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Fig. S1. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the native 
and recombinant materials along with molecular weight markers. 
 

 
Fig. S2. Measurement setup for the adhesion experiments. The inset shows a close up of the flat 
protein film, where a clear ring stain pattern is visible. 
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Fig. S3. Raw data used for the regression model (1). Error bars show standard deviation of 
measurements (n = 6). 

 

 

Fig. S4. Molecular dynamics simulations of chain pull-out. (A) A sample force-displacement 
curve from a steered MD simulation. The x-axis shows the distance between the two harmonic 
springs moving away from each other, while the y-axis shows the corresponding force imposed 
on the springs. The black data points represent the instantaneous force-displacement values and 
the red line shows the smoothed data. The inset figures are the snapshots of the peptide chains at 
the beginning, point of peak force and at the end of the simulation. It is worth mentioning that 
this curve belongs to a simulation performed in vacuo for the sake of demonstration. Simulations 
with solvated chains contain a higher noise to signal ratio and the pull forces are lower due to 
peptide-peptide hydrogen bonding replaced by the ones with water molecules. (B) The ACF 
profiles of peptide-peptide hydrogen bonding in solvated systems at different temperatures. The 
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sudden drop of ACF at 320 and 330K indicates the threshold of thermal fluctuations overcoming 
the hydrogen bond stability between peptides. 

 

 
Fig. S5. Full FTIR spectrum of the recombinant protein. The amide I band of this spectrum was 
used for the peak fitting in Fig. 3B. 

 
Fig. S6. 13C-ssNMR CPMAS spectrum of the dry material at 70 ˚C. 

 
Fig. S7. Self-healing of recombinant 22 kDa squid ring teeth protein. (A) Full amino acid 
sequence of the recombinant 22 kDa squid ring teeth protein. The coloring shows similar blocks 
as the 18 kDa protein (Fig. 1B) but the segments are not as clearly separated as in the 18 kDa 
protein. (B) Plot of Fa as a function of t at T = 41 ˚C. Error bars show the standard deviation of 
the measurements (repetitions: 5). The contact time dependence was comparable to the 18 kDa 
protein (Fig. 2C). Best fit parameters for eq. 1 were k = 0.41, c = 0.08 N and F0 = -0.09 N. 
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Eq. 1
A BMVATVLVIMSMIAALSCQ

SEAALSVGTSVKTIRQSV
HHGAVPAVGHTTVTHAVP
HAYAYGGLPYGDAFGGLY
GGLYGGLYGSPAATSVKT
VSHGFHPTLPVGSTISHT
THGVHHPVTYGGLGLGGL
GYGGLGYGGLGYGGLGYG
GLGYGGLGYGGLGYGGLG
AGGLYGLHYPGAVGLGYG
LGGGYGGLYGLHLPAATS
VSHTTHGVHHPALGLGLY
GGAHLPAASSVTHTTHGV
AHPGLGLNYGVYGLH



Table S1. Different regression models considered for the adhesion data. The response variable 
was kept always Fad, to allow comparing different nonlinear regression models using Akaike 
Information Criterion (AIC), small-sample-size corrected version of AIC (AICc) and Bayesian 
Information Criterion (BIC). In general, AIC and AICc favor regression accuracy over model 
simplicity compared to BIC. The information criteria were computed as: 
AIC = n ln(RSS / n) + 2 m, AICc = AIC + 2 m (m + 1)/(n - m - 1) and BIC = n ln(RSS/n) + m ln n, 
where n = 336 is the total number of datapoints, RSS is the sum of square residuals and m is the 
number of parameters in the model. In the models, argument T denotes that the coefficient is 
temperature dependent, resulting in 8 parameters in the model instead of one (8 different 
temperatures were tested). The relative weights w are computed by giving each model i an 
absolute weight of 2/)min( xxie −− , where x are the information criterion values. Based on BIC, Fa = 
a(T) tk + F0 + ε was chosen as the best fit to the data. The regression analysis was done in 
Matlab, using function nlinfit, and the parameter 95%-confidence intervals in Fig. 2D were 
calculated using Matlab function nlpredci. When nlinfit failed to converge, the model was 
possibly over parameterized and the model was taken to have an absolute weight of 0. The 
coloring reflects the relative weights of the models (red: 0 – 0.0001, orange: 0.0001 – 0.01, 
yellow: 0.01 – 0.05, and green: 0.05 – 1). 
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Table S2. Latin square experiment designs for adhesion experiments. Each row of the table 
corresponds to series of experiments on a sample at a fixed temperature. 7 different contact times 
were tested at each temperature, denoted by numbers 0 to 6 in the table. 0 corresponds to the 
shortest contact time (5 s), while 6 corresponds to the longest contact time (625 s). For each 
temperature a different row was picked from the table. On each row, each contact time was 
repeated 6 times, giving a total of 7 × 6 = 42 measurements per sample/temperature. Each row 
has the property that the first-order carryover effects are balanced e.g. experiment 0 is followed 
by each one of the experiments 1 – 6, except the last experiment of the row that would be 
followed by the first experiment of the row. The table was constructed by generating six 7-by-7 
square matrices with an increasing n = 1 … 6, where each cell on row i and column j has the 
value of i × n + j - 2 mod 7. The matrices are then placed side by side. The construction works as 
long as the number of different contact times is a prime number. 
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