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SI 1 Elements with one negative feedback

SI1.1 Models and parameters (Fig. 3)

In this section, we provide the details for modeling elements with one negative feedback
loop in Fig. 3. Model parameters of the self-inhibitory single gene element with time delay
are given in Table SI1.1.

Table SI1.1: The parameters for the self-inhibitory single gene element with
time delay model (Eqs. (1) and (2)) in the main article.

Parameter Value
gA 50 (nM/minute)
kA 0.20 (minute−1)
A0 38 (nM)
n 4

The time trajectory of the two-gene flip-flop element with time delay τ (the lower
circuit in Fig. 1(a)) is described by

dA(t)

dt
= gAH

−
AB[B(t− τ)]− kAA(t) (SI1.1)

dB(t)

dt
= gBH

−
BA[A(t− τ)]− kAB(t) (SI1.2)

Model parameters in Eqs. (SI1.1) and (SI1.2) are given in Table. SI1.2.

SI1.2 Oscillatory dynamics of the elements

In Fig. 3 in the main article, we have shown the bifurcation and time dependence for
the self-inhibitory single gene element with time delay and the two-gene flip-flop element
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Table SI1.2: The parameters for the two-gene flip-flop element with time delay
(Eqs. (SI1.1) and (SI1.2)).

Parameter Value
gA 50 (nM/minute)
gB 50 (nM/minute)
kA 0.20 (minute−1)
kB 0.20 (minute−1)
A0,BA 100 (nM)
B0,AB 100 (nM)
nAB 4
nBA 4

with time delay. In order to compare oscillatory dynamics with quasi-periodic, weak-
chaotic, and strong-chaotic dynamics, here we show the map and the power spectrum of
the oscillatory dynamics.

Figure SI1.1 shows the results for the self-inhibitory single gene element (left panels)
and those for the two-gene flip-flop element (right panels). (a) and (d) show phase-space
maps A(t) - dA(t)/dt; (c) and (f) show the power spectra, which is similar to those of the
quasi-periodic and weak-chaotic dynamics; (b) and (e) show another phase-space maps
A(t − T ) - A(t), where T is a period of oscillatory motion. The results suggest that
the phase-space maps are good in identifying the oscillatory dynamics from the other
dynamics.

SI1.3 A reduced model of the classical repressilator

In this section, we show the classical repressilator, a gene circuit with three components
(Fig. SI1.2(a)), can be reduced to a self-inhibitory one-gene element with time delay
(Fig. SI1.2(b)) as mentioned in the introduction in the main article.

The deterministic equations of a classical ABC repressilator are described by

dA(t)

dt
= gAH

−
AC [C(t)]− kAA(t),

dB(t)

dt
= gBH

−
BA[A(t)]− kBB(t),

dC(t)

dt
= gCH

−
CB[B(t)]− kCC(t),

(SI1.3)

where gX and kX (X stands for A, B, and C) are synthesis and degradation rates, respec-
tively. H−AC(C), H−BA(A), and H−CB(B) are inhibitory Hill functions defined by Eq. (2).
The rank and the mid point concentration of the Hill function H−XY (Y ) are given by nXY
and Y0, respectively. For simplicity, we set gA = gB = gC = g, kA = kB = kC = k, and
nAC = nBA = nCB = n, A0 = B0 = C0. In this case, the inhibitory Hill functions become
identical, i.e., H−AC(X) = H−BA(X) = H−CB(X) = H−(X). We call these parameter sets as
symmetric parameter sets.
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Figure SI1.1: Oscillatory dynamics in the one and two- gene elements with time
delay. Left panels show the results for the circuit of the gene A with a time-delayed
self-inhibition (circuit diagram above panel (a)); right panels for the two-gene (A and B)
flip-flop element with time delay (circuit diagram above panel (d)). Same as Fig. 3, the
time delay τ is 12(minutes) in the left panels and 2.4(minutes) in the right panels. (a) and
(d) show phase-space maps A(t) - dA(t)/dt, illustrating that the dynamics in both cases
reach to a stable limit cycle. (b) and (e) show another phase-space maps A(t−T ) - A(t),
where T is the period of the oscillation. It shows that A(t) always equals to A(t − T ),
indicating a periodically oscillatory dynamics. (c) and (f) show the power spectra of A(t).
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For some parameters, the time trajectory of the classical repressilator converge to limit
cycles. This oscillatory motions can be reproduced by self-inhibitory one-gene element
with time-delay. We show an example in Fig. SI1.2(c)-(e), where the model parameters
are given in Table SI1.3.

Table SI1.3: The parameters for the classical repressilator (Eqs. (SI1.3)).

Parameter Value
gA, gB, gC 50 (nM/minute)
kA, kB, kC 0.20 (minute−1)
A0, B0, C0 100 (nM)
nAC , nBA, nCB 4

Next, we analytically explain the equivalence between the the two motifs. Eq. (SI1.3)
are rewritten as

d

dt

 A(t)− Af

B(t)−Bf

C(t)− Cf

 =

 g(H(C(t))−H(Cf))− k(A(t)− Af)
g(H(A(t))−H(Af))− k(B(t)−Bf)
g(H(B(t))−H(Bf))− k(C(t)− Cf)


=

 −k 0 h
h −k 0
0 h −k

 A(t)− Af

B(t)−Bf

C(t)− Cf

+
∞∑
n=2

1

n!

 H− (n)(Cf)(C(t)− Cf)
n

H− (n)(Af)(A(t)− Af)
n

H− (n)(Bf)(B(t)−Bf)
n

 ,

(SI1.4)

where Xf (X = A,B,C) is a fixed point of X satisfying gH−(gH−(gH−(X))) = X. h
is given by h = gH− (1)(Xf), where H− (n)(X) ≡ dnH−(X)/dXn (n = 1, 2, . . .). The
eigenvalues of a matrix F ,

F ≡

 −k 0 h
h −k 0
0 h −k

 , (SI1.5)

are given by λ1 = −k+h(< 0), λ2 = −k+heiϕ, λ3 = −k+he−iϕ, where ϕ = 2π/3. Hence
k = −h/2 is the Hopf bifurcation point, because the real parts of λ2 and λ3 are zero. The
levels of proteins A, B, and C converge to limit cycles under the condition k ≥ −h/2.

For the symmetric case, the levels of proteins A, B, and C satisfy the following relation
after the convergence to the limit cycle with same period T ,

B(t) = A(t+
T

3
) = A(t− 2T

3
), C(t) = A(t+

2T

3
) = A(t− T

3
). (SI1.6)

The relation can be derived by using the following argument.
We assume that B(t) and C(t) are given by B(t) = A(t− α) and C(t) = A(t− β) for
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Figure SI1.2: Comparison of the classical repressilator with the self-inhibitory
one-gene element with time-delay. (a) is the circuit diagram of the classical repres-
silator and (b) is the circuit of self-inhibitory one-gene element with time-delay. (c) and
(d) show the time trajectory of the circuits in (a) and (b) respectively. In (c), the levels of
protein A (blue), B (red), and C (green) oscillate with a period T = 44.15 (minutes) for
the protein production rates gA = gB = gC = 50 (nM/minute) and the degradation rates
kA = kB = kC = 0.1 (minute−1). In (d), the protein level A oscillates with the same vales
of the protein production rate and the degradation rate as (c); gA = 50 (nM/minute) and
kA = 0.1 (minute−1), where the time delay is set to τ = T/3. (e) shows that the level of
protein A in (c) (blue solid line) is identical to that of protein A in (d) (red dashed line)
after a time shift of −15.4 (minutes) (red dashed line in (e)).
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large t. Eq. (SI1.3) are written as

dA(t)

dt
= f [A(t− β)]− kA(t), (SI1.7)

dA(t− α)

dt
= f [A(t)]− kA(t− α), (SI1.8)

dA(t− β)

dt
= f [A(t− α)]− kA(t− β). (SI1.9)

Eqs. (SI1.8) and (SI1.9) are written as

dA(t)

dt
= f [A(t+ α)]− kA(t), (SI1.10)

dA(t)

dt
= f [A(t+ β − α)]− kA(t). (SI1.11)

By comparing Eqs. (SI1.7), (SI1.10), and (SI1.11), we obtain

−β = α +m2T, (SI1.12)

α +m2T = β − α +m1T, (SI1.13)

β − α +m1T = −β, (SI1.14)

where m1 and m2 are integers. From Eqs. (SI1.12), (SI1.13), and (SI1.14),

α =
m1 − 2m2

3
T, β =

−m1 −m2

3
T. (SI1.15)

The relations (SI1.6) are reproduced for m1 = m2 = −1. The other solution is

B(t) = A(t− T

3
) = A(t+

2T

3
), C(t) = A(t− 2T

3
) = A(t+

T

3
), (SI1.16)

for m1 = m2 = 1. One of the sets is for the current motif but the other is none.
In order to identify m1 and m2, we study Eq. (SI1.4) around the Hopf bifurcation

point, k = −h/2;

d

dt
z(t) = Fhz(t) + g(z(t)), (SI1.17)

where

Fh =

 −k 0 −2k
−2k −k 0

0 −2k −k

 , (SI1.18)

z(t) =

 A(t)− Af

B(t)−Bf

C(t)− Cf

 , (SI1.19)

g(z(t)) = (h+ 2k)

 z3(t)
z1(t)
z2(t)

+
∞∑
n=2

hn
n!

 [z3(t)]
n

[z1(t)]
n

[z2(t)]
n

 , (SI1.20)

hn = g

(
dnH−(A)

dAn

)
A=Af

. (SI1.21)
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From Eq. (SI1.17), z(t) is written as

z(t) = eFht z(0) + eFht

∫ t

0

dt′ e−Fht
′
g(z(t′)). (SI1.22)

By using

Fh = U †Λ(t)U, (SI1.23)

Λ =

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 , (SI1.24)

U =
1√
3

 1 1 1
1 eiϕ e−iϕ

1 e−iϕ eiϕ

 , (SI1.25)

where U †U = UU † = 1, we obtain

eFht =
e−νt

3

 1 1 1
1 1 1
1 1 1

+
2e−µt

3

 cos(ωt) cos(ωt− ϕ) cos(ωt+ ϕ)
cos(ωt+ ϕ) cos(ωt) cos(ωt− ϕ)
cos(ωt− ϕ) cos(ωt+ ϕ) cos(ωt)

 . (SI1.26)

Here ν ≡ −λ1 = 3k, µ = −Re λ2 = −Re λ3 = 0, and ω ≡ −Im λ2 = Im λ3 =
√

3k. For
large t, the first term of Eq. (SI1.22) is given by

eFhtz(0) =
2

3

 z1(0) cos(ωt) + z2(0) cos[ω(t− T
3
)] + z3(0) cos[ω(t+ T

3
)]

z1(0) cos[ω(t+ T
3
)] + z2(0) cos(ωt) + z3(0) cos[ω(t− T

3
)]

z1(0) cos[ω(t− T
3
)] + z2(0) cos[ω(t+ T

3
)] + z3(0) cos(ωt)

 , (SI1.27)

where T = 2π/ω. Therefore the first term of Eq. (SI1.22) satisfies the relations Eq. (SI1.6).
In this case, as we discussed using Eq. (SI1.15), m1 = m2 = −1.

By substituting Eq. (SI1.6) into Eq. (SI1.3), the three equations are reduced to the
following relation,

dA(t)

dt
= gH−(A(t− T

3
))− kA(t). (SI1.28)
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SI 2 Elements with two negative feedbacks

SI2.1 Models and parameters (Fig. 4)

In this section, we show the details for modeling elements with two negative feedback
loops (Fig. 4). Table SI2.1 shows the model parameters of the single gene element with
two self-inhibitions, each of which has different time delays, τ1 and τ2 (τ1 6= τ2).

Table SI2.1: Model parameters for the single gene element with two self-
inhibitions (Eq. (3)) in the main article.

Parameter Value
gA 50 (nM/minute)
kA 0.20 (minute−1)
A0,1AA 38 (nM)
A0,2AA 38 (nM)
n1AA 4
n2AA 2

The time trajectory of two-gene flip-flop element with one-sided self-inhibition (the
inset of Fig. 4d in the main article) is described by

dA(t)

dt
= gAH

−
AA[A(t− τ1)]H−AB[B(t− τ2)]− kAA(t) (SI2.1)

dB(t)

dt
= gBH

−
BA[A(t− τ2)]− kAB(t) (SI2.2)

Model parameters in Eqs. (SI2.1) and (SI2.2) are given in Table SI2.2.

Table SI2.2: Model parameters for the two-gene flip-flop element with one-sided
self-inhibition described by Eqs. (SI2.1) and (SI2.2).

Parameter Value
gA 50 (nM/minute)
gB 50 (nM/minute)
kA 0.20 (minute−1)
kB 0.20 (minute−1)
A0,AA 100 (nM)
B0,AB 100 (nM)
A0,BA 100 (nM)
nAA 4
nAB 4
nBA 4
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SI2.2 Weak chaotic and quasi-periodic dynamics of the elements

In Fig. 4 in the main article, we have shown that the above-mentioned elements are capable
of generating weak chaotic dynamics, from the analysis of the bifurcation of the maximum
levels with respect to the values of the time delays, the 2D map of time trajectory in the
phase space of A(t) - dA(t)/dt, and the full spectrum. We here show additional features
of the dynamics, including the time trajectories, the 2D map of A(t− τ0) - A(t), and the
maximum-minimum spectrum.

Figure SI2.1 shows the results for the single gene element with two self-inhibitions
(left panels) and those for the two-gene flip-flop element where the first gene A has an
additional self-inhibition (right panels). (a) and (d) show the time trajectories. (b) and
(e) show the phase-space maps of A(t − τ0) - A(t) , where τ0 is set to be 37 minutes for
(b) and is set to be 41 minutes for (e). Note the value of τ0 is chosen to be 1/f0, where f0
is the frequency of the maximum point of the full spectra (Figs 4(c) and (f) in the main
article). (c) and (f) show the maximum-minimum spectra.

From the results of both Fig. 4 in the main article and Fig. SI2.1, we conclude that
the circuits shown in the insets of Figs. 4(a) and (d) can have weak chaotic dynamics.

In addition to the weak chaotic dynamics, the same elements also allow quasi-periodic
dynamics. The model parameters are the same as shown in Table SI2.1, except for different
values of time delays. We show the zoomed-in bifurcation diagram of the maximum levels
of protein A with respect to the values of the time delay τ2 when the time delay τ1 is set
to be 18 minutes (Figs. SI2.2). We found that the circuit exhibits non-periodic oscillatory
dynamics when 3.09 minutes < τ2 < 3.115 minutes (Fig. SI2.2(b)) and 4.3 minutes < τ2
< 4.8 minutes (Fig. SI2.2(c)). For τ2 = 3.113 minutes (green arrow in Fig. SI2.2(b)), the
circuit exhibits a weak chaotic dynamics as shown in Fig. SI2.3. For τ2 = 4.4 minutes
(green arrow in Fig. SI2.2(c)), the circuit exhibits a quasi-periodic dynamics as shown in
Fig. SI2.4.

Similarly, the two-gene flip-flop element with one-sided self-inhibition also exhibits
quasi-periodic dynamics, are shown in Figs. SI2.5 and SI2.6. Figure SI2.5 shows the
zoomed-in bifurcation of the maximum levels of protein A with respect to the values of
the time delay τ2 when the time delay τ1 is set to be 5.3 minutes. We found that the
circuit exhibits non-periodic oscillatory dynamics when 8.0 minutes < τ2 < 9.1 minutes
(Fig. SI2.5(b)) and 16.4 minutes < τ2 < 18.8 minutes (Fig. SI2.5(c)). For τ2 = 8.05
minutes (green arrow in Fig. SI2.5(b)), the circuit exhibits quasi-periodic dynamics as
shown in Fig. SI2.6. For τ2 = 16.8 minutes (green arrow in Fig. SI2.5(c)), the circuit
exhibits a weak chaotic dynamics as shown in Fig. SI2.7.

SI2.3 Coupling of two negative feedback loops

In the main article, we showed that the element exhibits weak chaos when τ1 = 18 minutes
and τ2 ' 3 minutes. In this section, we study the coupling of the two negative feedback
loops in the one-gene element with two delayed self-inhibitions.

We first evaluate the circuit dynamics for τ1 = 18 minutes. When there is no time delay
in the second negative feedback loop, i.e., τ2 = 0.0 minutes, the circuit has oscillatory
dynamics with a period of about 40 minutes (Fig. SI2.8(a)). When τ2 = 4.0 minutes,
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Figure SI2.1: Weak chaotic dynamics in the circuit elements with two negative
feedback loops. Left panels show the results for the circuit of the gene A with two
delayed self-inhibitions (circuit diagrams above panel (a)); right panels for the two-gene
(A and B) flip-flop element with time delays (circuit diagram above panel (d)) where the
gene A has an additional self-inhibition. Same as Fig. 4 in the main article, the time
delays are set to τ1 = 18 minutes and τ2 = 4.65 minutes for the left panels and τ1 = 5.3
minutes and τ2 = 8.2 minutes in the right panels. (a) and (d) show the time trajectory.
(b) and (e) show the phase-space maps A(t− τ0) - A(t), where τ0 is set to be 37 minutes
in (b) and is set to 41 minutes in (e). The time lag τ0 corresponds to the frequency of the
maximum point of the full spectrum (Figs. 4(c) and (f) in the main article). (c) and (f)
show the maximum-minimum spectra of A(t).
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Figure SI2.2: Bifurcation diagrams of the maximum levels of A for the one gene
element with two self-inhibitions. Panel (a) shows the bifurcation of the maximum
levels of protein A (circuit diagram in the inset of panel (a)) with respect to the values
of the time delay τ2 when the time delay τ1 is set to be 18 minutes. In the bifurcation,
non-periodic dynamics are shown around τ2 = 3.0 minutes (left blue square in panel (a))
and around τ2 = 4.5 minutes (right blue square in panel (a)). The detailed bifurcations
for these regions are shown in panels (b) and (c). The dynamics is non-periodic for 3.09
minutes < τ2 < 3.115 minutes (panel (b)) and 4.3 minutes < τ2 < 4.8 minute (panel (c)).
The circuit exhibits weak chaotic dynamics for τ2 = 3.113 minutes (green arrow in panel
(b)) as in Fig. SI2.3 and for τ2 = 4.65 minutes (blue arrow in panel (c)) as in Fig. 4 in
the main article and Fig. SI2.1. The circuit exhibits quasi-periodic dynamics for τ2 = 4.4
minutes (green arrow in panel (c)) as in Fig. SI2.4.
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Figure SI2.3: Weak chaotic dynamics of the one-gene element with two self-
inhibitions. Panels (a)-(e) show the dynamics of protein level A(t) for τ1 = 18 minutes
and τ2 =3.113 minutes (green arrow in Fig. SI2.2(b)). Parameters are given by Table SI2.1.
Panels (a), (b), and (c) show time trajectory, phase-space maps A(t) - dA(t)/dt, and
A(t − τ0) - A(t) (τ0=39 minutes) respectively. Panels (d) and (e) are the full spectrum
and the maximum-minimum spectrum respectively. The results suggest that the circuit
dynamics is weak chaotic.
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Figure SI2.4: Quasi-periodic dynamics of the one-gene element with two self-
inhibitions. Panels (a)-(e) show the dynamics of protein level A(t) for τ1 = 18 minutes
and τ2 =4.4 minutes (green arrow in Fig. SI2.2(c)). Parameters are given by Table SI2.1.
Panels (a), (b), and (c) show time trajectory, phase-space maps A(t) - dA(t)/dt and
A(t − τ0) - A(t) (τ0=14 minutes) respectively. Panels (d) and (e) are the full spectrum
and the maximum-minimum spectrum respectively. The results suggest that the circuit
dynamics is quasi-periodic.
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Figure SI2.5: Bifurcation diagrams of the maximum levels of A for the two-gene
flip-flop element with one-sided self-inhibition. Panel (a) shows the bifurcation
of the maximum levels of protein A (circuit diagram above panel (a)) with respect to the
values of time delay τ2 when the time delay τ1 is set to be 5.3 minutes. In the bifurcation,
non periodic dynamics are shown around τ2 = 8.0 minutes (left blue square in panel (a))
and around τ2 = 17 minutes (right blue square in panel (a)). The detailed bifurcations
for these regions are shown in panels (b) and (c). The dynamics is non-periodic for 8.0
minutes < τ2 < 9.18 minutes (panel (b)) and 16.5 minutes < τ2 < 18.2 minutes (panel
(c)). The circuit exhibits weak chaotic dynamics for τ2 = 8.2 minutes (blue arrow in panel
(b)) as in Fig. 4 in the main article and Fig. SI2.1 and for τ2 = 16.8 minutes (green arrow
in panel (c)) as in Fig. SI2.7. The circuit exhibits quasi-periodic for τ2 = 8.05 minutes
(green arrow in panel (b)) as in Fig. SI2.6.
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Figure SI2.6: Quasi-periodic dynamics for the two-gene flip-flop element with
one-sided self-inhibition. Panels (a)-(e) show the dynamics of protein level for
τ1 = 5.3 minutes and τ2 =8.05 minutes (green arrow in Fig. SI2.5(b)). Parameters are
given by Table SI2.2. Panels (a), (b), and (c) show time trajectory, phase-space maps
A(t) - dA(t)/dt and A(t − τ0) - A(t) (τ0=40 minutes) respectively. Panels (d) and (e)
are the full spectrum and the maximum-minimum spectrum, respectively. The results
suggest that the circuit dynamics is quasi-periodic. .
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Figure SI2.7: Weak chaotic dynamics for the two-gene flip-flop element with
one-sided self inhibition. Panels (a)-(e) show the dynamics of protein level for
τ1 = 5.3 minutes and τ2 =16.8 minutes (green arrow in Fig. SI2.2(c)). Parameters are
given by Table SI2.2. Panels (a), (b), and (c) show time trajectory, phase-space maps
A(t) - dA(t)/dt and A(t− τ0) - A(t) (τ0=77 minutes) respectively. Panels (d) and (e) are
the full spectrum and the maximum-minimum spectrum respectively. The results suggest
that the circuit dynamics is weak chaotic.
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the circuit also has oscillatory dynamics but with a period of about 15 minutes instead
(Fig. SI2.8(b)). The change in the period is caused by the time delay of the second
feedback loop. In addition, we also observed oscillations with a period of about 40 minutes
when τ2 = 5 minutes (Fig. SI2.8(c)) and τ2 = 10 minutes (Fig. SI2.8(d)). Interestingly,
both the oscillations of the period of 15 minutes and 40 minutes are observed in the QP
and WC modes, as shown in Fig. SI2.1(a), Fig. SI2.3(a), and Fig. SI2.4(a). The results
suggest that, in the element, the first negative feedback loop is responsible for generating
the oscillations with a period of about 40 minutes.

In order to check whether the oscillation with the period T ' 15 minutes in Fig. SI2.8(b)
is related to the second negative feedback loop or not, we evaluate the dynamics for one-
gene element with one delayed self-inhibition where the rank of Hill function n = 2 in
Fig. SI2.9 (i.e., the second negative feedback loop). The circuit in Fig. SI2.9 is mostly
same as the circuit of one-gene element with two delayed self-inhibitions except that
the first negative feedback loop is removed. The bifurcation diagram of the fixed point
and the maximum and minimum levels of protein A with respect to the time delay τ
(Fig. SI2.9(a)) shows the Hopf bifurcation from the steady-state dynamics to the oscilla-
tory dynamics occurs at τth = 10.5 minutes. The value of τth is higher than the values of
τ2 in Fig. SI2.8(a)-(d). The period of the oscillation for τ = 18 minutes is around 40 min-
utes (Fig. SI2.9(b)). The result suggests that the oscillation with period T ' 15 minutes
is not caused by the second feedback loop itself.

Next, we evaluate the change of the circuit dynamics caused by the second feedback
loop for the other values of τ1. Figures SI2.10(a)-(d) show the bifurcation diagrams of
the fixed point and the maximum and minimum levels of protein A with respect to τ2
for different τ1. When there is no time delay in the first negative feedback loop, i.e.,
τ1 = 0.0 minutes (Fig. SI2.10(a)), the circuit exhibits dynamics of steady state, no matter
if we introduce time delay in the second negative feedback loop or not. The results
demonstrate the essential role of the delay in the first negative feedback loop in generating
non-steady-state dynamics.

When τ1 = 3.0 minutes (Fig. SI2.10(b)) and τ1 = 4.0 minutes (Fig. SI2.10(c)), the
circuit exhibits oscillatory dynamics for certain values of τ2. There are several bifurcation
points for the switches between steady-state dynamics and oscillatory dynamics. Among
them, the smallest bifurcation point is at about τ2 = 3.0 minutes. When τ1 = 15 minutes
(Fig. SI2.10(d)), the circuit always exhibits oscillatory dynamics, no matter what τ2 is
selected. Again, at about τ2 = 3.0 minutes, the dynamics is different in that it contains
two mixed oscillations. The values of τ2 coincides with the bifurcation point of the previous
cases, and it also coincides with the conditions for weak chaotic dynamics. Therefore, the
results suggest that the second feedback loop allows flipping between two dynamic modes
(the steady-state dynamics and the oscillatory dynamics), since the value of time delay is
close to the bifurcation point.

In summary, we conclude that, this minimalist chaotic element requires a first negative
feedback loop to generate stable oscillations and a second negative feedback loop to allow
switches between two dynamic modes. We further hypothesize that this might be also
true for many other chaotic motifs, which worth further investigation.
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Figure SI2.8: Oscillatory dynamics for the one-gene element with two delayed
self-inhibitions. When τ1 = 18 minutes, the circuit exhibits oscillatory dynamics for
a wide range of τ2, as also shown in the bifurcation diagram in Fig. SI2.2. However,
the period of the oscillations depends on the value of τ2. When there is no delay in the
second negative feedback loop (τ2 = 0.0 minutes, panel (a)), the period of the oscillation
is around 40 minutes; when τ2 = 4.0 minutes (panel (b)), the period is around 15 minutes
instead. When τ2 = 5.0 minutes (panel (c)) and τ2 = 10 minutes (panel (d)), the period
of the oscillation is around 40 minutes, again.
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Figure SI2.9: Oscillatory dynamics for the one-gene element with one delayed
self-inhibition where the rank of Hill function n = 2. Here, the circuit is mostly
same as the circuit shown in Fig. SI2.8 except that the first negative feedback loop is
removed. Panel (a) shows the bifurcation diagram of A with respect to the value of the
time delay τ . If the circuit exhibits steady-state dynamics, the diagram shows the values
of A in the steady states in black; if the circuit exhibits oscillatory dynamics, the diagram
shows both the maximum (red) and minimum(blue) for each oscillation, respectively. The
Hopf bifurcation point from steady-state dynamics to oscillatory dynamics occurs at time
delay τth = 10.5 minutes. Panel (b) shows the oscillatory dynamics for the time delay
τ = 18 minutes. The period of oscillation is around 40 minutes.
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Figure SI2.10: Bifurcations for the one-gene element with two delayed self-
inhibitions. Panels (a)-(d) show bifurcation diagrams of A levels with respect to
τ2 for different values of τ1. If the circuit exhibits steady-state dynamics, the diagram
shows the values of A in the steady states in black; if the circuit exhibits oscillatory
dynamics, the diagram shows both the maximum (red) and minimum(blue) for each
oscillation, respectively. When there is no time delay in the first negative feedback loop
(τ1 = 0.0 minutes, panel (a)), the circuit only exhibits steady-state dynamics. When
τ1 = 3.0 minutes (panel (b)) and τ1 = 4.0 minutes (panel (c)), the circuit exhibits Hopf
bifurcation from steady-state dynamics to oscillatory dynamics when τ2 increases from
0 minute to about 3 minutes. The Hopf bifurcation point (the left-most one) is τ2 =
2.3 minutes for (b) and τ2 = 1.8 minutes for (c). When τ1 = 15 minutes (panel (d)),
the circuit always exhibits oscillatory dynamics. Interestingly, around τ2 ' 2 minutes,
the circuit dynamics switches to a mode of two mixed oscillations (inset for a zoom-in
diagram).
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SI 3 Elements with two negative feedbacks and one

positive feedback

SI3.1 Models and parameters (Fig. 5)

In this section, we show the details for modeling elements with two negative feedbacks
and one positive feedback in Fig. 5. Table SI3.1 shows model parameters of the the single
gene element with two self-inhibitions (with time delays τ1, τ2) and one self-activation
(with time delay τ3).

Table SI3.1: Model parameters for the single gene element with two self-
inhibitions and one self-activation (Eq. (4)) in the main article.

Parameter Value
gA 50 (nM/minute)
kA 0.20 (minute−1)
A0,1AA 38 (nM)
A0,2AA 38 (nM)
A0,3AA 28 (nM)
n1AA 4
n2AA 4
n3AA 4

The deterministic rate equation for the the two-gene circuit with two self-inhibitory
and mutually activating genes (the inset of Fig. 5d in the main article) is described by

dA(t)

dt
= [gA + gABB(t− τ12)]H−AA[A(t− τ1)]− kAA(t), (SI3.1)

dB(t)

dt
= [gB + gBAA(t− τ21)]H−BB[B(t− τ2)]− kBB(t), (SI3.2)

where the mutual activations are modeled by linear functions. Model parameters in
Eqs. (SI3.1) and (SI3.2) are given in Table SI3.2.

SI3.2 Strong chaotic dynamics

We here show additional results of the strong chaotic dynamics described in Fig. 5. The
left panels of Fig. SI3.1 are results for the single-gene element with two self-inhibitions
and one self-activation, where the time delays are set to τ1 = 18.0 minutes, τ2 = 8.0
minutes, and τ3 = 12.5 minutes. The right panels of Fig. SI3.1 are results for the the
two-gene circuit with two self-inhibitory and mutually activating genes, where the time
delays τ1 = 6.0 minutes, τ2 = 5.0 minutes, τ12 = 7.5 minutes and τ21 = 16.0 minutes. (a)
and (d) show time trajectories. (b) and (e) show phase-space maps A(t− τ0) - A(t). The
value of τ0 is given by 1/f0 where f0 is the frequency of the maximum point of the full
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Table SI3.2: Model parameters for the two-gene circuit with two self-inhibitory
and mutually activating genes described by Eqs. (SI3.1) and (SI3.2).

Parameter Value
gA 50 (nM/minute)
gB 50 (nM/minute)
kA 0.20 (minute−1)
kB 0.24 (minute−1)
A0,AA 100 (nM)
B0,BB 100 (nM)
nAA 4
nBB 4
gAB 3.0 (1/minute)
gBA 3.0 (1/minute)

spectrum (Figs. 5(c) and (f) in the main article). Here we set τ0 to be 15.18 minutes for
(b) and 28.69 minutes for (e). (c) and (f) show the maximum-minimum spectra.

From the results of both Fig. 5 in the main article and Fig. SI3.1, we conclude that
strong chaotic dynamics can emerge for the circuits shown in the insets of Figs. 5(a) and
(d).

SI3.3 Some other possible dynamical behaviors

Other than strong chaotic dynamics, these elements can also exhibit some other non-
periodic dynamics. For example, we show that the one-gene element with two self-
inhibitions and one self-activation can have quasi-periodic motion, as shown in the left
panels in Fig. 2 in the main article and the panels in Fig. SI3.2. Here, the time delays
τ1 = 18.0 minutes, τ2 = 8.0 minutes, and τ3 = 18.5 minutes. The rest parameters are
listed in Table SI3.1.

Similarly, both quasi-periodic and weak chaotic dynamics are observed for the two-
gene circuit with two self-inhibitory and mutually activating genes, as shown in Fig. SI3.3
and Fig. SI3.4, respectively. The time delays are τ1 = 6.0 minutes, τ2 = 5.0 minutes, and
τ12 = 7.5 minutes. We set τ21 = 13.56 minutes for Fig. SI3.3 and τ21 = 13.8 minutes for
Fig. SI3.4.

As mentioned in the results in the main article, if the mutual activations are modeled
by excitatory Hill functions, the circuit can also exhibit weak chaotic dynamics. The
deterministic rate equation is given by

dA(t)

dt
= gAH

+
AB[B(t− τ12)]H−AA[A(t− τ1)]− kAA(t), (SI3.3)

dB(t)

dt
= gBH

+
BA[A(t− τ21)]H−BB[B(t− τ2)]− kAB(t). (SI3.4)

An example of weak chaotic dynamics of this circuit is shown in Fig. SI3.5. The corre-
sponding parameters are given by Table SI3.3.
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Figure SI3.1: Strong chaotic dynamics in the circuit motifs with one positive
feedback and two negative feedback loops. Left panels show the results for the
one-gene (A) element with two self-inhibitions and one self-activation (circuit diagrams
above panel (a)); right panels for the two-gene (A and B) circuit with two self-inhibitory
and mutually activating genes (circuit diagrams above panel (d)). The time delays are set
to be the same values as those in Fig. 5 in the main article, i.e. τ1 = 18.0 minutes, τ2 = 8.0
minutes, and τ3 = 12.5 minutes in the left panels and τ1 = 6.0 minutes, τ2 = 5.0 minutes,
τ12 = 7.5 minutes, and τ21 = 16 minutes in the right panels. (a) and (d) show time
trajectories. (b) and (e) show the phase-space maps A(t− τ0) - A(t), where τ0 is set to be
15.18 minutes in (b) and 28.69 minutes in (e). (c) and (f) show the maximum-minimum
spectra of A(t).
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Figure SI3.2: Quasi-periodic dynamics for the one-gene element with two self-
inhibitions and one self-activation. Here we chose the time delays τ1 = 18.0 minutes,
τ2 = 8.0 minutes, and τ3 = 18.5 minutes. The rest parameters are listed in Table SI3.1.
Panels (a), (b), and (c) show the time trajectory, the phase-space maps A(t) - dA(t)/dt
and A(t − τ0) - A(t), where τ0=28.17 minutes. Panels (d) and (e) are the full spectrum
and the maximum-minimum spectrum. The results suggest that the circuit dynamics is
quasi-periodic. .
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Figure SI3.3: Quasi-periodic dynamics for the two-gene circuit with two self-
inhibitory and mutually activating genes. Here we chose the time delays τ1 =
6.0 minutes, τ2 = 5.0 minutes, τ12 = 7.5 minutes, and τ21 = 13.56 minutes. The rest
parameters are listed in Table SI3.2. Panels (a), (b), and (c) show the time trajectory,
the phase-space maps A(t) - dA(t)/dt and A(t−τ0) - A(t), where τ0=23.13 minutes. (d) is
the full spectrum and (e) is the maximum-minimum spectrum. The results suggest that
the circuit dynamics is quasi-periodic.
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Figure SI3.4: Weak-chaotic dynamics for the two-gene circuit with two self-
inhibitory and mutually activating genes. Here we chose the time delays τ1 = 6.0
minutes, τ2 = 5.0 minutes, τ12 = 7.5 minutes, and τ21 = 13.8 minutes. The rest parameters
are listed in Table SI3.2. Panels (a), (b), and (c) show the time trajectory, the phase-
space maps A(t) - dA(t)/dt and A(t − τ0) - A(t), where τ0=27.24 minutes. (d) is the
full spectrum and (e) is the maximum-minimum spectrum. The results suggest that the
circuit dynamics is weak chaotic.

26



Figure SI3.5: Weak chaotic dynamics for the two-gene circuit with two self-
inhibitory and mutually activating genes where the activations are modeled
by excitatory Hill functions. Here we chose the time delays τ1 = 6.0 minutes, τ2 = 5.0
minutes, τ12 = 7.5 minutes, and τ21 = 12.15 minutes. The rest parameters are listed in
Table SI3.3. Panels (a), (b), and (c) show the time trajectory, the phase-space maps A(t)
- dA(t)/dt and A(t − τ0) - A(t), where τ0=19.07 minutes. (d) is the full spectrum and
(e) is the maximum-minimum spectrum. The results suggest that the circuit dynamics is
weak chaotic.
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Table SI3.3: Model parameters for the two-gene circuit with two self-inhibitory
and mutual activating genes described by Eqs. (SI3.3) and (SI3.4).

Parameter Value
gA 150 (nM/minute)
gB 150 (nM/minute)
kA 0.20 (minute−1)
kB 0.31 (minute−1)
A0,AA 100 (nM)
B0,BB 100 (nM)
A0,BA 100 (nM)
B0,AB 100 (nM)
nAA 4
nBB 4
nBA 1
nAB 1
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SI 4 P-SC intermittent dynamics in the one-gene ele-

ment with both self-activation and self-inhibition

SI4.1 Models and parameters in Figs. 6 and 7

The parameters for one-gene element with both self-activation and self-inhibition (Eq. (5)
in the main article) are given by Table SI4.1. For the parameter set, the circuit exhibits
the intermittency between periodic and strong chaotic mode.

Table SI4.1: Model parameters for the one-gene element with both self-
inhibition and self-activation (Eq. (5)) in the main article.

Parameter Value
gA 50 (nM/minute)
kA 0.20 (minute−1)
A0,1AA 38 (nM)
A0,2AA 38 (nM)
n1AA 6
n2AA 1

SI4.2 Additional results of the circuit

We here show additional results of the intermittent dynamics in Figs. 6 and 7. The
bifurcation diagram of maximum levels of protein A is shown in Fig. 6(a) in the main
article. Fig. SI4.1 shows the phase space map, A(t − T ) - A(t), where T is the period
of the periodic dynamics. The values of time delays τ1 and τ2 are same as those for the
simulation shown in Fig. 6 in the main article. The time delay for the self-inhibitory
regulation τ1 is set to be 26 minutes. The time delay for the self-excitatory regulation τ2
is set to be 26.3 minutes in (a), 26.29 minutes in (b), and 26.0 minutes in (c).

The green line in the panel (a) shows that A(t) always equals to A(t− T ) (the period
T = 1.0131× 104 minutes), indicating periodic oscillatory dynamics. The red line in the
panel (c) indicates chaotic dynamics. The trajectory in the panel (b) contains both the
periodic dynamics (green) and the chaotic dynamics (red), indicating the coexistence of
both modes. Here T is set to be 1.0149× 104 minutes in the panels (b) and (c).

In Fig. SI4.2, the time delay τ2 is set to be 26.25 minutes in (a), and 26.29 minutes
in (b). Fig. SI4.2 indicates that the closer the τ2 to the bifurcation point around τ2 =
26 minutes (Fig. 6(a) in the main article), the longer the time intervals (illustrated by
the green arrows) of the periodic dynamics; meanwhile the duration (illustrated by the
magenta arrows) of the SC dynamics remains the same, as mentioned in the results in the
main article.

Additional results are shown in Fig. SI4.3 for τ2 = 26.25 minutes, where the dynamics
belong to the intermittency between periodic and strong chaotic behaviors.
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Figure SI4.1: The phase diagram A(t − T ) - A(t) for the one-gene element with
both self-activation and self-inhibition. The time delay of the self-inhibition τ1 is
set to be 26 minutes. The time delay of the self-activation τ2 is set to be 26.3 minutes,
26.29 minutes, and 26.0 minutes for (a), (b), and (c) respectively. In (a), T is set to be the
period of the oscillation 1.0131×104 minutes. In (b) and (c), T is set to be approximately
the period of the oscillation in (b) 1.0149× 104 minutes.
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Figure SI4.2: Time dynamics of the intermittency between periodic and strong
chaotic modes for the circuit element with both self-activation and self-
inhibition. The time delay of the self-inhibition τ1 is set to be 26 minutes. The time
delay τ2 is set to 26.25 minutes and 26.29 minutes in the panels (a) and (b) respectively,
From the bifurcation diagram (Fig. 6(a) in the main article), the value of τ2 in (b) is
closer to the bifurcation point around τ2 = 26 minutes than that in (a). The time inter-
vals (green arrows) of the periodic dynamics in (a) are shorter than those in (b), while
the duration (magenta arrows) of the SC dynamics in (a) is same as that in (b).
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Figure SI4.3: Additional dynamical behaviors corresponding to the panel
Fig. SI4.2(a). (a) and (b) show the phase-space maps A(t) - dA(t)/dt and A(t − T ) -
A(t) respectively. T is set to be 1.0193 × 104 minutes. The green lines in (a) and (b)
show the periodic oscillatory dynamics, while the purple line in (a) and the red line in
(b) show the chaotic dynamics. These two dynamics coexist in the maps in (a) and (b).
(c) and (d) are the full and maximum-minimum spectra respectively. They indicate that
the non-periodic part of the time trajectory in Fig. SI4.2(a) is strong chaos.
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SI 5 WC-SC intermittent dynamics in the one-gene

element with two self-inhibitions and one self-

activation

As mentioned in the results in the main article, WC-SC intermittent dynamics are ob-
served in the one-gene element with two self-inhibitions and one self-activation (upper
circuit element in Fig. 1(c)). We used the same parameters as in Table. SI3.1 in SI3.
The time delays of the self-inhibitions τ1 and τ2 are set to be 18 minutes and 8 minutes
respectively.

Fig. SI5.1(a) is the bifurcation diagram of maximum levels of protein A with respect
to τ3. Intermittency between SC and WC modes emerges around τ3 = 13 minutes. When
the time delay of the self-activation τ3 is set to be 13.3 minutes, the circuit element exhibits
weak chaotic dynamics, as shown in Fig. SI5.1(b), (c), Fig. SI5.2(a), and Fig. SI5.3(a),
(b). When the time delay of the self-activation τ3 is set to be 12.5 minutes, the circuit
element exhibits strong chaotic dynamics, as shown in Fig. SI5.1(f), (g), Fig. SI5.2(c),
and Fig. SI5.3(e), (f).

When the time delay of the self-activation τ3 is set to be 13.2 minutes, the circuit
element exhibits the intermittency between the weak and strong chaotic behaviors, as
shown in Fig. SI5.1(d). Moreover, the phase-space maps, A(t) - dA(t)/dt (Fig. SI5.1 (e))
and A(t − τ0) - A(t) (Fig. SI5.2(b)) indicate the coexistence of weak chaotic dynamics
(green in Figs. SI5.1(e) and SI5.2(b)) and strong chaotic dynamics (purple in Fig. SI5.1(e)
and red in Fig. SI5.2(b)). The full spectrum for the intermittent dynamics (Fig. SI5.3(c))
has a mixture of both up and downward spikes, indicating again the mixture of the
behaviors of both the weak chaotic dynamics and the strong chaotic dynamics.
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Figure SI5.1: Intermittent dynamics between weak and strong chaotic modes for
the one-gene element with two self-inhibitions and one self-activation. Panel
(a) is the bifurcation diagram of maximum levels of protein A with respect to τ3, while
fixing time delays τ1 = 18 minutes and τ3 = 8.0 minutes. The transition occurs from SC
(panels (b) and (c)) to WC (panels (f) and (g)) dynamics around τ3 = 13 minutes (A blue
line with bar pointed by a blue arrow in (a)). The intermittency between the two modes
is observed where the values of τ3 are between (panels (d) and (e)). Panels (b), (d),
and (f) show the time trajectories for cases when the time delays of the self-activation
τ3 = 13.3 minutes, 13.2 minutes, and 12.5 minutes respectively. Panels (c), (e), and (g)
show the corresponding phase-space maps A(t) - dA(t)/dt.
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Figure SI5.2: Phase-space maps A(t− τ0) vs. A(t) for the intermittent dynamics
corresponding to the cases shown in Fig. SI5.1. The phase space maps (a), (b), and
(c) correspond to the time trajectory of (b), (d), and (f) in Fig. SI5.1 respectively. The
values of τ0 are set to be 14.80 minutes for (a), 15.37 minutes for (b), and 15.18 minutes for
(c). The corresponding frequency for τ0 = 15 minutes is 0.067 /minutes. This frequency
is found as a strong peak in the full spectra in Fig. SI5.3(a), (c), and (e). The panels
(a), (b), and (c) indicate non-periodic dynamics. The panel (b) shows coexistence of the
behaviors in both (a) (green) and (c) (red).
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Figure SI5.3: Full spectra and maximum-minimum spectra for the intermittent
dynamics corresponding to the cases in Fig. SI5.1. Left panels show the full spectra
and right panels show the maximum-minimum spectra. The first row shows the spectra
of the weak chaotic dynamics in the panels (b) and (c) in Fig. SI5.1. The third row shows
to the spectra of the strong chaotic dynamics in the panels (f) and (g) in Fig. SI5.1. The
second row shows the spectra of the WC-SC intermittent dynamics in the panels (d) and
(e) in Fig. SI5.1.
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