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As mentioned in the main text, the fidelity of the output state |x〉 depends on the state R|b〉 that effectively enters
the control input of the first CNOT gate. Tables S1, S2, and S3 show the characterisation of the state |x〉 for various
input states. Fig. S1 depicts the different input states we have chosen for our analysis.

Our analysis shows that the fidelities of the obtained output states vary from (64.7 ± 4.2)% to (98.1 ± 0.9)%.
These variations in fidelity arise due to the influence of higher-order emissions from spontaneous parametric down-
conversion. These higher-order emissions can either occur when the beam passes the crystal the first time (“double-
forward emission”) or when the beam passes the crystal the second time (“double-backward emission”). If the input
to the first CNOT gate is chosen to be R|b〉 = |0〉 or R|b〉 = |1〉, a double-forward emission never leads to four-
photon coincidence and thus does not to a noise contribution. For all other inputs to the gate, these higher-order
emissions degrade the fidelity of the output state as demonstrated in our analysis.

The “double-backward emission” can under perfect experimental conditions never lead to a fourfold coincidence
because the photons can never split up due to destructive quantum interference. However, due to the visibility of
the entangled Bell pairs of 0.9, this quantum interference does not work perfectly and we still have contributions of
this four-photon event. About 10% of our total counts arise from these events, which also influences the fidelity of
the output state |x〉. The ideal output state of the gate operation can vary from being identical (setting R|b〉 = |1〉)
to being orthogonal (setting R|b〉 = |0〉) to this of this noise contribution. This is the reason why for the input
R|b〉 = |1〉 the fidelity does not seem to be affected—the noise cannot be distinguished from the signal. The
influence of the double-backward emission increases for the other input states and reaches a maximum for R|b〉 =
|0〉. This results in a lower fidelity for the input state |0〉than for the input state |1〉.
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FIG. S1: The figure shows the different states R|b〉 which we have chosen as input states to our circuit.
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State R|b〉 Fidelity Density Matrix

|1〉 0.957± 0.010

|S〉 0.717± 0.044

|+〉 0.778± 0.031

|C〉 0.821± 0.030

|0〉 0.780± 0.046

TABLE S1: The table shows the fidelities and density matrices of the output state |x〉 for different input states R|b〉. The
eigenvalues of the matrix A were chosen to be Λ1, and R = I.
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State R|b〉 Fidelity Density Matrix

|1〉 0.961± 0.013

|S〉 0.647± 0.042

|+〉 0.773± 0.027

TABLE S2: The table shows the fidelities and density matrices of the output state |x〉 for different input states R|b〉. The
eigenvalues of the matrix A were chosen to be Λ2, and R = I.
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State R|b〉 Fidelity Density Matrix

|1〉 0.981± 0.009

|S〉 0.729± 0.040

|+〉 0.832± 0.031

TABLE S3: The table shows the fidelities and density matrices of the output state |x〉 for different input states R|b〉. The
eigenvalues of the matrix A were chosen to be Λ3, and R = I.
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FIG. S2: Additional experimental results. (a) The figure shows another system of linear equations, depicted by the matrixA2 as
well as the state vector |b2〉. (b) The reconstructed density matrix of the experimentally obtained output state |x〉 is shown. This
density matrix is obtained by choosing the local operationR2 = Rx( 89

60
π).Ry(− 3

8
π) and the eigenvalues λ1 = 1

2
and λ2 = 3

4
.

The fidelity of the reconstructed density matrix is 0.976± 0.010. The wireframe shows the theoretical prediction. (c) We show
the experimentally determined (blue) and theoretical (black) expectation values of several operators M̂ where M̂ is chosen to
be the projection on the states |0〉, |+〉, and |+i〉, respectively, with |+〉 = (|0〉+ |1〉)/

√
2, and |+i〉 = (|0〉+ i|1〉)/

√
2.


