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Optical response in the conical helimagnetic state

Assuming that within a single plane Eu2+

spins are ordered ferromagnetically Eq. (1) can
be applied to each plane separately. Neglect-
ing for simplicity the crystallographic details
and assuming a conical helimagnetic phase with
M = M0[cos(q0z) sin(θ), sin(q0z) sin(θ), cos(θ)], where
q0 represents the helix propagation wavevector and θ
the local magnetization angle relative to the c-axis, we
introduce following Ref. [1] a local coordinate system,

x̂′ =[x̂ cos(q0z) + ŷ sin(q0z)] cos(θ)− ẑ sin(θ),

ŷ′ =− x̂ sin(q0z) + ŷ cos(q0z),

ẑ′ =[x̂ cos(q0z) + ŷ sin(q0z)] sin(θ) + ẑ cos(θ). (S1)

Hereˆrepresents the Cartesian unit vectors. The modes
of a spin-operators linearized Hamiltonian are then rep-
resented by,[2]

δMx′(z) ∝
∑
m

sx′(q+mq0ẑ)e
i[(q+mq0ẑ)·r−ω(q)t],

δMy′(z) ∝
∑
m

sy′(q+mq0ẑ)e
i[(q+mq0ẑ)·r−ω(q)t], (S2)

where m are integers and si′(q) and ω(q) depend on the
particular choice of Hamiltonian.[1, 2] Here nonzero m
terms need to be introduced because in the presence of
an in-plane external magnetic �eld higher harmonics ap-
pear in the modulation.[2] An in-plane anisotropy also
introduces higher harmonic terms. Transforming back
to the crystal coordinate system and taking into account
only the oscillating part by omiting the terms containing
δMz′ we obtain:

δMx(z) ∝e−iω(q)t cos(θ)[cos(q0ẑ)
∑
m

sx′(q+mq0ẑ)e
i(q+mq0ẑ)·r − sin(q0ẑ)

∑
m

sy′(q+mq0ẑ)e
i(q+mq0ẑ)·r],

δMy(z) ∝e−iω(q)t cos(θ)[sin(q0ẑ)
∑
m

sx′(q+mq0ẑ)e
i(q+mq0ẑ)·r + cos(q0ẑ)

∑
m

sy′(q+mq0ẑ)e
i(q+mq0ẑ)·r],

δMz(z) ∝e−iω(q)t sin(θ)
∑
m

sx′(q+mq0ẑ)e
i(q+mq0ẑ)·r. (S3)

⟨MiδMi⟩ therefore contains terms:
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⟨MxδMx⟩ ∝ cos2(θ)
∑
m

sx′(qz ẑ +mq0ẑ)⟨cos2(q0z)ei(qz+mq0)z⟩,

⟨MyδMy⟩ ∝ cos2(θ)
∑
m

sx′(qz ẑ +mq0ẑ)⟨sin2(q0z)ei(qz+mq0)z⟩,

⟨MzδMz⟩ ∝ cos(θ) sin(θ)
∑
m

sx′(qz ẑ +mq0ẑ)⟨ei(qz+mq0)z⟩. (S4)

Here ⟨⟩ represents the average over Eu2+ planes.
⟨MxδMx⟩ and ⟨MyδMy⟩ are nonzero only when (i) qz +
mq0 = ±2q0 or (ii) qz +mq0 = 0. In case (i) ⟨MxδMx⟩ =
−⟨MyδMy⟩ leading to an anisotropic in-plane response
while in case (ii) ⟨MxδMx⟩ = ⟨MyδMy⟩ leading to the
isotropic response. The frequencies present in the in-
plane isotropic response are therefore ω(0 +mq0).
Due to terms ⟨ei(qz+mq0)z⟩ the term ⟨MzδMz⟩ also

leads to isotropic response at frequencies ω(0 +mq0).
The TR-MOKE response, on the other hand, is deter-

mined by δϵxy ∝ i⟨δMz⟩ and contains terms ⟨ei(qz+mq0)z⟩
that are nonzero for qz +mq0 = 0, which is identical to
(ii). In a single magnetic domain sample the in-plane
isotropic modes should therefore appear also in the c-axis
TR-MOKE response.

Optical response in the canted antiferromagnetic

state

For convenience we switch to the standard de�nition
of the order parameters in weak ferromagnets.[3] Assum-
ing that the magnetization at H = 0 is oriented along
the c axis, the total magnetization displacement, δM, of
the quasi-FM mode would lie on an ellipse perpendicu-
lar to M with the AFM vector displacements, δL, linear
along M, [4] while for the quasi-AFM mode δM would
be linear along M and δL on an ellipse lying in the xy-
plane. Looking at the symmetric part of the dielectric
tensor for the orthorhombic case following Iida et al.[4]
and assuming L||a and H||b it follows:

ϵii =ϵ0,ii + aiizzM
2
z + aiiyyM

2
y+,

+ biixxL
2
x + ciizxMzLx. (S5)

Here the terms ciizxMzLx are due to the Dzyaloshinskii-
Moriya interaction and are incompatible with our sam-
ples crystallographic structure (Fmmm).[5] The modu-
lation of the dielectric tensor obtained from (S5) to the
linear order in displacements is given by:

δϵii = 2aiizzMzδMz + 2aiiyyMyδMy+

+ 2biixxLxδLx + ciizx(LxδMz +MzδLx). (S6)

For both magnetic modes the nearly-isotropic response
can come from the term 2aiizzMzδMz only since axxzz ∼
ayyzz due to the small orthorhombicity. The nearly
isotropic in-plane response can therefore only be asso-
ciated with δMz. Since both modes contribute to δMz

at a �nite in-plane magnetic �eld, when M is tilted away
from the c-axis along the magnetic �eld, both should oc-
cur concurrently in the transient re�ectivity response.
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