large amount of uncertainty during Ursula’s error correction process and
resulting in a high probability of finding a large value for ex. For example, when Ursula believes all k£ bits were
measured conclusively, for k = 10 and 6§ = 35.6°, she expects e, > 0.15 with 2.14% probability if Dave is honest, but
this value increases to 40.63% given the above attack. For k = 9 and 6 = 25°, she expects e, > 0.055 with 0.71%
probability when honest, and 65.63% with the attack. A large value for ey if all k bits are measured conclusively can
thus serve as an indication that Dave is attempting to cheat, and allows Ursula to abort the protocol. Furthermore,
even if the protocol proceeds and Dave is cheating (e.g. because Dave, by chance, sent consistent parity information),
Ursula’s and Dave’s oblivious key bits after error correction are still uncorrelated, as in the protocol of [18, 20]. This



ensures that the cheat sensitive property of the protocols in [18, 20] discussed above is preserved in our protocol.

Generally speaking, we note that the additional benefits provided by the error correction procedure are relevant
to other attack strategies as well. Ursula now has the ability to monitor the aggregate error rates in the system,
allowing her to detect any attack by Dave that has a significant effect on the overall error rates. Furthermore, the
need for the database to be able to send meaningful parity information during error correction provides an additional
hurdle for attacks that cause Dave to lose information about Ursula’s measurement results.

B. Database Privacy

On the other hand, a user attacking the protocol seeks to learn as many bits from the database as possible. One
method of doing so is to store the photons from Dave in a quantum memory until after he reveals whether he sent
a 1 or ¢ state, and then perform an unambiguous state discrimination (USD) measurement [25, 26] to distinguish
which of the two remaining states was sent. However, as Dave only reveals information about a quantum state after
Ursula has declared that a photon has been detected, every photon that a dishonest Ursula declares as “detected”
contributes to her sifted key. As such, any photon that Ursula declares as “detected” but subsequently fails to detect
(e.g. because she could not identify when a photon was successfully stored in her quantum memory, or because of
loss occurring after the declaration) results in bits in the sifted key of which Ursula has no knowledge. Successfully
performing an USD attack thus requires a heralding signal indicating that a photon was successfully stored in the
quantum memory, and the ability to recall the photon from the quantum memory with near 100% efficiency. For
the following analysis, we assume a heralding signal in conjunction with a perfect quantum memory (i.e. one that
introduces no error into the quantum states, and has 100% efficiency; a realistic quantum memory, such as those
assumed in the noisy-storage model, would reduce the effectiveness of the attack), and that there are no other sources
of loss that reduce the success probability of the USD measurement.

If Ursula is able to perform an USD measurement, this allows her to maximize the probability that the quantum
measurements will give conclusive results. As shown in [18], the probability of conclusive results increases only
slightly when performing USD measurements, resulting in the user only learning a few more bits than when making
honest measurements. Furthermore, the advantage decreases as 6 is decreased [20]. Additionally, in the presence
of error correction, the advantage of performing an USD measurement further decreases. This is because the USD
measurement gains no information from inconclusive results, essentially exchanging this information for an increased
probability of obtaining a conclusive result. However, the partial information from inconclusive results is useful
during error correction, and can even allow Ursula to know the value of the oblivious key bit in some instances
in which not all measurements were conclusive. As such, error correction can reduce the effectiveness of the USD
attack. Performing USD measurements when using the code with £ = 10 and # = 35.6° only increases the average
number of bits the user knows from 7 = 3.89 to 7 = 11.15 — a rather small gain for a database of 10° bits. For
the code using £k = 9 and 6 = 25°, performing USD measurements actually decreases the average number of bits
the user knows from n = 4.35 to » = 1.00. This decrease is due to the fact that at this smaller value of 6, the
value of the partial information gained from inconclusive measurements outweighs the slightly improved probability
for a conclusive measurement offered by the USD measurement. Note that these results are based on having the
same error rate as for the honest measurements, which may not be a realistic assumption given that a different
measurement apparatus is required. The issue of error rates differing from those used to select the error-correcting
code is addressed separately below so as to isolate this effect from that of the USD measurement.

C. Error rate estimation

Finally, since Ursula and Dave have an adversarial nature in the private query protocol, accurately characterizing
the error rate in the system in order to select an error-correcting code is not straightforward. In particular, Ursula
would like the database to believe that the error rate is higher than in reality, as Dave would then select an error-
correcting code that gives her more information, allowing her to learn more bits from the database. To avoid this
problem, Dave can determine the amount of information a user will learn from the protocol based solely on the error
introduced by devices directly under his control. In fact, he can even choose to deliberately introduce additional
noise in order to provide the desired level of database security. Additional imperfections in the system would cause
the user to experience a higher error rate than Dave’s estimate, leading to her learning fewer bits than the database
predicts. To show that there is a regime that allows the protocol to succeed from the user’s perspective while still
providing good database security, we re-examine the error-correcting codes that we have considered thus far using the



Supplementary Table I: Comparison of simulation results for a user experiencing higher error rates than those used by Dave
to select an error-correcting code. The columns labeled “all” show experimental results obtained using standard detectors
(0 = 35.6°, k = 10), or simulation results with improved detectors (0 = 25°, k = 9), as taken from Tables 2 and 3 of the
main text, and represent the actual results of the protocol as influenced by noise due to all imperfections. The columns labeled
“source only” represent Dave’s predicted results for the protocol, based on an error rate estimation considering only noise
introduced by his source.

0=356° k=10 0 =25° k=9
noise all |source only| all |source only
pe (%) | 16.1 15.9 9.22 9.14

ec (%) | 4.4 2.5 1.91 1.38

e (%) |41.24 40.89 45.12 45.11

n (bits)| 3.89 14.32 4.35 10.67

m (%) | 6.03 6.69 0.96 0.93

parameters shown in the columns labeled “source only” in Supplementary Table I, where noise in the system has been
reduced compared to the original parameters in the main text (shown in the columns labeled “all”). Note that the
effect of the lower noise observed by the database is not just a lower error rate in the conclusive measurements, e., in
the “source only” columns — the other parameters are affected as well. The error rate for inconclusive measurements,
ei, is affected by the same noise sources as e, but the effect on e; is smaller as the error for inconclusive measurements
is dominated by uncertainty inherent in the quantum measurement. Hence, e; in the “source only” columns is only
slightly lower than in the “user” columns. The total number of conclusive results is reduced slightly as the number
of conclusive results recorded due to noise events is lower. Hence, the probability of conclusive measurements, p, is
lowered slightly in the “source only” columns. Supplementary Table I also shows the results for the average number
of bits learned by the user, 7, and the average proportion of the database for whic Dave considers Ursula to have
significant partial information, m, for the original parameters in the “user” columns, as well as for a lower error rate
that can be used to select the error-correcting code in the “source only” columns. As can be seen, the reduction in
error rates does not result in a large increase in the potential amount of information gained by a user who experiences
no additional error. Thus, it is possible for an error-correcting code that is selected based on local error rates to both
provide the database with good security and allow the protocol to be successful for a user experiencing higher error
rates.
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