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1 Data description

Our data contains phone records for a six months period in three countries:
France, Portugal, and Spain. In total 7 billion interactions are considered. In
order to build the social network, only links with at least one communication per
direction are included. This is a common technique in the literature [30, 29, 21]
to avoid both marketing callers and misdialed numbers. After applying this �l-
ter, the network presents the characteristics shown in table 1 in the manuscript.

α kmin KS.stat KS.p
Portugal 5.19 73.00 0.010 0.97

Spain 6.22 32.00 0.005 0.93
France 4.88 33.00 0.012 0.00

Tab. S1: Results of truncated power law �ts for the degree distribution of all 3
networks. For Spain and Portugal, a power-law can be �tted in the
tail of the distribution. The �t has been done using the procedure
described at [10].

1.1 User location

A key aspect in the creation of a link between two individuals is the geographical
distance between them. In our study, users are located in their billing zip code
(Spain) or their most used tower (France and Portugal). In total 8928 di�erent
locations are available in Spain1, 17475 in France and 2209 in Portugal. Figure
S1 shows the distance distribution to the �rst, second and third closest zip code
or tower in the three datasets. Although towers may provide a slightly more
accurate geolocation, both are su�cient for our purposes.

1 Spain zip codes are geolocated according to geonames database, available at
http://downloads.geonames.org/export/zip, and grouped according to latitude and longitude
since some zip codes have identical coordinates. Towers coordinates were provided by the
carrier.
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Fig. S1: Distance distribution to the �rst, second and third closest tower or zip
codes. Towers (France and Portugal) are slightly closer to each other
than zip codes (Spain) are.

On the other hand, users are not equally distributed among towers and zip
codes. Figure S2 shows the cumulative distribution in the three data sets. Most
of the towers serve between 100 and a few thousands users, while zip codes'
user count is more heterogeneous (the maximum is a zip code in Madrid with
125,000 users). The explanation for these di�erent results comes from technical
reasons: as the demand rises in an area, additional phone towers need to be
installed to handle the tra�c.

For simplicity, from now on we will refer both towers and zip codes as towers,
unless otherwise mentioned to explain di�erent results among di�erent data sets.

1.2 Sampling e�ects

Users in the network are not homogeneously distributed, in some regions there is
a slightly higher concentration. This variance may come from a higher market
share of the mobile phone provider or from a higher usage of mobile phone
service in the area (only users who have at least one mutual relationship appear
in the network). The di�erences between di�erent regions are depicted in �gure
S3.

We refer user density as the ratio ui =
Users

Total population in a certain region i.
The main e�ect of having di�erent ui seems to be in the average degree of the
resulting subnetwork. Figure S4 shows this relationship, which turns out to be
close to linear. For a network where all inhabitans are present (i.e, ui = 1), a
projection of the resulting linear model would be 〈k〉 ' 16.

In any case, the number of contacts in a phone network is relatively small
compared to other social networks obtained from online social sites (average
degree are in the hundreds [25, 15]) or compared to di�erent �gures proposed
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Fig. S2: Empirical cumulative distribution function of number of users in each
tower or zip code. Due to technical reasons, the range of users per
location is smaller when towers are used, while zip codes distribution
is more broad.

as average degree for humans: extrapolation from observed correlation between
social group size and neocortex volume in primates drove Dunbar to propose
150 [12], while recent statistical estimation methods based on self-reported data
range between 290 [23] and 610 [24]. We will show that increasing the aver-
age degree has a positive e�ect on routing, which means any result we get by
studying the phone social network can be considered as a lower bound for the
real world's social network. On the other hand, the phone network can be seen
as the backbone of the social network, since it contains only interactions the
people are willing to pay for.

2 Intercity routing experiment

2.1 Assignation of user to cities

Our �rst experiment consists of, given a random pair of nodes in the network
A and B, trying to deliver a message from A to the area where B lives. For
systematically delimiting this �area where B lives� we have chosen administri-
tative division over a regular spatial grid, because the resulting modularity in
the social networks is signi�cantly higher. Speci�cally, we will study two levels
of agreggation in each of the networks:

• We will generically refer as provinces to the following administrative divi-
sions: départements in France, provincias in Spain and distritos in Por-
tugal. This way we divide the country into 97, 50, and 20 provinces,
respectively. According to o�cial census, the population ranges from 77
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Fig. S3: Users/Population ratio in the province level. Brighter colors represent
a higher ratio. The maps were created using the package maptools for
R.
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Fig. S4: Dependence of the average degree 〈k〉 on the ratio between users and
population. Each point represents a province network. It can be ap-
preciated how closely related 〈k〉 and ui = Users

Population are. Blue line

presents a linear �t 〈k〉 = 3.16 + 13.24ui where R
2 = 0.818.
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a) b)

Fig. S5: Provinces (a) and municipalities (b) map of the three studied countries.
The maps were created using the package maptools for R.

thousand (Lozère, France) to 6.4 million (Madrid, Spain). A province map
for all three countries is depicted in �gure S5a.

• We will generically refer as municipalities to the following adminsitrative
divisions: cantons in France2, municipios in Spain and concelhos in Por-
tugal. Our users are located in 3520, 5446 and 297 di�erent municipalities
respectively. A map depicting municipalities in all three countries is pre-
sented in �gure S5b.

To map the user coordinates into the appropiate divisions we have used Global
Administrative Divisions database3 except for France's cantons, where the GE-
OFLA database by IGN has been used4.

2.2 Experiment conditions

Once we have assigned users to their cities, we ran the experiment in the fol-
lowing setup: in each country we chose 60 thousand random source and targets
among all nodes in the network. Next, we try to deliver the message using
combinations of techniques described in section Methods in the manuscript.
Additional to those, we have performed a pure geogreedy (passing to the geo-
graphically closed friend, and if no one is closer than the current user, consider
the chain broken) as well as the modi�cation proposed in [22], which we have

2 We have used this division instance of the communes because of the high number and
high heterogenity of the latter (over 36 thousand di�ents communes, ranging from 10 people
to 2 million). Most of cantons are composed of several communes, being Paris a special
case: Paris city actually �lls the whole departement 75, and is divided into 20 arrodisements

(districts) which are counted as cantons. In any case, when we refer the Paris city in the
intracity network experiment, we mean department 75. Some other large french cities are also
divided into several cantons.

3 http://www.gadm.org/
4 http://professionnels.ign.fr/geo�a
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denoted geogreedy++, and consist of forwarding the message to another user in
the same location even if she is not connected to the current user. For each pair
and algorithm, up to 1000 hops are simulated before reaching target's city.

2.3 Experiment results

First of all, in intercity routing, using provinces as target seems to make the
routing process trivial (even random routing delivers a signi�cant amount of
messages), so we will present the results of the routing trying to reach the
right municipality. The main conclusion is that any routing strategy other than
random will deliver the messages with a high probability (as we can see in �gure
2a in the main text). If we study small di�erences in error rate after 100 steps
between the algorithms (see �gure S6) we �nd statistically signi�cant di�erences
between the algorithms. In general, geo methods outperform com methods, and
solving geographical ties (two people are at the same distance from the target)
using degree increases routing performance. Another relevant �nding is that
these distributed routings re�ects the same behavior than the optimal routing:
it is harder to route in Spain (due to the smallest average degree) than in France,
despite the number of nodes in France is about 4 times larger.

In order to provide a more detailed look of this experiment, we have pub-
lished the following webapp: www.someurl.com. In the app, the user can pick
among 180 thousand routes we have simulated, choosing �rst target city and
then source. To illustrate the di�erence between distributed an optimal routing,
both optimal and best decentralized (ran-geo-deg) routes are plotted, and also
the number of nodes explored to �nd the optimal path is presented. Theoreti-
cally, a ran can go �backwards� in the exploration of the network if all friends
have been already visited, producing a loop in the sequence of explored nodes.
However, we did not �nd evidence for this in our simulations (overall, over 3.2
million hops were simulated). In �gure S7 an snapshot of the app is presented,
with one route as an example. On average, in France, the distributed routes
found have 18.1 hops, while 7.2 hops are optimal. However, in order to �nd the
optimal routes on average 8.1 million nodes have to be explored.

Besides, we have studied how the size of target's city in�uences the length
of the distributed route found. Intuitively it is easier to reach a big town like
Madrid (3.2 million inhabitants in the municipality and half million users in our
network) than a small city with just a few hundred inhabitants. However, our
results show how the size of the destination city a�ects only logarithmically to
the length of the route found to reach them (see �gure S8).

3 Intracity experiment

For the intracity experiment, we have divided the country networks into both
provinces and municipalities networks. All provinces have been studied, and the

6 OpenStreetMap Copyright and License http://www.openstreetmap.org/copyright (Date
of access:28/11/2014).



3 Intracity experiment 8

<l
rt
g>

geogreedy

geogredy++

ran
ran ran
ran

ran

Fig. S6: Intercity performance for di�erent routing algorithms. Top graph
shows the fraction of messages arriving at the target in the �rst 50
hops f(n). Since the fraction of messages decreases with the number
of hops, one could evaluate the performance by measuring the mean
and the integral of this distribution after N hops, with N being large
enough. The bottom graph presents the average path length of the
delivered messages 〈lrtg〉 =

∑N
n=1 nf(n) and the fraction of failed mes-

sages E = 1−
∑N
n=1 f(n) for N = 100.
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Fig. S7: Snapshot of the app we developed for visualize our results. The red
route is the result of distributed ran-com-deg while the green one dis-
plays the optimal route. In this example, the distributed route needs
14 steps to reach the destination city, while the optimal route uses 8.
However, the distributed algorithm explores only 123 nodes, while more
than 17 million nodes are checked for �nding an optimal route. Figure
created using using map tiles from openstreetmap.org (OpenStreetMap
contributors6, licensed under Creative Commons BY-SA 2.0 licence.
To view a copy of this license, visit creativecommons.org/licenses/by-
sa/2.0).
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Fig. S8: Average number of hops needed to reach each city versus city size
(relative to the size of the country's network). Error bars show the
standard error of the mean.

100 most populated municipalities in each country (300 municipalities and 168
provinces in total). Province networks are almost connected (over 95% nodes in
the giant component) and municipalities have also a quite big giant component
(over 80%). In any case, these administrative boundaries produce signi�cantly
larger connected networks than any regular spatial grid. The reason for this is
that the classi�cation of nodes in either provinces or municipalities is indeed a
good community classi�cation (modularity7 scores over 0.4 and 0.5 respectively)
probably due to the high clustering of our networks. For the routing experiment,
we take into account the nodes in the giant components (a path between any
given two nodes actually exists) just as we did with the country networks.

We repeat the experiment in each of the networks with the same setup we
used for the intercity experiment. In this case 100 thousand random pairs are
simulated for the algorithms presented in �gure 2c in the main text, while for
all other algorithms, 10 thousand pairs are considered.

3.1 Results analysis

In �gure S9 we present the routing results for the three capital cities (in fact
these are worst case scenarios, since the networks are the largest). Figure S9
presents both P (lrtg) distributions and their equivalence in the (〈l100rtg 〉, E100)

7 Modularity is a standard metric to evaluate performance of community detection method,

de�ned in [27] as Q = 1
2m

(
∑

ij Aij − kikj
2m

)δ(i, j) where A is the adjacency matrix of the

network, ki is the degree of vertex i and δ(i, j) = 1 if i and j belong to the same community
and δ(i, j) = 0 otherwise.
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plane, which we will use for comparison. In �gures S10-S15 we include results
for the top 20 provinces and municipalities in each country. Careful observation
of these graphics allows us to draw the following conclusions:

• Algorithm ranking from best to worst, is almost constant over all studied
networks.

• Among ran methods (algorithms avoiding loops), 〈lrtg〉 and E are fairly
correlated. If an algorithm A outperforms another algorithm B by �nd-
ing smaller 〈lrtg〉 it will also provide a smaller error rate. Thus, we can
compare algorithms by using only one of the two metrics. In �gure S16
we show the relation between these two metrics for the ran-com-deg algo-
rithm.

• Contrary to what takes place in the intercity scale, using geography to
route within the city does not produce e�cient routing. Consistently
over the network sets we study, community based routing ran-com-deg
signi�cantly outperforms ran-geo-deg. Interestingly, having additional ge-
ography information besides the community structure (this means there
is more information to make the routing decision) seems to be misleading,
specially in large networks, as it can be observed in the performance of
the ran-com-geo-deg routing strategy.

• Among all algorithms tested, ran-com-deg is the one producing the best
results.

3.2 E�cient routing and average degree

Networks are considered to be small-worlds if they have a high clustering coef-
�cient (ratio between closed triangles and connected triples), and at the same
time the shortest path length scales with the number of nodes in the network
N like O(logN) [36]. A routing algorithm is considered to be e�cient if it is
polylogarithmic [19]: i.e, it is able to �nd, between any two nodes, a path of
length O(logαN) with a high probabilty.

Then, we check if our ran-com-deg is in fact an e�cient routing algorithm.
In �gure S17(top) we show the relation between network size and error rate.
Although in most networks we �nd that the error rates depends logarithmically
on the number of nodes, we see a number of outliers. We �nd these outliers have
small average degree. In fact, the majority of networks that do not lie in the
O(logN) behavior have average degree smaller than 4. Although to the best of
our knowledge there is no previous result in the literature to explain this �nding,
we suggest the following explanation. In a random graph where all nodes have
the same degree k, k ≥ 3 is needed to be able to �nd paths O(logN)[7]. On the
other hand, recent work in the e�ect of clustering in percolation studies show
how a growing transitivity implies a higher average degree is needed for the
emergence of a giant component[28, 1, 4]. Since having a connected nework is a
necesary condition to route, we conclude our empirical observation is consistent
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Fig. S9: Intracity experiment results for the 3 main cities. Top graph shows the
fraction of messages arriving at the target in the �rst 50 hops f(n).
Since the fraction of messages decreases with the number of hops, one
could evaluate the performance by measuring the mean and the in-
tegral of this distribution after N hops, with N being large enough.
The bottom graph presents the average path length of the delivered
messages 〈lrtg〉 =

∑N
n=1 nf(n) and the fraction of failed messages

E = 1−
∑N
n=1 f(n) for N = 100.
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Fig. S10: Intracity results for the 20 biggest provinces in Portugal. N denotes
the number of nodes, and 〈k〉 the average degree. Success rates refer
to the proportion of messages delivered after 100 steps and 〈lrtg〉 to
the average path length of successful chains.
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Fig. S11: Intracity results for the 20 biggest provinces in Spain. N denotes the
number of nodes, and 〈k〉 the average degree. Success rates refer to
the proportion of messages delivered after 100 steps and 〈lrtg〉 to the
average path length of successful chains.
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Fig. S12: Intracity results for the 20 biggest provinces in France. N denotes the
number of nodes, and 〈k〉 the average degree. Success rates refer to
the proportion of messages delivered after 100 steps and 〈lrtg〉 to the
average path length of successful chains.
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Fig. S13: Intracity results for the 20 biggest municipalities in Portugal. N de-
notes the number of nodes, and 〈k〉 the average degree. Success rates
refer to the proportion of messages delivered after 100 steps and 〈lrtg〉
to the average path length of successful chains.
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Fig. S14: Intracity results for the 20 biggest municipalities in Spain. N denotes
the number of nodes, and 〈k〉 the average degree. Success rates refer
to the proportion of messages delivered after 100 steps and 〈lrtg〉 to
the average path length of successful chains.
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Fig. S15: Intracity results for the 20 biggest municipalities in France. N denotes
the number of nodes, and 〈k〉 the average degree. Success rates refer
to the proportion of messages delivered after 100 steps and 〈lrtg〉 to
the average path length of successful chains.
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with previous theoretical results: is not feasible to route e�ciently in networks
with an average degree smaller than 4. In fact as we show in �gure S17(bottom),
networks with low average degree actually have a signi�cantly larger diameter.

3.3 Relation to decentralized routing theory

As mentioned in the paper, a number of approaches have been employed in
the literature to explain the capability of humans participating in Milgram-
like experiments to �nd short paths: repetitions of the experiment asking the
participants about routing criteria are performed [11, 26], computer simulation
of decentralized search strategies are tested on real network data [22, 2], and
analytic studies focusing on certain properties of networks are conducted [37, 19].
In this last category, lots of attention was attracted by Kleinblerg's work [19, 16]
where it is proven that a regular two dimensional lattice can obtain small world
structure by adding randomly links between nodes. Additionally, only if these
links are added with probablity 1

r2
8, a decentralized algorithm is able to �nd

these short paths. Even if this is indeed a very interesting �nding, we cannot
map our phone network on a two dimensional lattice with additional long-range
links.

However, in [17, 18] the same author proposes a generalization which we can
in fact apply, which is called the group model. In short, let be a network whose
node set is V , a set of groups, S = {S1, S2...Sn} where Si = {v1, v2, ...vi/vi ∈ V }
and at least one of the groups Si is the full vertex set V . Under these asumptions,
for any pair of nodes (u, v) a function g(u, v) can be de�ned such as g(u, v) is the
size of the smallest group Si containing both u and v. If a network is constructed
so that k edges are added to each node with probability proportional to g−γ(u, v)
where γ = 1, then a decentralized algorithm can route in polylogarithmic time.
If the network is constructed with γ < 1 there is no logarithmic routing and if
γ > 1 there are networks where decentralized routing can be successful.

Both our main routing strategies, communities and geography, can be mapped
to groups9: it is straightforward in the case of communities since the hierarchy
resulting of community detection is a valid set of groups S. For geography, we
can consider g(u, v) as the number of people who are closer from v than u, which
means Si are the balls of population centered in a tower with a given radius r.
A similar model was actually proposed in [22] to explain how a simple geogreedy
technique is capable of sending messages to the right city.

On a �rst look both geographically determined balls and communities seem
to have the correct exponent as shown for Lisbon in Figure S18. However when
we calculate the scailing, we �nd γgeo = 0.85 and γcom = 1.07. When we apply

8 r denotes the Manhattan distance between two given nodes in the lattice
9 There are some characteristics in our networks which makes them di�erent from the

theoretical model: our networks have heterogenous degree and we need to relax some of the
properties of the groups, especially in the case of geographic balls. Concretely, the original
model requires that for any group Si of size g >= 2 containing a node v, there has to be a group
Sj ⊆ Si containing v which is strictly smaller than Si, but contains at least min(λg, g − 1)
nodes, where λ < 1. To accomplish this in our case, we need to choose a λ arbitrary small, at
most 1/tmax, where tmax is the maximum number of users in one tower.
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Fig. S17: Scaling of error rate with size for the ran-com-deg strategy (top). Col-
ors represent the average degree 〈k〉. If networks are connected enough
〈k〉 > 4, scaling follows a logarithmic behavior. A similar behavior
emerges in the scaling of the average path length 〈l〉 (bottom), where
networks with low degree have a diameter relatively large for their
size.
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in�uenced by physical distance.
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Fig. S20: Di�erent γ values obtained for geographical and communities groups
in all provinces and cities in each country. Results con�rm theoreti-
cal predictions since in those scenarios where geo is not e�cient (i.e.
cities), γgeo < 1 while communities show the correct behaviour even
within cities. Note some municipalities in Portugal have the right
γgeo, which is easy to understand when we explore them and �nd in
rural areas in Portugal, municipalities are actually a set of towns so
geographic routing is still e�cient to some point because it can �nd
the right town.
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this �tting procedure to all cities and provinces in the 3 countries, we �nd γgeo
consistently bellow one and γcom > 1 for cities while we observe no signi�cant
di�erence on the province level (see Figure S20).

The explanation relies on the following fact: given a group S where the target
belongs (can be a geographic ball or a community), a decentralized algorithm
tends to search the whole group before trying nodes in other groups. If nodes in
the group do not form a giant connected component on the network, there are
no paths between most of node pairs u, v ∈ S where all the nodes on the path
are also in S. In this case, the decentralized search fails. In �gure 2d of the
paper we show the di�erence between geographic balls and communities: while
communities are by de�nition connected, geographic balls lose connectivity for
small radius. This means, within the same tower, there are islands of users.
However, as we can see in the �gure, if we calculate the giant components of
the geographic balls on the country scales (locating users in municipalities) we
observe no such breakdown. This �nding agrees with the fact that geo strategies
are actually e�cient on the country scale, as discussed in the previous section.

3.4 Connectivity collapse within cities

As we have discussed in the previous section, given a ball of radius r km, if we
construct the social network between the people living in municipalities within
the ball, this network will have a giant component (�gure 4b in the paper). How-
ever, if we choose a ball within a municipality, and build the network between
people living within the same towers, the giant component vanishes. In �gure
S21 we show the reason for this collapse, by studying the intra-tower networks
for the 30 top towers in each capital city and then compare to two randomized
versions of the networks. The �rst randomization keeps average degree (Erdös-
Rényi), and the second keeps the whole degree distribution, but both eliminate
clustering. Our results demonstrate that clustering is the main responsible for
the absence of a giant component.

In summary we have strong evidence that the observed relation between ge-
ographic space and social network (connected pieces of land produce connected
networks) breaks within cities. Thus, we neither can �nd a distance rcritical nor
a geographical group size Scritical below which there is no connected compo-
nent in the induced subgraph, because cities have very di�erent extension and
population. To support this claim we have studied all intra-tower networks in
the capital cities and compared to municipalities networks of the same size, and
results are presented in Figure 5 in the manuscript.

Number of social ties within towers

Our results in �gure 2 in the paper agree with previous literature [21, 22] �nding
that the probability of two users within distance r to be connected decreases
similar to 1

r . However, this �nding does not give us any guideline about the
number of links between people within the same tower, since in principle they
are within r = 0 distance. In order to be able to apply pure geographical models
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Fig. S21: For each of the top 30 towers in each capital city, the fraction of
nodes in the giant component is computed. Additionally, the giant
components for randomized versions Rand-ER (keeps average degree)
and Rand-Degree (keeps degree distribution) are shown. Each ran-
dom point in the graph is averaged over hundred realizations of the
randomization process.
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Fig. S22: Randomization of user location within their own Voronoi cell for Lis-
bon and Paris. Figures displays the given locations for two thousand
random users in the city. Our randomization keeps spatial distribution
in the tower level (that is why small downtown cells appear to be full).
The maps were created using the R packages ggmap and ggplot2.

to our data, we have to randomize the position of the users around the tower's
location.

A common assumption for mobile phone data is considering that if a call
is processed by a tower, then that tower is the closest to the user's location.
This assumption implies the geographic space can be divided according to the
Voronoi diagram of the towers in that region. This way our randomization
assigns a users a position uniformly distributed in the Voronoi cell they belong.
Figure S22 shows the randomization process in Paris and Lisbon10.

3.5 Crossover in geography-based routing

Figure S24 shows the performance of di�erent routing strategies in the intracity
scenario considering that a delivery is succesful if the message was able to reach
the target in less than 50 steps (�gure 3b in the paper is analogous to this
�gure but with 100 steps threshold). One interesting aspect is the crossover
behavior between municipality and provinces in the geographic based routing.
In this section we explain the emergence of such behavior by using a simpli�ed
example.

The crossover can not be linked to a critical spatial characteristic of the city.
As shown in Fig. S23, we do not �nd a critical city diameter, area, or density
below which the routing fails. This is a strong indication that the geography
plays a di�erent role in the social network structure between and within cities.

10 This simulation could not be computed in Madrid because the Voronoi assumption is not
valid for zipcodes.
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Fig. S23: The success rate does not seems to be highly correlated with spatial
characteristics of the studied region like the diameter, the area, and
the density of the studied region. Therefore, no critical boundary
below which geographical routing fails can be identi�ed.
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ran
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Fig. S24: Success rate for di�erent routing strategies in provinces and munici-
palities with 〈k〉>4. This �gure is equivalent to �gure 2b in the main
paper, but considering successful routing if the message was delivered
within 50 steps, instead of 100. Pure ran routing produces a reverse
linear decrease, while the community based routing produces a much
slower decay. Geographical routing in the intracity scenario produces
a crossover between behavior provinces and municipalities.
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Figure S25 shows a simpli�ed version of a province with N users and 3 cities.
Let's denote P (S) the probability that a message is succesfully delivered. For
ran algorithm it is straightforward to conclude the probability Pran(S) = 1/N
being N the number of nodes in the network, no matter if the network represents
a province or a city. This conclusion agrees with our results in �gures S24 and
3b in the paper.

However, for geographic routing, we denote P (c) where c ∈ {A, B, C} the
probability of reaching the right city c and P (S|c) being the probability that
the message is succesfully delivered given it is already in the right city c. In
the intercity experiment scheme (see section 2) we have proven that the geo
approach is valid, delivering the vast majority of the messages to the right city,
so we consider Pgeo(c) = 111. Using results from our intracity experiment we
assume Pgeo(S|c) = 1

nαc
, with 0 < α < 1. Then

Pgeo(S) =
∑

c∈{A,B,C}

nc
N
Pgeo(c)Pgeo(S|c) =

=
∑

c∈{A,B,C}

nc
N

1

nαc
=

∑
c∈{A,B,C} n

(1−α)
c

N
≥

(
∑
c nc)

(1−α)

N
=

1

Nα
,

which means that using geo approach, a province with a certain population
N has a higher success rate than a municipality with the same size. Even if
we generalize Pgeo(S|c) = f(nc) where f is any decreasing function this result
holds: if geo is capable to deliver all messages to the right city, then Pgeo(S) is
a weighted average of the performances in the cities forming the province such
that f(nmax) ≤ Pgeo(S) ≤ f(nmin) where nmin and nmax denote the size of the
smallest and biggest cities respectively.
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