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ABSTRACT

This supplemental material gives the details of the calculations for the security analysis of the protocols described in this
work, and includes also the key-rates calculated for two-way protocol used in direct reconciliation (DR), which has not been
discussed in the main body. We underline that compared to the one-way protocol, the two-way presents a richer number of
cases which need to be analyzed. The protocols are named with respect to the preparation and detection scheme adopted.
Here we discuss the protocol with coherent states and heterodyne detection, and with coherent states and homodyne detec-
tion. Each one of previous cases can be implemented in DR as well as reverse reconciliation (RR), and here we give the
results for both reconciliation schemes.

Secret-Key Rate and symplectic analysis
The secret-key rate quantifies the gap between Alice and Bob’s mutual information and the information shared between Eve
and the parties. Which parties’ variable(s) has(have) to be considered depends on the setup of the protocol (one-way, two-way,
ON or OFF) and, in general, from the reconciliation protocol employed.

For instance consider the one-way protocol. We assume that Alice sends a modulated coherent state with amplitude α to
Bob, who receives a noisy version of this state, whose amplitude is β . The parties can then obtain two distinct secret-key rates
defined as follows

RI := I(α : β )−χ(ε : α), (S1)
RJ := I(α : β )−χ(ε : β ). (S2)

The first describes the key-rate in DR, while the second the RR. The function I is the classical mutual information quanti-
fying correlations between Alice’s variable, α , and Bob’s variable, β . For each quadrature measured, and used to encode
information, the mutual information is given by the following general signal-to-noise ratio

I =
1
2

log
V
VC

, (S3)

where V is the variance of the variable used to prepare the key, and VC the conditioned variance of this statistical variable after
the measurement performed by the parties.

In the asymptotic limit of many uses of the quantum channel we can bound Eve’s accessible information by the Holevo
function, which is given by

χ(ε : x) := S(ε)−S(ε|x). (S4)

The function S(.) describes the von Neumann entropy which, for Gaussian quantum systems, has a simple form given by

S = ∑
k

h(νk), (S5)

with the entropic function h(.) is defined as follows

h(νk) :=
νk +1

2
log

νk +1
2
− νk−1

2
log

νk−1
2

, (S6)

and where the νk’s are the symplectic eigenvalues of the CM which describes the dynamics of the studied Gaussian quantum
system.1
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The expression of the von Neumann entropy of Eq. (S6) can be further simplified exploiting the limit of large signal
modulation, in which case we can write1

h(νk) = log
e
2

νk +O
(

1
νk

)
. (S7)

The computation of the symplectic spectra can be done in prepare and measure configuration, in which case the νk’s are
obtained from the symplectic analysis of Eve’s output CM or, in case we use the equivalent EB representation, from Alice-
Bob’s CM. This second approach is used in the following, to study the OFF configurations, i.e., when we consider coherent
attacks.

To compute the symplectic spectrum, we first compute the appropriate CM V and then, from matrix

M = iΩV,

where Ω =⊕n
i=1ω̃i, with ω̃i the single-mode symplectic form given by

ω̃i =

(
0 1
−1 0

)
,

we compute the ordinary eigenvalues, which come in pairs. The symplectic spectrum is obtained taking their absolute value.

Protocol with coherent states and heterodyne detection
We start showing how we obtain the ON key-rate for the protocol with coherent states and heterodyne detection, which is
described in Fig. 2 (a) of the main text. The security analysis is performed using Eve’s CM, obtained from the outputs
{E1,E ′′1 ,E2,E ′′2 }. From this we obtain the total von Neumann entropy and, by simple conditioning procedure, one can also
compute Eve’s conditional CM. This describes the conditional state ρE1,E ′′1 ,E2,E ′′2 |α , for the protocol in DR. By contrast, to
study the protocol in RR, we complete Eve’s output CM with Bob’s post-processed output mode B, on which we apply the
heterodyne detection in order to obtain the conditional CM for this case.

Case ON
Bob sends modulated coherent states to Alice providing, on average, a thermal state with variance µB = µ + 1, where µ
accounts for the classical Gaussian modulation on the top of the vacuum shot-noise. Alice applies an additional random
displacement, D(α), on the states received from Bob with modulation variance µON = µ ≥ 0.

Mutual information Alice-Bob mutual information can be computed from the expression of the variance of post-processed
mode ⟨B2⟩, given by

⟨B2⟩= [T 2 +T µON +(1−T 2)ω]I, (S8)

from which, in the limit of large modulation µON = µ → ∞, we obtain the signal variance

V = T µ. (S9)

We then compute the conditional variance from Eq. (S8) by setting Alice modulation µON = 0, obtaining

VC = T 2 +(1−T 2)ω. (S10)

Finally, using Eqs. (S9) and (S10) with the expression of the mutual information in case of heterodyne detection

I := log
V +1
VC +1

, (S11)

we obtain the following Alice-Bob mutual information in the limit of large modulation

ION = log
T µ

1+T 2 +(1−T 2)ω
. (S12)
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Total Covariance Matrix We compute now the CM of Eve’s output quantum state ρE ′1,E
′′
1 ,E
′
2,E
′′
2
. We arrange it in the following

normal form

VE =

(
A C

CT B

)
, (S13)

where

A: =
(

ωI
√

T (ω2−1)Z√
T (ω2−1)Z ΨI

)
,

B: =
(

ωI
√

T (ω2−1)Z√
T (ω2−1)Z Ψ̃I

)
,

C: =
(

0 ΞZ
0 ΦZ

)
, (S14)

with

Ψ̃ = [T ω +(1−T )2ω +T (1−T )µB]+ (1−T )µON ,

Ψ = T (ω−µB)+µB,

Φ = (1−T )
√

T (µB−ω),

Ξ =−(1−T )
√

(ω2−1). (S15)

From Eq. (S13) we easily obtain the total symplectic spectrum by taking the limits for µON = µ→∞ and µB = µ +1→∞

{ν1,ν2,ν3ν4}→ {ω,ω,(1−T )2µ2}. (S16)

The latter, used with Eqs. (S5) and (S7), gives the total von Neumann entropy

SE = log
e2

4
(1−T )2µ2 +2h(ω). (S17)

Conditional CM and Key-rate in Direct Reconciliation For the DR the conditional CM can be obtained straightforwardly
from Eq. (S13) setting µON = 0 on both quadratures in the block describing Eve’s output E ′′2 , i.e., Ψ̃ in Eq. (S15). The resulting
conditional CM has the following asymptotic symplectic spectrum

{ν̄1, ν̄2, ν̄3, ν̄4}→ {1,1,ω,(1−T 2)µ}. (S18)

Using Eq. (S18) with Eq. (S5) and (S7), we compute the conditional von Neumann entropy

SE|α = log
e
2
(1−T 2)µ +h(ω). (S19)

Now, using Eqs. (S17) and (S19) in Eq. (S4), one obtains the expression of the Holevo bound

χI
ON = log

e
2
(1−T )
(1+T )

µ . (S20)

Finally, by subtracting the Holevo function of Eq. (S20) from the mutual information of Eq. (S12) we get the ON key-rate in
DR

RI
ON = log

2
e

T (1+T )
(1−T )[1+T 2 +(1−T 2)ω]

−h(ω).

Reverse Reconciliation To study the security of the protocol in RR, we need to re-compute the conditional von Neumann
entropy for this case. We complete the CM of Eq. (S13) adding the blocks describing Bob’s output mode B and its corre-
lations with the rest of Eve’s modes. Then we apply a heterodyne detection on B obtain Eve’s conditional CM after Bob’s
measurements. We then write

VJ =

(
VE C̄
C̄T B̄

)
, (S21)
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where

B̄=[T 2 +T µ +(1−T 2)ω]I,

C̄=
√

1−T


√

T (ω2−1)Z
T (ω−1)I√
(ω2−1)Z√

T [T (ω−1)−µ]I

 .

We then apply the formula for heterodyne detection1 obtaining the following conditional CM

VJ
C = VE + C̄(B̄+ I)−1C̄T , (S22)

which gives the following conditional symplectic spectrum

{ν̄1, ν̄2, ν̄3, ν̄4}→ {ν̄1, ν̄2, ν̄3,(1−T 2)µ}. (S23)

Notice that the eigenvalues ν̄1, ν̄2, ν̄3 are asymptotically depending only on the channel parameters (ω,T ), and are related by
the following expression

ν̄1ν̄2ν̄3 =
[1+T 3 +(1−T )(1+T 2)ω]ω

T (1+T )
.

From the eigenvalues of Eq. (S23), used with Eqs. (S4), (S5) and (S7) we obtain the Holevo bound for the RR

χJ
ON = log

e
2
(1−T 2)µ +h(ν̄1)+h(ν̄2)+h(ν̄3),

which, used with Eq. (S12) in the definition of Eq. (7)in the main text, gives the secret-key rate for the protocol used in RR
given in Eq. (12) of the main text.

Case OFF
We now describe the details of the calculations for the protocol used in OFF, as described in Fig. 2 (b) of the main text. In this
case we perform the security analysis considering two-mode coherent attacks, in the EB representation.

Total Covariance Matrix and von Neumann entropy
Bob starts from a two-mode squeezed vacuum state, described by the CM of Eq. (1) in the main text. Applying a local
heterodyne detection on mode B1, he projects the traveling mode B′1 in a coherent state. In the same way, Alice applies a local
heterodyne detection on mode A2, projecting the traveling mode A′2 in a coherent state. Finally, we assume that Eve injects
the general Gaussian state described by Eq. (3) in the main text. Since the total state of Alice, Bob and Eve is pure, we can
reduce ourselves to compute Alice and Bob’s state (having the same entropy of Eve’s). We then order Alice’s and Bob’s the
output modes as follows {B1, A2, A1, B2}, and obtain the following expression

VOFF
AB =

(
Ã C̃

C̃T B̃

)
, (S24)

where the matrix blocks have been defined as follows,

Ã=

 µBI δ̃ I
µAI

δ̃ I τ̃(µB)I

 ,

B̃ = τ̃(µA)I,

C̃ =

 0
δ̃ I

(1−T )G

 ,

where

G :=
(

g
g′

)
,
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the coefficients δ̃ and τ̃(y) have been defined as follows,

δ̃ :=
√

T [µB2−1],

τ̃(y) := (1−T )ω +Ty. (S25)

We compute the symplectic spectrum of CM (S24) and taking the asymptotic limit, µA = µB→∞, we obtain the following
analytical expressions

{ν±,ν3,ν4}→ {
√
(ω±g)(ω±g′),(1−T )µ ,(1−T )µ}, (S26)

which gives the total von Neumann entropy for the case OFF

SAB = log
( e

2

)2
(1−T )2µ2 +h(ν−)+h(ν+). (S27)

Conditional covariance matrix and Alice-Bob mutual information
To obtain the conditional CM in DR we set µA = µB = 1, in modes B1 and A2. It is easy to verify that the resulting CM has
the following symplectic spectrum

{ν̄1, ν̄2, ν̄+, ν̄−}→ {1,1,
√

λ+λ ′+,
√

λ−λ ′−}, (S28)

where, λ±= T +(ω±g)(1−T ) and λ ′±= T +(ω±g′)(1−T ). Using these eigenvalues, we compute the following conditional
von Neumann entropy

SAB|α ′,β = h(ν̄+)+h(ν̄−).

The previous equation and Eq. (S27) are then used to obtain the asymptotic expression of the Holevo function in DR, which
is given by

χI
OFF := SAB−SAB|α,β ′ . (S29)

= log
e
2
(1−T )2µ2 +

1
2 ∑

k=±
[h(νk)−h(ν̄k)] . (S30)

The conditional CM corresponding to the RR, is obtained by applying two consecutive heterodyne detections, starting
from CM of Eq. (S24). We first measure mode B2 and then we apply another heterodyne detection on mode A2 (the order of
these two local measurements is of course irrelevant). The resulting conditional CM has the symplectic spectrum

ν̄ ′±→
√
[λ±+1−T ][λ ′±+1−T )]

T
.

These are used to compute the Holevo bound. We find Eq. (S29)

χJ
OFF = log

e
2
(1−T )2µ2 +

1
2 ∑

k=±
[h(νk)−h(ν̄ ′k). (S31)

Alice-Bob Mutual Information and Secret-key rate.
Alice-Bob mutual information is easily computed from the coefficient τ̃ , given in Eq. (S25). Taking the limit of large modula-
tion, using the formula defining the mutual information for heterodyne detections (S11), and averaging over the double use of
the quantum channel we obtain the following expression

IOFF = log
T µ

1+ Λ̃
, (S32)

where Λ̃ = T +(1−T )ω. Notice that, differently from the Holevo bound, the mutual information is independent from the
correlation parameters described by the matrix G.

Using Eq. (S30) and Eq. (S32), and after some simple algebra, we get the analytical expression of the key-rate in DR

RI
OFF = log

2T
e(1−T )(1+ Λ̃)

+
1
2 ∑

k=±
[h(ν̄k)−h(νk)], (S33)

The key-rate in RR of Eq. (13)in the main text, is obtained using previous Eq. (S31) and Eq. (S32).
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Figure S1. This figure summarize the results for the protocol with coherent states and homodyne detection, whose rates are
given in Eqs. (S39) and (S46) which are the same of Eqs. (16) and (17) in the main text. The top panels give the security
thresholds in terms of tollerable excess noise N versus transmissivity T . In the top-left panel, we consider collective attacks
and we compare the ON two-way threshold R̃ON = 0 (black solid line) with the threshold of the one-way protocol (dashed
line). In the pink region the two-way protocol is secure, while the one-way counterpart is not. In the top-right panel, we
consider coherent attacks and we compare the OFF two-way threshold (a)-(c) with respect to the one-way threshold (d). In
particular, curve (a) is obtained for g =±

√
ω2−1, i.e., Eve using maximally entangled states; curve (b) considers the case

g′ = g with g =±(ω−1); and curve (c) refers to g′ =−g and g =±(ω−1). Note that curve (d) coincides with the OFF
threshold against collective attacks, in which case the protocol is used in ON. The same labels (a)-(d) are used in the
bottom-left panel, which describes the various attacks on the correlation plane (g,g′), obtained setting ω ≃ 1.049 in the
constraint of Eq. (4) in the main text. Finally, in the bottom-right panel, we plot the OFF key-rate against coherent attacks
(red lines), compared to the quantum mutual information (black lines) describing the correlations of Eve’s ancillas. We set
T = 0.2 and ω ≃ 1.049, so that the one-way rate is ≃ zero. We see that the OFF key-rate is always strictly positive and it
increases for increasing correlations in the attack.

Protocol with coherent states and homodyne detection
In contrast to the protocol analysed in previous section, here the decodings are performed by means of homodyne detections.
This modifies the expression of the mutual information and these of the conditional von Neumann entropies.

Case ON
Direct Reconciliation: conditional covariance matrix The conditional CM in DR is obtained as before. We start from the
total CM of Eq. (S13) and we apply the following conditioning procedure

µ̄q
ON = 1/µ µ→∞→ 0,

µ̄ p
ON = µ, (S34)

which describes Alice’s effective modulation in order to describe the measurement of only one quadrature during the decoding
stage (homodyne detection).

Direct Reconciliation: mutual information, Holevo bound and key-rate The conditioning procedure, described by Eqs. (S34),
can clearly also used to determine Alice-Bob mutual information. In the present case only one-quadrature is used to encode
the key so Alice-Bob mutual information is given by the following expression

ĨON =
1
2

log
T µ

T 2 +(1−T 2)ω
. (S35)
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Eve’s conditional CM is obtained from Eq. (S13) applying recipe of Eqs. (S34). One easily obtains the conditional
symplectic spectrum which, in the asymptotic limit, is given by

{νI
1 ,νI

2 ,νI
3 νI

4 }→ {1,ω,
√
(1−T )2(1−T 2)ωµ3}. (S36)

After some algebra we obtain the following Holevo bound

χ̃I
ON =

1
2

log
(1−T )2µ
(1−T 2)ω

+h(ω),

which, used with Eq. (S35), provides the ON key-rate for the protocol in DR

R̃I
ON =

1
2

log
T (1+T )ω

(1−T )[T 2 +(1−T 2)ω]
−h(ω). (S37)

It is interesting to note that plotting the security threshold of the key-rate of Eq. (S37), one finds that it provides a positive
key-rate even below 3 dB, which sets the limit performance of the one-way version of this protocol in DR.

Reverse Reconciliation: conditional covariance matrix The security of the protocol is performed repeating the steps
described in previous sections, replacing the heterodyne detections with homodyne measurements on B. Indeed, we apply the
following formula

ṼJ
C = A−C(ΠB̄Π)CT ,

to Eq. (S21). Note that Π :=diag(1,0) (diag(0,1)) for heterodyne on quadrature q̂ (p̂). We then compute the symplectic
spectrum of CM ṼJ

C , which we rewrite here in the following form

ν̃ →

√
ω[1+T 2ω−T 3(ω−1)]

T 2 +ω +T 3(ω−1)
, (S38)

νJ
2 → ω,

νJ
3 νJ

4 →
√

(1−T )3[T 2 +ω +T 3(ω−1)]µ3

T
.

We then obtain the Holevo bound χ̃J
ON

χ̃J
ON = h(ω)−h(ν̃)+

1
2

log
T (1−T )µ

T 2 +ω +T 3(ω−1)
,

which combined with the mutual information of Eq. (S35) gives the ON key-rate in RR of Eq. (16) of the main text, i.e.,

R̃J
ON =

1
2

log
T 2 +ω +T 3(ω−1)

(1−T )Λ
+h(ν̃)−h(ω), (S39)

with Λ := T 2 +(1−T 2)ω .

Case OFF
This case is studied in the EB representation, following the same steps of the previous OFF case, for both the DR and RR,
replacing the final heterodyne with homodyne detections. The mutual information is computed averaging over the double use
of the quantum channel, i.e., using the following definition of the mutual information

ĨOFF :=
1
2

(
1
2

log
T µA

(1−T )ω +T µA
+

1
2

log
T µB

(1−T )ω +T µB

)
µA=µB=µ→∞

=
1
2

log
T µ
Λ̃

, (S40)

where Λ̃ := T +(1−T )ω .
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Direct Reconciliation
The steps to compute the conditional CM have been discussed previously, so here we just provide the analytical expressions
of the conditional symplectic spectra

ν̃I
± =

√
(1−T )Γ±µ , (S41)

η̃I
± =

√
(ω±g′)[T +(ω±g)(1−T )]

Γ±
, (S42)

where we define

Γ± := 1−T +T (ω±g′). (S43)

Notice that, in previous spectra, the role of the correlation parameters depends on the quadrature measured by the homodyne
detection of the decoding stage. We obtain the following Holevo bound for the DR

χ̃I
OFF =

1
2

log
(1−T )µ√

[1+ t(ω−1)]2−T 2g2
,

and the key-rate in direct reconciliation is given by

R̃I
OFF =

1
2

log
T
√
[1+T (ω−1)]2−T 2g2

(1−T )[T +(1−T )ω]
− ∑

k=±

h(η̃I
k )−h(νk)

2
, (S44)

where the eigenvalues ν± are defined in Eq. (S26).

Reverse Reconciliation
For the RR, when the homodyne detection is performed on the quadrature q̂, we obtain the following conditional symplectic
eigenvalues

ν̃J
± =

√
(1−T )(ω±g)µ

T
. (S45)

By contrast, in case of homodyne detection on p̂, the corresponding eigenvalues can be obtained from Eq. (S45) by exchanging
g←→ g′. Averaging over the two detections, we find the following Holevo bound

χ̃J
OFF = ∑

k=±

h(νk)

2
+

1
2

log
T (1−T )µ

4
√
(ω2−g′2)(ω2−g2)

,

which subtracted to the mutual information of Eq. (S40) gives the key-rate of Eq. (17) of the main text, i.e.,

R̃J
OFF =

1
2

log
4
√
(ω2−g2)(ω2−g′2)

(1−T )Λ̃
− ∑

k=±

h(νk)

2
. (S46)
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