
Supplemental Material

for

“Giant exchange interaction in mixed lanthanides”

Veacheslav Vieru, Naoya Iwahara, Liviu Ungur, and Liviu F. Chibotaru

Theory of Nanomaterials Group, Katholieke Universiteit Leuven,

Celestijnenlaan 200F, B-3001 Leuven, Belgium

(Dated: February 21, 2016)

Abstract

This material contains:

1) DFT based derivations of the 4f and the π∗ orbital levels and of the transfer parameters t for

all complexes 1-5;

2) Fragments ab initio calculations of the energies and wave functions of CF multiplets on Ln3+

sites in 1-5, and calculations of atomic multiplets of the corresponding Ln2+ ions;

3) The calculation of the exchange spectra are described;

4) The analysis of the first rank exchange parameters.
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I. DFT CALCULATIONS

A. Extraction of the transfer parameter t for 1-5

In order to derive the transfer parameters between the 4f orbital and the π∗ orbital of

the bridging N2, the Kohn-Sham levels are projected into tight-binding Hamiltonian:

Ĥ =
∑

σ

[
2∑

i=1

εf n̂iγ̃σ + επ∗n̂π∗σ + t
(
ĉ†1γ̃σ ĉπ∗σ + ĉ†π∗σ ĉ1γ̃σ − ĉ†2γ̃σ ĉπ∗σ − ĉ†π∗σ ĉ2γ̃σ

)]
, (S1)

where i(= 1, 2) is the index for the Ln3+ site in the complex, N3−
2 site is described by the

type of the magnetic orbital π∗, γ̃ is the orbital component xyz, σ =↑, ↓ is the projection of

spin operator, εf and επ∗(= εf + ∆) are one electron orbital levels of the 4f orbital and the

π∗ orbital, respectively, t is the transfer parameter between the 4f and the π∗ orbitals, ĉ† (ĉ)

is an electron creation (annihilation) operator, and n̂ is a number operator. The subscripts

of the creation, annihilation, and number operators indicate the site, the orbital index for

only lanthanide site, and spin projection. Because of the D2h symmetry of the magnetic

core part, only one 4f orbital (4fxyz) overlaps with the π∗ orbital (Fig. 2b in the main

text). Therefore, we only include the 4fxyz orbital for each lanthanide site in the model

Hamiltonian.

Diagonalizing the tight-binding Hamiltonian (S1), the one-electron levels are obtained as

εf,a = εf , (S2)

εf,s = εf +
1

2

(
∆ −

√
∆2 + 8t2

)
, (S3)

επ∗ = εf +
1

2

(
∆ +

√
∆2 + 8t2

)
, (S4)

where the subscript “a” and “s” indicate antisymmetric and symmetric orbitals, respectively.

Comparing these orbital levels with the DFT calculations, we obtain parameters εf , t, and

∆.

The highest occupied Kohn-Sham orbital for the down spin in the low-symmetry DFT

solutions correspond to the π∗ orbital. On the other hand, 4f atomic orbitals contribute to

many Kohn-Sham orbitals. Thus, the 4f orbitals are localized as follows. Because of the

inversion symmetry of the complexes, the 4f orbital part of each Kohn-Sham orbital ψi is

decomposed into the antisymmetric and symmetric parts:

|ψi〉 =
1√
2

(|1〉 + |2〉)Ca,i +
1√
2

(|1〉 − |2〉)Cs,i, (S5)
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FIG. S1. Contributions of the antisymmetric |Ca,i| (red) and the symmetric |Cs,i| (blue) combina-

tions of the 4fxyz orbitals to each Kohn-Sham orbitals for the (a) Gd, (b) Tb, (c) Dy, (d) Ho, (e)

Er complexes.

where, |1〉 and |2〉 indicate the 4fxyz orbitals on the first and the second lanthanide sites,

respectively. The absolute values of Ca,i and Cs,i for the occupied Kohn-Sham orbitals for

the up spin part are shown in Fig. S1. As the antisymmetric and the symmetric levels, we

averaged the Kohn-Sham levels:

εf,a =

∑occ.
i C2

a,iεi∑occ.
i C2

a,i

, εf,s =

∑occ.
i C2

s,iεi∑occ.
i C2

s,i

. (S6)

In Eq. (S6), the sum is taken over occupied Kohn-Sham orbitals. With the use of the levels,
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the parameters t and ∆ are derived (Table I in the main text). The transfer parameter is

gradually decreasing as the increase of the atomic number because the ionic radius of the

lanthanide shrinks.

B. Calculation of π∗ → 4f electron promotion energy for 1

The high- and low-spin states of the complex 1 were analyzed based on the Hubbard

Hamiltonian:

Ĥ =
∑
i=1,2

∑
γσ

εf n̂iγσ +
∑

σ

επ∗n̂π∗σ

+
∑

σ

t
(
ĉ†1γ̃σ ĉπ∗σ + ĉ†π∗σ ĉ1γ̃σ − ĉ†2γ̃σ ĉπ∗σ − ĉ†π∗σ ĉ2γ̃σ

)
+

∑
i=1,2

∑
〈γσ,γ′σ′〉

uf n̂iγσn̂iγ′σ′ + uπ∗n̂π∗↑n̂π∗↓ +
∑
i=1,2

∑
γσ

∑
σ′

vn̂γσn̂π∗σ′ , (S7)

where γ is the component of the 4f orbital, uf and uπ∗ are the intrasite Coulomb repulsions

on Gd and N2 sites, respectively, and v is the intersite Coulomb repulsion between the Gd

and N2 sites.

The high-spin state with the maximal projection is described by one electron configura-

tion:

|1 ↑, π∗ ↑, 2 ↑〉, (S8)

where 1 and 2 are the lanthanide sites and ↑ and ↓ are spin projections. The 4f electrons

which are not in the 4fxyz orbital are not explicitly written here. The total energy EHS is

EHS = E0 + (2n+ 1)εf + ∆ + 2nv + n(n− 1)uf , (S9)

where E0 is the total electronic energy except for the electrons in the 4f orbitals and π∗

orbitals, and n is the number of the 4f electrons in Gd3+ ion. For the low-spin state (↑, ↓, ↑

type), the basis set is

{|1 ↑, 1 ↓, 2 ↑〉, |1 ↑, π∗ ↓, 2 ↑〉, |1 ↑, 2 ↓, 2 ↑〉}. (S10)

Here, the configurations with the electron transfer from the 4f to the π∗ are not included

because these configurations do not contribute much to the low-energy states due to the

large energy gap ∆ between the 4f and the π∗ levels. The lowest energy is

ELS = E0 + (2n+ 1)εf + n(n− 1)uf +
1

2

(
∆ + 2nv + nuf −

√
(∆ + 2nv − nuf )

2 + 8t2
)
.

(S11)
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The energy difference between the low- and high-spin states are

∆E = ELS − EHS (S12)

=
1

2

[
nuf − (∆ + 2nv) −

√
(∆ + 2nv − nuf )

2 + 8t2
]

(S13)

=
1

2

(
Ū −

√
Ū2 + 8t2

)
, (S14)

where

Ū = nuf − ∆ − 2nv (S15)

is the (averaged) electron promotion energy. Eq. (S15) shows that (i) the energy gap ∆

significantly reduces the promotion energy and (ii) the promotion energy increases with the

number of the 4f electrons n. Using the transfer parameter t derived from the Kohn-Sham

orbital, energy gaps between the high-spin state and low-spin state, and Eq. (S14), the

averaged promotion energy Ū is derived.

II. AB INITIO CALCULATIONS

A. Fragment calculations for Ln3+ centers in 1-5

To obtain the local electronic properties of the magnetic ions, ab initio quantum chemistry

calculations (CASSCF/SO-RASSI) were performed using Molcas [1]. In the calculations, one

of the metal ions in the complex was replaced by diamagnetic lanthanum ion (La3+) and

the ligands for the La ion were reduced (Fig. S2). Two point charges (−0.5 e) were put

on each N atom creating the N2 bridge, where e (> 0) is the elementary charge. The

latter is to include the electrostatic potential from the unpaired electron of N3−
2 bridge. The

covalent effect is included later (Ĥ ′
cf in the main text). In the CASSCF calculations, all 4f

orbitals of the magnetic site are included in the active orbitals. The spin-orbit coupling is

included in the SO-RASSI calculation. In the SO-RASSI calculations the following CASSCF

states were mixed by spin-orbit coupling: for Gd, 1 octet, 48 sextet, 120 quartet and 113

doublet states, for Tb, 7 septet, 140 quintet, 113 triplet and 123 singlet states, for Dy, 21

sextet, 128 quartet and 130 doublet states, for Ho, 35 quintet, 210 triplet and 196 singlet

states, and for Er, 35 quartet and 112 doublets states. As the basis set for the calculations,

ANO-RCC was used. The contraction of the basis set is shown in Table S1. The Cholesky
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FIG. S2. The LnLaN3−
2 fragment used in ab initio calculations. Hydrogen atoms are omitted for

clarity. The right lanthanide ion was replaced by La in the ab initio calculations.

TABLE S1. Contractions of the employed ANO-RCC basis sets for the ab initio calculations.

Ln 7s6p4d2f1g Si 4s3p

La 7s6p4d2f O 3s2p

N (N2 bridge) 3s2p1d C 3s2p

N (the others) 3s2p H 2s

decomposition threshold was set to 5×10−8 Hartree. The obtained SO-RASSI wave functions

were transformed into pseudo spin states (or pseudo J̃ states) [2–5] to analyze the magnetic

data using SINGLE ANISO module [6].

The obtained crystal-field (CF) levels are shown in Table S2. In all cases, the lowest

spin-orbit states are doubly degenerate (Kramers doublet (KD) for Ln = Gd, Dy, Er) or

quasidegenerate (Ising doublet for Ln = Tb, Ho). The ground CF states |ψ〉 are decomposed

into the sum of the ground pseudo J̃ multiplets |JM〉 [4, 5]:

|ψ〉 =
J∑

M=−J

CM |JM〉. (S16)

The coefficients CM are shown in Table S3. The contributions of the multiplets with the

largest projection (|M | = J) to the ground CF states are 94.2 %, 96.4 %, 97.1 %, 91.7 %,

78.6 %, for Gd, Tb, Dy, Ho, and Er, respectively. For each ground doublets, the g-tensors
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TABLE S2. The lowest spin-orbit levels of Ln centers obtained by ab initio fragment calculations

(cm−1). The covalency effect is not included.

Gd Tb Dy Ho Er

0.000 0.000 0.000 0.000 0.000

0.000 0.099 0.000 0.982 0.000

0.329 141.153 179.143 87.999 74.691

0.329 142.222 179.143 88.534 74.691

0.631 288.590 320.747 130.818 118.034

0.631 295.694 320.747 147.454 118.034

1.108 401.446 406.717 167.052 166.279

1.108 435.925 406.717 202.496 166.279

490.539 470.573 224.559 212.344

531.201 470.573 241.625 212.344

547.372 531.942 246.712 262.700

730.715 531.942 284.704 262.700

731.087 623.187 296.344 295.345

623.187 323.988 295.345

749.919 327.012 396.290

749.919 385.730 396.290

386.659

are calculated (Table S4). The Er complex is not magnetically anisotropic as much as the

other complexes (Tb, Dy, Ho). This is because the multiplets |JM〉 with small M (|M | < J)

are mixed more than the other systems.

B. Calculation of atomic J-multiplets of Ln2+ ions

The excitation energies of the intermediate virtual electron transferred states were re-

placed by the excitation energies for isolated Ln2+ ion (Ln = Gd, Tb, Dy, Ho, Er). To

obtain the energies, the CASSCF and the SO-RASSI calculations were performed with

ANO-RCC QZP basis set [1]. As in the case of the fragment calculations, all 4f orbitals are
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TABLE S3. |JM〉 structure of ground CF doublet on Ln3+ center in 1-5

Gd Tb Dy Ho Er

M |CM | M |CM | M |CM | M |CM | M |CM |

−7/2 0.971 −6 0.694 −15/2 0.986 −8 0.677 −15/2 0.887

−5/2 0.001 −5 0.005 −13/2 0.019 −7 0.005 −13/2 0.112

−3/2 0.225 −4 0.123 −11/2 0.164 −6 0.162 −11/2 0.321

−1/2 0.004 −3 0.014 −9/2 0.027 −5 0.044 −9/2 0.168

1/2 0.077 −2 0.024 −7/2 0.023 −4 0.084 −7/2 0.214

3/2 0.002 −1 0.008 −5/2 0.007 −3 0.056 −5/2 0.103

5/2 0.038 0 0.009 −3/2 0.010 −2 0.039 −3/2 0.105

7/2 0.000 1 0.008 −1/2 0.004 −1 0.033 −1/2 0.024

2 0.024 1/2 0.002 0 0.027 1/2 0.031

3 0.014 3/2 0.001 1 0.033 3/2 0.021

4 0.123 5/2 0.001 2 0.039 5/2 0.011

5 0.005 7/2 0.000 3 0.056 7/2 0.012

6 0.694 9/2 0.000 4 0.084 9/2 0.016

11/2 0.000 5 0.044 11/2 0.002

13/2 0.000 6 0.162 13/2 0.005

15/2 0.000 7 0.005 15/2 0.000

8 0.677

treated as the active orbitals of the CASSCF calculations. In the SO-RASSI calculations,

the following LS terms are included: 7F for Gd2+, 6P , 6F , 6H for Tb2+, 5D, 5F , 5G, 5I for

Dy2+, 4F , 4G, 4I for Ho2+, and 3F , 3H for Er2+. The excitation energies ∆E are shown in

Table S5.
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TABLE S4. The g tensors for the lowest doublets of Ln centers obtained from the fragment

calculations. The transverse g-factors for Tb and Ho are zero because of the Griffith’s theorem [7].

Gd Tb Dy Ho Er

gX 0.492 0.000 0.0026 0.000 0.163

gY 0.824 0.000 0.0040 0.000 0.227

gZ 13.439 17.675 19.6459 19.422 16.528

III. ANALYSIS OF FIRST RANK EXCHANGE PARAMETERS

As shown in Table II in the main text, the first rank part (k = k′ = 1) of the exchange

interaction is isotropic Heisenberg type in all complexes, i.e.,

J1±11∓1 = −J1010 6= 0, (S17)

and the other J1q1q′ are zero. The reason can be understood analyzing the formula of the

exchange interaction. The exchange parameter between J multiplet and isotropic spin 1/2

(Eqs. (2), (3) in the main text) is written as [8]

Jkqk′q′ =
∑

x

∑
αJJ

{t× t}x
kqk′q′ G1

αJJk′xkF̃2
k′

U0 + ∆En+1
αJJ

, (S18)

where

{t× t}x
kqk′q′ = (−1)l1−k′+q′

∑
mm′

∑
ξ

t12mπ∗t21π∗m′C
xξ
l1m′kqC

xξ
k′−q′l1m, (S19)

tmπ∗ is the electron transfer between the 4f with component m of orbital angular momentum

and the π∗ orbital of N2, l1 = 3 is the magnitude of the atomic orbital angular momentum

for f orbital, x (l1 − k′ ≤ x ≤ l1 + k′) indicates a rank, ξ = −x,−x + 1, ..., x, Cxξ
l1m′kq and

Cxξ
k′−q′l1m are Clebsch-Gordan coefficients [9], αJ and J are the LS-term and the total angular

momentum of Ln2+, respectively, ∆En+1
αJJ is the excitation multiplet energies of Ln2+, and

GLn
αJJk′xk and F̃N2

k′ are functions of their subscripts. For the detailed description of x, GLn
αJJk′xk,

and F̃N2

k′ , see Ref. 8.

Since the dependence of the exchange parameter (S18) on q and q′ appears only in {t×

t}x
kqk′q′ (S19), the condition for the isotropy of Jkq1q′ is revealed from the equation. First,

we consider the cases where only the transfer between f±m0 orbitals (m0 = 0, 1, 2, 3) and the
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TABLE S5. Excitation energies with respect to the lowest J multiplet of isolated Ln2+ ions (meV).

Gd Tb Dy

LS term J ∆E LS term J ∆E LS term J ∆E

7F 6 0.000 6H 15/2 0.000 5I 8 0.000

5 182.104 13/2 307.374 7 458.212

4 333.856 11/2 573.765 6 859.148

3 455.259 9/2 799.172 5 1202.808

2 546.311 7/2 983.596 4 1489.190

1 607.012 5/2 1127.038 5G 6 3412.346

0 637.362 6F 11/2 1050.937 5 3756.005

9/2 1276.345 4 4042.388

7/2 1460.769 5F 5 2369.357

5/2 1604.210 4 2655.740

6P 7/2 4357.932 5D 4 5667.150

5/2 4501.373

Ho Er

LS term J ∆E LS term J ∆E

4I 15/2 0.000 3H 6 0.000

13/2 638.260 5 850.945

11/2 1191.419 4 1197.911

9/2 1659.477 3F 4 1560.065

4G 11/2 3521.812

9/2 3989.870

4F 9/2 2461.643

isotropic spin is nonzero for simplicity. The values of {t× t}x
1q1q′ are tabulated in Table S9.

We find that the condition (S17) is fulfilled when m0 = 2, while it is not for other m0. In the

case of m0 = 1, the nonzero terms with q = q′ = ±1 are also the source of the anisotropic

exchange. When more than one set of f orbitals m0 contribute to the electron transfer, the

exchange interaction becomes always anisotropic. Finally, since Eq. (S19) is independent of
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TABLE S6. Kinetic contributions to the CF parameters Jkq00 (cm−1) for complexes 1-5.

k q Jkq00

Gd Tb Dy Ho Er

0 0 −94.88 −95.77 −70.78 −55.38 −24.20

4 0 5.86 ×10−3 −30.11 23.76 10.00 −11.15

4 ±4 3.50 ×10−3 −18.00 14.20 5.97 −6.66

6 0 4.12 ×10−7 −4.95 × 10−1 6.13 −8.53 4.29

6 ±4 −7.70 × 10−7 9.27 × 10−1 −11.46 15.96 −8.02

ions, the condition given above applies to the exchange interaction between any f electron

ions and spin 1/2.
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501.172 458.147 223.439 197.730
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TABLE S8. Energy of the low-lying exchange KDs (cm−1) in 1-5

Gd Tb Dy Ho Er

0.000 0.000 0.000 0.000 0.000

0.381 207.619 120.686 105.154 27.999

0.643 207.670 120.686 106.791 28.000

0.865 210.623 158.882 108.718 53.467

1.187 227.323 164.275 110.590 64.209

1.605 362.446 252.462 146.181 68.710

2.112 366.170 273.941 153.019 86.241

27.527 369.751 273.943 160.514 86.254

27.761 369.876 293.589 161.003 99.987

TABLE S9. {t × t}x
1q1q′ for m0 = 0, 1, 2, 3.

x q1 q2 m0

0 1 2 3

2 0 0 3
7 |t

12
0π∗ |2 16

21 |t
12
1π∗ |2 10

21 |t
12
2π∗ |2 0

2 ±1 ∓1 −1
7 |t

12
0π∗ |2 −1

3 |t
12
1π∗ |2 −10

21 |t
12
2π∗ |2 −5

7 |t
12
3π∗ |2

2 ±1 ±1 0 −2
7(t12±1π∗)2 0 0

3 0 0 0 −1
6 |t

12
1π∗ |2 −2

3 |t
12
2π∗ |2 −3

2 |t
12
3π∗ |2

3 ±1 ∓1 1
2 |t

12
0π∗ |2 11

12 |t
12
1π∗ |2 2

3 |t
12
2π∗ |2 1

4 |t
12
3π∗ |2

3 ±1 ±1 0 −1
2(t12±1π∗)2 0 0

4 0 0 4
7 |t

12
0π∗ |2 15

14 |t
12
1π∗ |2 6

7 |t
12
2π∗ |2 1

2 |t
12
3π∗ |2

4 ±1 ∓1 − 5
14 |t

12
0π∗ |2 −3

4 |t
12
1π∗ |2 −6

7 |t
12
2π∗ |2 −29

28 |t
12
3π∗ |2

4 ±1 ±1 0 − 3
14(t12±1π∗)2 0 0
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