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I. DETAILS OF THE SIMULATION

Here we describe the details of our simulation. The quantum efficiency and the dark counting of the detectors are
η = 0.045 and d = 8.5×10−7, respectively. The loss coefficient of the quantum channel is ξ = 0.21dB/km. We denote

a = cos(π/8) and b = sin(π/8). We define that p
(n,m)
i,ab is a probability that the photons are detected as the successful

event of Type i conditioned that Alice and Bob emit n and m photons in the states |φa⟩ and |φb⟩ for a, b = 0, . . . , 3,
respectively. qi,ab is the probability of the successful detection of Type i conditioned that Alice and Bob emit photons
in |φa⟩ and |φb⟩, respectively. Assuming that Eve is in the middle of Alice and Bob, the channel transmittance to
Eve from Alice is the same as that from Bob. Denoting that l is the distance between Alice and Bob, the channel
transmittance for Alice and Bob is

T = 10−ξ0.5l/10. (1)

In the following, we give the experimental data for the simulation (i) when Eve postselects the events with n ≤ 1 and
m ≤ 1 by the QND measurement before mixing the pulses from Alice and Bob (see Fig. 2(a)), and (ii) when Alice
and Bob use quasi single photon sources by the SPDC (see Fig. 2(b)).

A. Case (i) Eve performs the QND measurement.

Each of Alice and Bob uses a phase randomized weak coherent pulse with the mean photon number of µ. The
probability pn for n-photon emission is

pn(µ) = e−µµ
n

n!
. (2)

For later use, we define the equations

f1 = (1− d)2(2η2a2b2(1 + 3d) + 2η(1− η)d+ 2(1− η)2d2), (3)

f2 = f1 − (1− d)22a2b2η2, (4)

f3 = (1− d)2(ηd+ 2(1− η)d2), (5)

f4 = (1− d)22d2, (6)

f5 = (1− d)2(2η2a2b2(1 + d) + 2η(1− η)d+ 2(1− η)2d2).

(7)

In the following, we give Q
(n,m)
i and e

(n,m)
i,bit .

For Type1, we have

Q
(1,1)
1 = p21(µ)(2p

(1,1)
1,00 + p

(1,1)
1,01 + p

(1,1)
1,12 )/4, (8)

e
(1,1)
1,bit = p21(µ)p

(1,1)
1,00 /(2Q

(1,1)
1 ), (9)

Q
(1,2)
1 = p1(µ)p2(µ)(2p

(1,2)
1,00 + p

(1,2)
1,01 + p

(1,2)
1,12 )/4, (10)

e
(1,2)
1,bit = p1(µ)p2(µ)p

(1,2)
1,00 /(2Q

(1,2)
1 ), (11)

Qtot
1 = (2q1,00 + q1,01 + q1,12)/4, (12)

etot1 = q1,00/(2Q
tot
1 ). (13)
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Here the probabilities are expressed as

p
(1,1)
1,00 = T 2f2 + 2T (1− T )f3 + (1− T )2f4, (14)

p
(1,1)
1,01 = T 2f1 + 2T (1− T )f3 + (1− T )2f4, (15)

p
(1,1)
1,12 = T 2f5 + 2T (1− T )f3 + (1− T )2f4, (16)

p
(1,2)
1,00 = (1− T )(T 2f2 + T (1− T )f3 + p

(1,1)
1,00 ), (17)

p
(1,2)
1,01 = (1− T )(T 2f1 + T (1− T )f3 + p

(1,1)
1,01 ), (18)

p
(1,2)
1,12 = (1− T )(T 2f5 + T (1− T )f3 + p

(1,1)
1,12 ), (19)

q1,00 = p20(Tµ)f4 + 2p0(Tµ)p1(Tµ)f3 + p21(Tµ)f2, (20)

q1,01 = p20(Tµ)f4 + 2p0(Tµ)p1(Tµ)f3 + p21(Tµ)f1, (21)

q1,12 = p20(Tµ)f4 + 2p0(Tµ)p1(Tµ)f3 + p21(Tµ)f5. (22)

For Type2, we have

Q
(1,1)
2 = p21(µ)(p

(1,1)
2,00 + p

(1,1)
2,01 )/4, (23)

e
(1,1)
2,bit = p21(µ)p

(1,1)
2,01 /(4Q

(1,1)
2 ), (24)

Q
(1,2)
2 = p1(µ)p2(µ)(p

(1,2)
2,00 + p

(1,2)
2,01 )/4, (25)

e
(1,2)
2,bit = p1(µ)p2(µ)p

(1,2)
2,01 /(4Q

(1,2)
2 ), (26)

Qtot
2 = (q2,00 + q2,01)/4, (27)

etot2 = q2,01/(4Q
tot
2 ), (28)

where

p
(1,1)
2,00 = p

(1,1)
1,01 , (29)

p
(1,1)
2,01 = p

(1,1)
1,00 , (30)

p
(1,2)
2,00 = p

(1,2)
1,01 , (31)

p
(1,2)
2,01 = p

(1,2)
1,00 , (32)

q2,00 = q1,01, (33)

q2,01 = q1,00. (34)

B. Case (ii) Alice and Bob use the heralded single photon sources.

From Ref. [1], the probability distribution function of the thermal state conditioned that the detector D0 clicked in
Fig. 2(b) is

Pn =
1

Pclick

µn(1− (1− η)n + d)

(1 + µ)n+1
, (35)

where Pclick is the probability that the detector D0 clicks, which is described by

Pclick =
(1 + d)(1 + µη)− 1

1 + µη
. (36)

By defining ηin = ηT , the probability that n photons exist before the BS conditioned on the click of D0 is

Qn =
1

Pclick

(
(1 + d)(µηin)

n

(1 + µηin)n+1
− (µηin(1− η))n

(1 + µ(ηin + η − ηinη))n+1

)
. (37)
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For Type1, the relevant equations for Q
(n,m)
1 and e

(n,m)
1,bit are expressed by

Q
(1,1)
1 = P 2

1 (2p
(1,1)
1,00 + p

(1,1)
1,01 + p

(1,1)
1,12 )/4, (38)

e
(1,1)
1 = P 2

1 p
(1,1)
1,00 /(2Q

(1,1)
1 ), (39)

Q
(1,2)
1 = P1P2(2p

(1,2)
1,00 + p

(1,2)
1,01 + p

(1,2)
1,12 )/4, (40)

e
(1,2)
1 = P1P2p

(1,2)
1,00 /(2Q

(1,2)
1 ), (41)

Qtot
1 = (2q1,00 + q1,01 + q1,12)/4, (42)

etot1 = q1,00/(2Q
tot
1 ), (43)

where

p
(1,1)
1,00 = η2ing4 + 2ηin(1− ηin)g2 + (1− ηin)

2g1, (44)

p
(1,1)
1,01 = η2ing3 + 2ηin(1− ηin)g2 + (1− ηin)

2g1, (45)

p
(1,1)
1,12 = η2ing8 + 2ηin(1− ηin)g2 + (1− ηin)

2g1, (46)

p
(1,2)
1,00 = η3ing6 + 2η2in(1− ηin)g4 + η2in(1− ηin)g7 + 3ηin(1− ηin)

2g2 + (1− ηin)
3g1, (47)

p
(1,2)
1,01 = η3ing5 + 2η2in(1− ηin)g3 + η2in(1− ηin)g7 + 3ηin(1− ηin)

2g2 + (1− ηin)
3g1, (48)

p
(1,2)
1,12 = η3ing9 + 2η2in(1− ηin)g8 + η2in(1− ηin)g7 + 3ηin(1− ηin)

2g2 + (1− ηin)
3g1, (49)

q1,00 = Q2
0g1 + 2Q0Q1g2 +Q2

1g4 + 2Q0Q2g7 + 2Q1Q2g6 +
∞∑

n,m=2

QnQm (50)

q1,01 = Q2
0g1 + 2Q0Q1g2 +Q2

1g3 + 2Q0Q2g7 + 2Q1Q2g5 (51)

q1,12 = Q2
0g1 + 2Q0Q1g2 +Q2

1g8 + 2Q0Q2g7 + 2Q1Q2g9. (52)

We note that in equation (50), we took the pessimistic scenario that all of the events for n ≥ 2 and m ≥ 2 are detected
as the bit error. Here g1, . . . , g9 are given by

g1 = (1− d)22d2, (53)

g2 = (1− d)2d, (54)

g3 = (1− d)2(2a2b2 + (a4 + b4)d), (55)

g4 = g3 − (1− d)22a2b2, (56)

g5 = (1− d)2(9(a4b2 + a2b4) + 3(a6 + b6)d)/4, (57)

g6 = (1− d)2((a4b2 + a2b4) + 3(a6 + b6)d)/4, (58)

g7 = g3/2, (59)

g8 = (1− d)22a2b2(1 + d), (60)

g9 = (1− d)2(a6 + b6 + 3(a4b2 + a2b4)d)/4. (61)

For Type2, we have

Q
(1,1)
2 = P 2

1 (p
(1,1)
2,00 + p

(1,1)
2,01 )/4, (62)

e
(1,1)
2 = P 2

1 p
(1,1)
2,01 /(4Q

(1,1)
2 ), (63)

Q
(1,2)
2 = P1P2(p

(1,2)
2,00 + p

(1,2)
2,01 )/4, (64)

e
(1,2)
2 = P1P2p

(1,2)
2,01 /(4Q

(1,2)
2 ), (65)

Qtot
2 = (q2,00 + q2,01)/4, (66)

etot2 = q2,01/(4Q
tot
2 ), (67)
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where

p
(1,1)
2,00 = p

(1,1)
1,01 , (68)

p
(1,1)
2,01 = p

(1,1)
1,00 , (69)

p
(1,2)
2,00 = p

(1,2)
1,01 , (70)

p
(1,2)
2,01 = p

(1,2)
1,00 , (71)

q2,00 = q1,01, (72)

q2,01 = q1,00. (73)
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