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I. FLUID RHEOLOGY

Fluids are characterized using a stress-controlled cone-and-plate rheometer (RSF 3, TA

Instruments). All measurements are performed at constant temperature, 23◦C.

A. Shear viscosity

Two types of fluids are used: Newtonian and viscoelastic. Newtonian fluids are prepared by

dissolving relatively small quantities of Ficoll (Sigma-Aldrich) in M1 buffer solution. The

Ficoll concentration in M1 buffer ranged from 5% to 20% by weight. Figure 1 shows the

shear-viscosity as a function of shear rate for several Ficoll solutions. We find nearly constant

viscosity behavior even for a very high Ficoll concentration (40%) solution, indicating that

shear-thinning behavior is negligible.

FIG. 1. Ficoll solutions viscosity versus shear rate data for 8%, 24% and 40% (by wt) polymer

concentration.

Viscoelastic fluids are prepared by adding small amounts of the high molecular weight,

flexible polymer polyacrylamide (PAA, MW = 18×106) to water. The concentration of PAA

polymer in water ranged from 5 to 80 ppm; PAA overlap concentration is 350 ppm. Sample

flow curves for PAA solutions are presented in Fig. 2. We find nearly constant viscosity for

all fluids except for the highest concentration case of 80 ppm, where shear-thinning viscosity

is observed. At the most shear thinning case, namely the 80ppm PPA concentration, the

shear rate of the algae body γ̇body, which sets the lower bound of the γ̇, can be estimated

by γ̇body = |U |/D ≈ 15s−1, where |U | is the average of the power and recovery stroke speeds

and D is the cell diameter. With this estimate, the cell body of average algae experience a
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FIG. 2. Shear viscosity curves, η(γ̇) as a function of shear rate γ̇ of PAA solutions for concentrations

ranging from 5 ppm to 80 ppm.

FIG. 3. (a) Sample stress relaxation curves for PAA solutions with concentrations ranging from

20 ppm to 80 ppm. (b) Comparison of relaxation times obtained using commercially-available

rheometer (RSF3, TA Instrument) and an in-house developed microfluidic rheometer1. Values are

very similar.

shear viscosity of ηbody ≈ 6.5 mPa·s. On the other hand, the shear rate experienced by the

flagellum can be estimated by the flagellar beating frequency γ̇flag ≈ 50s−1 and consequently

the shear viscosity experience by the flagella is ηflag ≈ 5mPa·s, for the most shear thinning

case. The viscosity used to report our kinematic data is taken to be the shear viscosity at

the mean of the two shear rate. The deviation from this mean estimate is 13% at the most

concentrated fluid.
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PAA (ppm) λ (s)

5 0.006*

20 0.02

40 0.06

60 0.09

80 0.12

TABLE I. Relaxation times of PAA solutions. The superscript * indicates that λ was obtained via

extrapolation.

.

B. Fluid relaxation times

Fluid relaxation times λ are obtained by fitting the stress relaxation data with the generalized

linear viscoelastic model of a single relaxation time of the type G(t) = G0e
−t/λ, where G(t)

is the fluid shear modulus and λ is the fluid relaxation time. Figure 3 (a) shows sample

curves of stress relaxation data. The relaxation times of PAA fluids are given in Table

1. Due to the limits in instrument sensitivity and accuracy, the fluid relaxation time for

lowest concentration case (5 ppm) is obtained by extrapolating the experimental data. We

also measured the values of λ using a newly-developed microfluidic rheometer1 capable of

measuring fluid relaxations down to 10 ms. Figure 3(b) shows a comparison between the

values of λ obtained using the RF3 and the microfluidic rheometers. The values are quite

similar, and that give us confidence in our measurements of λ.

II. TRACKING AND IMAGE ANALYSIS

A. Swimming (signed) Speed

Standard particle tracking techniques are used to locate the centroid of the cell body. Raw

images of selected swimming alga first undergo image processing including contrast enhance-

ment and band pass filtering for the removal of the high-frequency noise in the image. The

centroid of the cell body for each image is then obtained using a non-linear least square

method. The magnitude of the instantaneous swimming speed (or signed speed) is the ratio
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FIG. 4. (Color online) (a) The (signed) speed of the cell body over consecutive cycles. We notice the

forward (speed > 0) and backward (speed < 0) motion are observed during the power and recovery

stroke respectively. (b) Frequency spectrum of cell body speed for three different swimming gaits

present in our experiments at a viscosity of µ = 1 mPa·s. Regular strokes (black curve), wherein

both flagella beat symmetrically and at the same frequency, results in a single distinct peak of

around 60 Hz for this particular alga. We also observe “wobbles” (dashed blue curve) where the

two flagella are out-of-sync and beat irregularly, illustrated by a second peak at higher frequency ∼

70 Hz. A third swimming mode was seen - we term this the wave - where the alga send synchronous

traveling waves down each flagellum (dashed red curve). In this mode, the peak power spectrum

of the body speed is much weaker and occurs at very high frequency ∼ 95 Hz. Snapshots of the

different beating modes are denoted in the panels on the right (Videos are provided as online

supplementary materials - see SI-Videos).

of the magnitude of the displacement vector over the time step. The sign of the instanta-

neous speed, denoting forward (+) or backward (-) motion, is determined by inspecting the

angle between the displacement vector and the cell body orientation vector, which is from

cell centroid to the cell head. The power stroke mean speed and recovery stroke mean speed

can obtained by averaging the signed speed in the respective stroke over multiple cycles.

The net speed is then the averaged over both power and recovery strokes.

Care was taken to ensure that the algae being tracked are swimming with the “regular”

stroke pattern wherein the two flagella are both actively beating with matching frequency.

Experimentally, such regular stroke patterns are evidenced in a clear singular peak in the

frequency spectrum of the instantaneous speed cf. Figure 4(b). In contrast, wobbling cells,
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whose two flagella beat with different frequency, have a second peak at a higher frequency.

Finally, cells whose flagella propagate synchronous traveling waves and dead cells have peaks

at unusually high frequency and energy spectra that are more spread-out. Videos of these

swimming modes are in online supplementary materials. For each rheologically distinct

fluid, 10-20 sample individuals are obtained whose speed spectrums satisfy our requirement.

B. Flagellar Beating Contours

Material points along the arc-length of each flagella over many complete beating cycles are

tracked using pixel-intensity-weighted averaging and iteration based on resultant centerline

curvature. The contour (shape) was manually identified in the image and the pixel positions

and intensities corresponding to the material points on the flagella are extracted - c.f Figure

5(a). These points (∼ 200) are then grouped into 32 subsets based on their mutual proximity

to obtain 32 centerline loci of the flagellum. A cut-off radius is set equal to the flagellar

radius and was used for the grouping. The first approximation to the positions is obtained

by finding the centroid of the subsets with the weight set to pixel intensity. The resulting

positions of the centerline points are then smoothed by fitting a cubic spline that minimizes

least-square error and second derivative (“curvature”) with a weight of 4:1. Using new

position estimates, the procedure is repeated until the filament curvature calculated from

the x-y positions varies little between iterations (<1%). Finally, we record the centerline

position relative to the centroid of the cell body and interpolate to obtain evenly spaced

points. A pictorial summary of this process is outline in Figure 5(b). This process reduces

the error due optical noise under high magnifications.

Once sequential flagellar contours within a beating cycle are obtained, results for multi-

ple periods (typically 6-8) are then mapped (folded) in time and assigned a dimensionless

phase ratio parameter φ, assuming constant beating frequency. The locus of centerline x-y

positions, as functions of phase ratio φ and arc length s, are then smoothed by fitting a

surface that minimizes least-square error and second derivatives (surface “curvature”). A

typical folded contour obtained in this manner and the raw sampled contour positions are

compared in Figure 5(c), by tracking the tip of the flagellum at 8µm from the proximal
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end. Agreement is seen with the raw centerline points. The filament contours during power

stroke and recovery stroke are obtained in accordance to the convention that power stroke

is when the cell body moves with a component forward while recovery stroke is when the

cell body moves backward.

The sampled individuals were carefully checked to ensure that both the cell body and

the flagella remain in focus throughout the sampling period of the flagellar waveform. In-

dividuals that display a “merging” of the flagellar signal (indicating rotating about the

orientation axis) and whose bodies defocus are not included in the statistics. At our current

imaging frame rate (600 Hz), the noise to signal ratio at the last 5-10% of the flagella is

often relatively greater due to the higher speed at the distal end. Thus we have excluded

this region of low confidence. Finally we note the effective flagellar length, the length up to

which flagellar kinematic data are reliable, is fairly constant, ` ≈ 8 µm, for all fluids and

individual cases serving as a check for the consistency of the image analysis.

Since there can still be some variability due to individual differences, we checked that

flagella contours obtained were indeed representative of a population. The data in Figure

5(d) shows point clouds at four different locations along the flagellum (4 values of s/`) for

a single fluid experiment (80 ppm, De = 6.5) presented in Figure 1 of the main text. The

data points are positions obtained from image analysis of 3 separate individuals, each over 5

beating periods. For each of the four values of s/`, the points collapse quite well indicating

that variations between specimens are not strong compared to the mean. Note that time is

an intrinsic parameter and the overlap between clouds is only apparent and not real.

Finally, the comparison of the flagellar waveform and curvature kymographs between the

Newtonian and the viscoelastic case at µ ≈ 2.6mPa·s, De=2.4 is shown in Figure 7, as

supplement to the analogous comparison made at µ ≈ 6mPa·s in Figure 1 of the main text.
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III. BEAT FREQUENCY

The flagella, at a coarse grained level, constitute an active Euler beam of high slenderness

ratio (i.e, filament) driven internally by the sliding of molecular motors. Current theories

suggest that constitutes an emergent self-organized beating micro-machine. Theoretical

models for the onset of ciliary/flagellar beating and the frequency of emergent oscillations

models2,3 suggest that the frequency is selected based on a linear stability constraint - this

frequency changes well into the non-linear regime that corresponds to the oscillations we

seen in the experiment. The beating amplitude and its saturation is purely dictated by

non-linearities, both geometric as well as kinetic.

In the following, we adapt these models to obtain a simple relationship between the beating

frequency and the external fluid viscosity. While these simple models assume a base state

that is straight and do not include the possibility of different power and recovery strokes

the physical picture relating the internal driving activity to observed oscillation frequency

is the same and thus we expect to at least get qualitative information.

A cilium or a flagellum beating in a liquid of viscosity µ is modeled as two slender fil-

aments (radius a, length ` and bending modulus Bpas) sliding relative to one another due

to the action of active dynein motors. The internal passive links - such as nexin links -

are assumed to yield an effective elastic resistance corresponding to a linear spring and

are coarse-grained into an internal spring constant per unit length kN. This forced sliding

combined with the geometric constraint at the base and the bending and shear resistances

(due to nexins) yields bending. Depending on parameters and boundary conditions, the

sliding can be oscillatory in nature and thereby generate propagating bending waves.

For small deformations valid close to onset of oscillations, the lateral displacement mea-

sured as a function of arc-length h is related to the local curvature κ by its second derivative

w.r.t arc-length - i.e, κ = h′′. Using h = Real[heiωt] where ω is the emergent frequency

and noting that for C. reinhardtii we may approximate the boundary conditions to be

clamped at the basal end and free at the distal end, that is h(s = 0) = h
′
(s = 0) = 0 and
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h
′′
(s = `) = h

′′′
(s = `) = 0. The equation for h is to linear order,

µiωh+
(
Bpash

′′ − a2kNh
)′′

= a2χh
′′

where the active, frequency compliance χ(ω) arises from the viscoelastic nature of the motor

activity - akin to an active viscoelasticity of the material inside the flagellum. Note that in

the absence of activity solutions are rapidly damped down by viscosity over a elasto-viscous

time scale τev ≡ ω−1
ev ∼ µ`4/Bpas. Since the frequencies are not linearly decaying with

viscosity, the beating is driven actively and does not correspond to passive relaxation.

Solutions are possible only for special value of ω - these thus constitute eigenvalues at

which oscillatory solutions arise. We choose a simple expression for χ(ω) from Camalet and

Julicher2 that involves an kinetic rate (ATP cycling rate) αATP and simplify it for the case

at hand. The most unstable mode is associated with oscillations that emerge with frequency

ω ∼

√(
Bpas

µ`4
αATP

)(
1 +

4kN`
2a2

πBpas

)
thus yielding the scaling ω ∼ 1/

√
µ. It is intriguing to see that our experiments - c.f Figure

2(a) in the main text - seem to be consistent with this prediction.

We would like to point out that the presence of the nexin links results in an effectively

larger bending modulus due to shear stiffening - that is we can identify an effective bending

stiffness (passive) Beff ∼ Bpas (1 + 4kN`
2a2/πBpas)

2
due to the shear stiffening of the springs.

Finally we also note that this expression assumes that there is no passive viscosity inside the

flagella. In reality the filaments are affected by external (µ) and internal (µint) viscosities

and so a rough argument would suggest replacing µ by an effective viscosity µeff ∼ µ+ µint.

When µ � µint, we find ω ∼ 1/
√
µ while when µ � µint, we expect ω ∼ 1/

√
µint - a

constant dependent on the internal dissipative friction. This is consistent with our observed

frequencies as for low viscosities the frequency seems to tend to a constant.
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SI: MOVIE CAPTIONS

SIRegular

Video showing regular beating in an alga - this is the swimming gait used in the

analysis. The two flagella beat synchronously (with mirror symmetry about the centerline)

using clear power and recovery strokes. During the power stroke, the cell body moves

forward; during the recovery stroke it move backward. The power and frequency spectra

show a clear peak.

SIWobble

Video showing wobble in an alga. The two flagella beat using the regular gait - ex-

cept that every now and then, the trajectory is punctuated by a wobble where one

flagellum goes out of synchrony with the other. These wobbles are analogous to tumbles

in prokaryotic bacteria and may correspond to turning events.

SIWave

Video showing wave like beating in an alga. The two flagella beat in the same di-

rection (no mirror symmetry about the centerline) by propagating bending waves along

the flagellum. While this does lead to locomotion, the speeds we observe are not high -

besides, this is not the usual swimming gait used.
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FIG. 5. (color online) (a) Sequence of steps (i)-(iii) in extracting flagellar centerline positions and generating

continuous differentiable contours. (b) Final contours illustrating the symmetry of the beat, the position

of the centroid (xc, yc) and cell orientation α. (c) The comparison of the raw sampled centerline points at

s = 8µm from the proximal end over time versus those after the smoothing in phase, φ and arc-length s.

We see that the noise level is low and that such smoothed loci capture the actual tip positions faithfully. (d)

To demonstrate that the captured flagellar waveform is indeed representative of the sampled population, we

plot the trajectories of the flagellum at fixed positions s/` = 0.2(A, black), 0.5(A, blue), 0.8 (A,red), 1 (B,

blue), for a total of 3 individuals each over 5 beating periods. The fluid in which the samples are observed

is 80ppm PAA solution.
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FIG. 6. (color online) Typical flagellar shape contours corresponding kymographs for purely New-

tonian fluids at three different viscosities (a) 1 cP, (b) 2.6 cP and (c) 6 cP.
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FIG. 7. (color online) (a) Flagellar shape contours at µ ≈ 2.6mPa·s (arrows indicate direction of

beating) for (i) Newtonian and (ii) polymeric fluid De=2.4. (b) Corresponding spatio-temporal

normalized curvature distributions along the flagella in Newtonian (left panel) and viscoelastic

fluid (right panel).
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