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I. SI APPENDIX 1: SOLVING THE DETAILED MODEL OF GENE REGULATION

In this Appendix, we present mathematical derivations which are too long to be included in the main text. We
adopt some new notation from mathematical probability for the Appendix: Here, Ef stands for the mathematical
expectation of f in the sense of integrating f with respect to the joint probability distribution of all random variables
present in it. For long expressions, this is more convenient than the bracket notation. Moreover, E[f |F ] will denote
the conditional expectation of f given information F because there is no fixed notation for conditional expectations
in physics and chemistry nomenclature (in particular, the one using a vertical line between the brackets is easily
confused with an inner product).

A. Step 1: Inclusion of protein maturation delays

According to definition in the main text, the TF concentration at the target site equals

ρ(t) =

∫ t

0

φ(t− s) dNsynth(s) (1)

where φ(t) = φ(xTF ,xO, t) is the TF concentration in the reaction volume surrounding the operator (located at xO)
of the transcription unit given that a single mature TF molecule emerged at location xTF at time zero. Nsynth(t)
is the point process in time describing protein synthesis, that is, of TF molecules, at location xTF . In the following
derivation, we do not presume any particular form of φ (although spatially homogenous form is assumed in the
simulations presented in the main text and further Appendices). Hence, this Appendix provides a mathematical
result for a very general class of models of reaction kinetics in spatially structured environments. For the current
application in mind and for notational simplicity, however, we shall omit the the spatial indices in function φ.

The Laplace transform of the TF density can be written as

Ee−λρ(t) = E exp

(
−λ
∫ t

0

φ(t− s) dNsynth(s)

)
= E exp

−λNsynth[0,t)∑
i=1

φ(t− τi)

 , (2)

where 0 < τ1 < . . . < τNsynth[0,t) < t are the synthesis times of mature TF molecules, and Nsynth[0, t) is the total
number of mature molecules produced on the time interval [0, t). For Nsynth[0, t) = 0, the sum in the exponential of
Eq. [2] is empty. Each synthesis time can be further split as a sum of time of synthesis of the nascent polypeptide
chain by a ribosome τ0

i and a protein maturation delay ∆i such that τi = τ0
i +∆i. As explained in the main text, each

∆i is a sum of κ exponential random variates with parameters δi, i = 1, . . . , κ, whence its probability distribution
function reads

f∆(t) =

κ∑
i=1

δie
−δit

κ∏
j=1

j 6=i

δj
δj − δi

. (3)

In order to compute the expectation over τ0
i and ∆i in Eq. (2), we use the following trick: The time interval [0, t)

is split into n consecutive, disjoint intervals of equal length such that [0, t) = ∪n−1
j=0 [tj , tj+1) with t0 = 0. On each of

these intervals we assume

1. The number of mRNA is constant: NmRNA(t) = NmRNA,j := NmRNA(tj) for t ∈ [tj , tj+1).

2. Each nascent polypeptide produced within the same interval experiences exactly the same value of the stochastic
maturation delay ∆(j) which itself is distributed the same way as the original delays. That is, ∆i = ∆(j) almost
surely for all i such that τ0

i ∈ [tj , tj+1).
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The first assumption is not very restrictive because NmRNA is a piecewise constant birth-death process, which will
be recovered (in a suitable topology [1]) as we eventually send the number of intervals n → ∞. The second may
seem strange at first because each nascent molecule is supposed to go through a different stochastic realization of the
maturation pathway with varying time duration. However, here we use the fact that the points of Poisson processes
are mutually exclusive in the sense that for a (almost surely) finite rate vTFNmRNA(t), each interval will for large
enough n contain at most one point, i.e. translation event. Hence all maturation delays will be independent and
identically distributed according to the law of the original ∆i’s in the limit n→∞, and we can safely take this limit
at the end of the calculation.

Let τ0
i,j be the time at which the ith translation event that takes place on the jth interval [tj , tj+1), and let ∆i,j

be the delay associated with it. Let further N0
synth[tj , tj+1) denote the total number of translation events τ0

i,j on

the indicated interval, and let U [tj , tj+1) denote a uniformly distributed random variable on it. For the moment, we
consider the translation rate vTFNmRNA(s), s ∈ [0, t) as a known function (so we are actually calculating a conditional
expectation with complete information on the trajectory of NmRNA(s)), and we will evaluate the average over its
paths in the next section. Then

E exp

−λNsynth[0,t)∑
i=1

φ(t− τi)

 = E exp

−λN0
synth[0,t)∑
i=1

φ(t− τ0
i −∆i)


= E exp

−λ n−1∑
j=0

N0
synth[tj ,tj+1)∑

i=1

φ(t− τ0
i,j −∆i,j)

 =

n−1∏
j=0

E
N0
synth[tj ,tj+1)∏

i=1

exp
(
−λφ(t− τ0

i,j −∆i,j)
)

≈
n−1∏
j=0

E exp
(
−λφ(t− U [tj , tj+1)−∆(j))N0

synth[tj , tj+1)
)

=

n−1∏
j=0

E

(
1

tj+1 − tj

∫ tj+1

tj

∫ ∞
0

e−λφ(t−s−δ)f∆(δ) dδ ds

)N0
synth[tj ,tj+1)

=

n−1∏
j=0

exp

[
− vTFNmRNA,j · (tj+1 − tj)

(
1− 1

tj+1 − tj

∫ tj+1

tj

∫ ∞
0

e−λφ(t−s−δ)f∆(δ) dδ ds

)]

=

n−1∏
j=0

exp

[
− vTFNmRNA,j

∫ tj+1

tj

∫ ∞
0

(
1− e−λφ(t−s−δ)

)
F∆(δ) dδ ds

]

= exp

[
− vTF

n−1∑
j=0

NmRNA,j

∫ tj+1

tj

∫ ∞
0

(
1− e−λφ(t−s−δ)

)
f∆(δ) dδ ds

]

n→∞−−−−→ exp

[
− vTF

∫ t

0

NmRNA(s)

∫ t−s

0

(
1− e−λφ(t−s−δ)

)
f∆(δ) dδ ds

]
= exp

[
− vTF (NmRNA ∗ F (λ, ·)) (t)

]
with F (λ, t) =

(
(1− e−λφ) ∗ f∆

)
(t). The last line is the result presented in the main text. The first equality follows

from the fact that there are no translation events prior to time zero, and those TFs that mature after the observation
time t can be safely included in the calculation because φ(t) = 0 for t < 0. The second line comes from the division
of the whole time interval into subintervals, and on the third line, the approximation explained above is made. The
uniform placement of translation events comes about because of assumption (1), constant translation rate within a
subinterval, and the variable ∆(j) because of assumption (2), the equality of delays for all translation events within
a subinterval. The expectation over these two variables is taken on the fourth line, and over the Poisson distributed
number of translation events on the fifth. The rest is merely rearrangement of the expression, and finally, taking the
limit n→∞, yields the desired result.
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B. Step 2: Inclusion of TF mRNA numbers: formula for exponential functionals of immigration-death
processes

To finish the calculation of the Laplace transform of the TF concentration, we need to compute the functional

E exp

(
−vTF

∫ t

0

NmRNA(s)F (λ, t− s)ds
)
, (4)

where the exact form of F is given above and in the main text. This is slightly more general than functionals of type

E exp
(
−w

∫ t
0
N(s)

)
, w > 0, considered by Picard [2] in a purely mathematical context. Therefore we present the

full calculation here. The derivation is valid for a general, positive integrable function F . The number of mRNA,
NmRNA, evolves according to a birth-death process with state-independent birth rate aTF , and death rate γm for
each individual. Due to state independent input rate, these processes are sometimes referred to as immigration-death
processes. In the spirit of the calculation of maturation delays, we first consider a piecewise constant approximation
such that F (λ, t − s) = Fi := F (λ, t − ti) for all s ∈ [ti, ti+1) =

[
i
n t,

i+1
n t
)
, where i = 0, 1, . . . , n − 1. In particular,

F (and the function φ in our application) can take different values on at most n separate intervals. Introducing the

shorthand Ai = vTFFi−1

∫ ti
ti−1

NmRNA(s)ds for each interval, functional (4) can then be written as a nested integral

E exp

(
−

n∑
i=1

Ai

)
= E

n∏
i=1

e−Ai = E

(
n−1∏
i=1

e−Ai

)
E
[
e−An |Fn−1

]
= E

(
n−2∏
i=1

e−Ai

)
E
[
e−An−1E

[
e−An |Fn−1

]
|Fn−2

]
(5)

= . . . = Ee−A1E
[
e−A2E

[
e−A3 · · ·E

[
e−An−1E

[
e−An |Fn−1

]
|Fn−2

]
· · · |F2

]
|F1

]
by succesive conditioning on the history (natural filtration) Fi = F(ti) of the process NmRNA up to times ti, i =
n− 1, n− 2, . . . , 1. In particular, Fi carries the information of the value of the process NmRNA at ti and its integral
up to that time.

The evaluation of a general nested integral may seem a daunting task at first: The innermost conditional expectation
in Eq. (5), E

[
e−An |Fn−1

]
, yields a function of NmRNA(tn−1), which has to be multiplied by the factor e−An−1 on

the second line before calculating the next conditional expectation. Working outward (backward in history) to a
general conditioning index i could therefore easily result in a very complex function of the unknown random variables

NmRNA(ti) and
∫ ti

0
NmRNA(s) ds. This may finally lead to a completely unmanageable expression. Next we show

that the process of taking successive conditional expectations is stable in a sense that, in all stages, it is sufficient to
be able to compute just a slightly more general integral than the innermost conditional expectation in Eq. (5), namely
of the form E

[
zNmRNA(ti)e−Ai |Fi−1

]
.

We proceed by constructing the Kolmogorov forward equations for the joint process {NmRNA(t),
∫ t

0
NmRNA(s) :

t ≥ 0} as discussed in [3–5]. Let

pj(u, t) = P
(
NmRNA(t) = j,

∫ t

0

NmRNA(s) ds = u
∣∣∣NmRNA(0) = n0

)
. (6)

Then

∂pj
∂t

(u, t) + j
∂pj
∂u

(u, t) = aTFpj−1(u, t) + γm(j + 1)pj+1(u, t)− (aTF + γmj) pj(u, t) (7)

with pj(u, 0) = δj,n0
δ(u), and pj(u, t) = 0 for j < 0 or u < 0. Introducing the generating function with respect to j,

π(z, u, t) =

∞∑
j=0

zjpj(u, t)

and a further Laplace transform with respect to u,

π̃(z, w, t) =

∫
[0,∞)

e−wuπ(z, u, t) du ,
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we get

∂π̃

∂t
+ (zw − γm(1− z)) ∂π̃

∂z
= −aTF(1− z)π̃ (8)

subject to initial condition π̃(z, w, 0) = zn0 . This linear partial differential equation can be solved using the method
of characteristics, and the result is

π̃(z, w, t) = E
[
zNmRNA(t)e−w

∫ t
0
NmRNA(s) ds

∣∣NmRNA(0) = n0

]
= βn0 exp

[
aTF

γm + w
(z − β − wt)

]
(9)

where we have introduced

β = β(z, w, t) =
γm

γm + w

(
1− e−(γm+w)t

)
+ ze−(γm+w)t . (10)

Now we can compute the innermost conditional expectation on the last line of Eq. (5) by setting n0 = NmRNA(tn−1),
z = zn = 1 and w = wn = vTFFn−1, and by substituting ∆tn = tn − tn−1 as the time variable, in Eqs. (9,10). More
precisely, we get

E
[
e−An |Fn−1

]
= βNmRNA(tn−1)

n e
aTF

γm+wn
(zn−βn−wn∆tn) , (11)

where βn = β(zn, wn,∆tn). Substituting this result in the next conditional expectation in Eq.(5) and applying
formulae (9,10) again yields

E
[
e−An−1E

[
e−An |Fn−1

]
|Fn−2

]
= e

aTF
γm+wn

(zn−βn−wn∆tn)E
[
βNmRNA(tn−1)
n e−An−1 |Fn−2

]
(12)

= β
NmRNA(tn−2)
n−1 e

aTF
γm+wn

(zn−βn−wn∆tn)+
aTF

γm+wn−1
(zn−1−βn−1−wn1∆tn)

(13)

where βn−1 = β(zn−1, wn−1,∆tn−1) = β(βn, vTFFn−2,∆tn−1) because zn−1 = βn, wn−1 = vTFFn−2. By induction,
it follows that the complete nested integral in Eq. (5) equals

E exp

(
−

n∑
i=1

Ai

)
= EβNmRNA(0)

1 exp

[
n∑
i=1

aTF

γm + vTFFi−1
(βi+1 − βi − vTFFi−1∆ti)

]
(14)

= exp

[
n∑
i=1

aTF

γm + vTFFi−1
(βi+1 − βi − vTFFi−1∆ti)

]
, (15)

where the last equality follows from the initial condition NmRNA(0) = 0. The sequence (βi)
n
i=1 satisfies the linear

recursion

βi = β(βi+1, vTFFi−1,∆ti) =
γm

γm + vTFFi−1

(
1− e−(γm+vTFFi−1)∆ti

)
+ βi+1e

−(γm+vTFFi−1)∆ti (16)

with final condition βn+1 = 1. Since this is a linear non-homogeneous recursion, it can be solved by standard methods,
yielding

βi =

[
1 +

γm

γm + vTFFn−1

(
e(γm+vTFFn−1)∆tn − 1

)]
e−

∑n
j=i(γm+vTFFj−1)∆tj (17)

+
n−1∑
k=i

γm

γm + vTFFk−1

(
e−

∑k−1
j=i (γm+vTFFj−1)∆tj − e−

∑k
j=i(γm+vTFFj−1)∆tj

)
. (18)

Eqs. (14) and (17) provide a discrete approximation to our path integral problem. However, the solutions to
diffusion equations are, in general, continuous, so we extend our analysis by taking the limit n→∞ while keeping t
fixed. Stationary regulation can be later on studied by sending t → ∞. The order of limits is important here. We
first notice from the recursion relation (16) that

βi = γm∆ti + βi+1 [1− (γm + vTFFi−1)∆ti] +O(∆t2i ) , (19)

so the summand in Eq. (14) is approximated by

βi+1 − βi − (γm + vTFFi−1)∆ti = (βi+1 − 1) (γm + vTFFi−1)∆ti +O(∆t2i ) . (20)
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Hence the sum in Eq. (14) converges as

E exp

(
−

n∑
i=1

Ai

)
→ exp

[
aTF

∫ t

0

(β(λ, s, t)− 1) ds

]
(21)

as n→∞ provided that the sequence (βi)
n
i=1 itself converges to a function β(λ, s, t) for each ti = it/n→ s. From the

explicit solution (17) for βi, it can be seen that

βi = e
−

∫ t
ti

(γm+vTFF (λ,t−τ)) dτ
+ γm

∫ t

ti

e
−

∫ τ′
ti

(γm+vTFF (λ,t−τ)) dτ
dτ ′ +O(∆t2i ) , (22)

so that we get our final result

E exp

(
−vTF

∫ t

0

NmRNA(s)F (λ, t− s)ds
)

= exp

[
aTF

∫ t

0

(β(λ, s, t)− 1) ds

]
, (23)

where

β(λ, s, t) = exp

[
−
∫ t

s

(γm + vTFF (λ, t− τ)) dτ

]
+ γm

∫ t

s

exp

[
−
∫ τ ′

s

(γm + vTFF (λ, t− τ)) dτ

]
dτ ′ . (24)
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II. SI APPENDIX 2: LIST OF PARAMETERS FOR GILLESPIE ALGORITHM

In the simulation of enzyme catalyzed reaction, the substrate molecules were produced at rate 10/bs−1, where b is
the burst size, so the total rate of production equals 10 molecules per second. In particular, the substrate molecules
are just brought to the cell at this rate, and the process does not include the steps of gene expression, such as mRNA
or protein maturation. The reaction volume was the same as used in the gene regulation simulations (see below). The
parameters of MM kinetics were k1 = 0.185 s−1nM−1, k−1 = 10 s−1 and k2 = 20 s−1.

The parameters for the gene regulation model were as given below. The reaction volume Ω (i,e. the volume
surrounding the DNA, from within binding nonspecifically to the DNA is possible) was chosen to be a tube of length
`Ω and radius RΩ. The total, nonspecific binding rate is therefore kns1 × (No. TF molecules in the cell) × VΩ/VCell.
For comparison, the dimensions of lac repressor molecule have been measured 14 nm by 6 nm by 4.5 nm [6], the
diameter of double-stranded is 1.2 nm, and a typical sliding distance along the DNA is of the order 50 bp [7, 8]. The
length of the reaction volume given below corresponds to double of the typical sliding distance in nanometers.

Quantity Symbol Value

Transription rate aTF 1/120 s−1

Translation rate vTF 1/120 s−1

Mean protein maturation delay ∆ 60 s

Number of protein maturation steps κ 1

mRNA degradation rate ηm 1/120 s−1

Protein (TF) degradation and dilution rate ηP 1/1200 s−1

Length of reaction volume `Ω 34nm

Reaction volume radius RΩ 17nm

Reaction volume = πR2
Ω`Ω VΩ 30870nm3

Cell volume VCell 1µm3

Binding rate to the DNA (2000s−1 per particle in VΩ) kns1 0.037 s−1nM−1

Unbinding rate from the DNA (from nonspecific state) kns−1 20 s−1

Rate from nonspecific to specific binding state ksp1 2000 s−1

Rate specific to nonspecific binding state ksp−1 10 s−1
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III. SI APPENDIX 3: EFFECTS OF TRANSCRIPTION AND TRANSLATION RATES OF THE TF,
MULTIPLE BINDING SITES, AND CELL DIVISION

In this Appendix, we provide further evidence for the accuracy of the VCMME. First we show that the VCMME
performs well in the gene regulation problem even if the rate transcription and translation rates are varied. The
simulation results presented in the main article are based on transcription and translation rates that lead to very low
TF concentrations ( 10 nM) in the cell, while typical concentrations in bacteria are in the range 10 nM – 10 µM.
The stochastic effects will be small at micromolar concentrations. However, as Fig. 2 shows, they can still be quite
large at and above 50 nM, perhaps even at a few hundred nM, if transcription rate is sufficiently low as in the left
column of the figure. The translation rates corresponding to these slightly higher concentrations coincide with the
ones measured in E. coli [9].
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FIG. 1: Effect of TF transcription and translation rate to occupancy of the target site. The y-axis of each figure shows the
occupation probability of the operator. Figures on one row have the same translation rate vTF indicated on the left of the
figure, and the figures on one column have the same transcription rate, which is written above that column. Upper left panel
depicts the same data as in Fig. 3 of the main text but on a shorter time scale. The colour coding is the same as in the
main text: blue solid curves show the MM equation, green solid curves the optimal lower bound, and the red solid curves the
VCMME. Circles are the simulation data, and the blue dashed curves are the solutions of the analytical model.

Fig. 2 below shows that the the VCMME is able to predict the binding probability at the operator even if there are
multiple binding sites for the TF on the bacterial chromosome. As the additional binding sites momentarily capture
some of the TF molecules and they therefore act as a reservoir (the situation akin to a grand canonical ensemble of
statistical mechanics), the total binding probability at one, specific site is lower than in the single binding site scenario
given that the total TF synthesis level remains constant. This mechanism makes the number of TFs available for
binding at the specific site smaller, in that the effective concentration is also lower, and therefore the mechanism can,
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FIG. 2: Multiple binding sites (ten in this figure) act as a reservoir for TFs. The parameters are otherwise the same as in
the upper left panel of Fig. 1 .The TF molecules bound at the alternative binding sites are incapable of contributing to the
occupation of the operator, and the occupation probability of that specific site therefore increases more slowly than in the case
of a single binding site. Otherwise, the results are analogous, and the VCMME quite accurately approximates the simulation
data. The colour coding is the same as above and in the main text.

in principle, increase the relative concentration fluctuations. Yet if the synthesis level is increased to compensate
for the concentration loss of the free TF, the concentration fluctuations most likely get smaller—at least after the
initial transient. These speculations clearly require a separate study, especially because chromosomal structure and
non-homogeneous diffusion in structured cells are also important factors in binding at multiple sites.

Finally, we would like to point out that simulation results from a model with cell division events included agree with
our analytical model even though it does not incorporate actual cell division but a constant dilution of TF molecules
due to cell growth instead. Fig. 3 shows the convergence towards the analytical result as the number of time traces
(number of experiments with data from a single cell) increases from 100 to 500.
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FIG. 3: Stochasticity in TF distribution upon cell division. In this simulation, the cells do not grow and only divide with the
same rate as used for protein dilution in the other simulations for gene regulation. The TF molecules are distributed binomially
to the daughter cells after each division event. The three panels show that the stochasticity averages out fairly quickly as more
and more data (n denotes the number of time traces from individual cells) from single cells is gathered. The final panel with
500 traces suggests that our theoretical model (dashed line) is accurate even though it does not incorporate actual cell division
events, but a constant rate dilution instead. The parameters of the simulation coincide with those of the lower left panel of
Fig. 1.
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