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In this Supplementray Information (SI ), we provide magnetization, Shubnikov-de

Hass (SdH) quantum oscillations, additional Density-functional-theory (DFT) calculations,

topological indices, and longitudinal magnetoresistance (LMR) that further support the

discussion and conclusions of the main text.

SI I: Magnetization of TaAs2
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Figure S1 | Magnetization of TaAs2. Main frame, temperature dependence of

magnetic susceptibility χ. The inset shows isothermal field dependent magnetization at 2.5

K.

The magnetic properties of TaAs2 are displayed in Figure S1. These measurements

were taken on sample S1 with an external magnetic field B⊥ab, using a Quantum

Design Magnetic Property Measurement System (MPMS-5). The main frame of Figure

S1 shows the temperature dependence of magnetic susceptibility χ(T ). The value of χ

is 5.94×10−5 emu/mol at room temperature, and remains essentially unchanged down

to 50 K. The weak upturn at low temperature is likely an impurity contribution. Such

a Pauli-paramagnetic χ(T ) curve can not be described by the well-known Curie-Weiss

law, manifesting the absence of intrinsic local moments. This is further confirmed by the

isothermal field dependent magnetization at 2.5 K as shown in the inset to Figure S1.

The magnetization reaches only 4×10−4 µB/f.u. at 1 T. All these results demonstrate

that TaAs2 is a non-magnetic compound, and the large transverse magnetoresistance and
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negative longitudinal magnetoresistance discussed in the main text do not have a magnetic

origin. In addition, we may also conclude that time reversal symmetry is respected in TaAs2.

SI II: SdH oscillations
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Figure S2 | SdH quantum oscillations of TaAs2. a and b, Field dependence of

ρxx and ρyx at 0.3 K for B⊥ab. The grey lines are the fourth-order polynomial fitting. The

right axes show oscillatory contributions, ∆ρxx and ∆ρyx, respectively. c, FFT spectrum

of ∆ρxx(1/B). The inset is a zoom-in view at selected temperatures. d, Temperature

dependent FFT amplitudes of α- and β-pockets. Fitting to the LK formula results in

effective masses m∗
α=0.083(1) m0, m

∗
β=0.078(1) m0. The solid lines are theoretical fittings

to LK formula. e, Angular (θ and ϕ) dependence of FS cross-sectional extrema. The solid

lines are guidelines. The scheme of the measurements is also depicted.
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Another important feature of the magnetotransport property of TaAs2 is the SdH quan-

tum oscillation atop of the large magnetoresistance signal. The analysis of SdH data is

somewhat complicated. Further systematic measurements under higher magnetic field are

needed to better clarify the details of the Fermi surface (FS) topology. We leave this task

for future work. To estimate the carrier density we analyse the SdH oscillations based on

our angular measurements up to 9 T.

The SdH effect can be observed in both ρxx(B) (Figure S2a) and ρyx(B) (Figure S2b).

We derive the oscillatory part from ∆ρij=ρij−⟨ρij⟩ (i,j=x,y), where the non-oscillatory

part ⟨ρij⟩ is obtained by a fourth-order polynomial fit to ρij(B). The obtained ∆ρxx(B) and

∆ρyx(B) are displayed with the right axes of Figure S2a and S2b, respectively.

By taking the Fast Fourier Transformation (FFT) of ∆ρxx as a function of 1/B, we

obtain multiple SdH oscillation frequencies as shown in Figure S2c. The two fundamental

frequencies are Fα=104(2) T and Fβ=130(2) T. The decaying amplitude of SdH oscillations

with temperature is described by the Lifshitz-Kosevich (LK) formula[1]:

∆ρxx
⟨ρxx⟩

∝ 2π2kBT/~ωc

sinh(2π2kBT/~ωc)
, (S1)

in which ωc=
eB
m∗ is the cyclotron frequency with m∗ being the effective mass. We tracked the

FFT amplitudes of α- and β-orbits as a function of T in Figure S2(d). Fitting these data

points to the LK formula, we derived the effective masses, m∗
α=0.083(1)m0 andm∗

β=0.078(1)

m0, where m0 is the mass of a free electron. These small effective masses are similar to those

in other topological materials, e.g., 0.089 m0 for the 3D topological insulator Bi2Te2Se[2, 3],

0.043 m0 for the Dirac semimetal Cd3As2[4] and 0.033-0.066 m0 for the Weyl semimetal

NbAs[1], but are much smaller than those of NbSb2 (∼1 m0), an iso-structural analog[5],

and for WTe2 (∼0.4 m0)[6], a candidate type-II Weyl semimetal[7].

We also performed angular dependent SdH oscillation measurements. θ and ϕ respectively

depict the angles between electrical current I and magnetic field B when the field is rotated

in two different ways, see Figure S2e. The oscillatory frequencies are shown in Figure S2e,

and the possible guidelines for their angular dependencies are also presented. Combining

this with the DFT calculations addressed in the main text, we may assume the α-orbit is

due to an electron-pocket, and the β-orbit is due to a hole-pocket.

For a three dimensional system, the carrier density is correlated with the size of Fermi
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surface via,

n =
gkx

Fk
y
Fk

z
F

3π2
=

g

3π2

√
8e3FxFyFz

~3
, (S2)

where g is the multiplicity of the Fermi surface in the first Brillouin zone, ki
F (i=x,y,z) is

the magnitude of Fermi momentum along i-axis, and Fi is the oscillatory frequency with

magnetic field B parallel to i-axis. Here, we have included the spin degeneracy and adopted

the Lifshitz-Onsager correlation F= ~
2πe

SF , in which SF is the extremal cross-sectional area

of the Fermi surface. As a rough estimate, we treat the electron FS as a spherical pocket,

with Fαx=Fαy=Fαz≈100 T and ge=2. The carrier density of electrons is thus calculated

ne=1.1×1019 cm−3. Due to the complex Fermi surface topology, we are not able to calculate

the carrier density of holes directly, but considering the magnitude of oscillation frequency

and the multiplicity gh=1, it is reasonable to set ne as the upper limit of nh. These estimates

are quantitatively in agreement with the Hall effect measurement discussed in the main text.

Finally, it should be pointed out that the observed Fα peak weakly splits into two at

low temperature, labeled as α and α′ (cf the inset to Figure S2c). This is better seen

in their higher-order harmonics. This splitting seems to disappear as field rotates. It is

likely that this splitting is caused by a certain sub-structure on the FS which results in

additional cross-sectional extrema at a particular angle. Fβ shows a much stronger angular

dependence (Figure S2e); however, this might be not surprising considering its complicated

topology. More systematic angular SdH measurements under higher magnetic field are

required to further resolve this.

SI III: Additional DFT calculations

In Figure S3, we present additional DFT calculation results. Figure S3a shows the band

structure and density of states (DOS) calculated without spin-orbit coupling (SOC) along

the same path as in Figure 4 of the main text where SOC is included. Two extra cuts, K-M

and K’-K”, as indicated in Figure S3b, are presented in detail to illustrate the effects of

SOC. A small gap of ∼60 meV between conduction- and valence-bands is observed along

K’-K”. More interestingly, a band-crossing occurs along K-M. However, in contrast to

regular Dirac/Weyl semimetals, the band-crossing appears at the contact of electron- and

hole-pockets, rather than a point-like FS (viz. type-I Dirac/Weyl point). This reminds
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us of the type-II Dirac/Weyl semimetal proposed by Soluyanov et al recently[7]. However,

this crossing is not protected by the symmetry of the crystal lattice. Hence, when SOC is

included the Dirac-like point becomes gapped. The comparisons between band structures

without and with SOC along the two cuts are shown in Figure S3c and S3d, respectively.

When SOC is turned on, the band crossing along K-M opens a small gap with magnitude

∼117 meV. Intuitively, the band gap in K’-K” is further enlarged by SOC.
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Figure S3 | DFT calculations of TaAs2 without SOC. a, Band structure and

DOS of TaAs2 calculated without SOC. b, FS topology with the k-path cuts used in panels

c and d. c and d respectively display the comparisons of band structure along K-M and

K’-K” with and without SOC.
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SI IV: Z2 topological invariants

The DFT calculations also allow us to analyse the Z2 topological invariants (ν0;ν1ν2ν3) for

a centrosymmetric crystal[8]. Given the parity eigenvalue of the pair of occupied degenerate

bands, we determine the parity (δ) of the each time-reversal-invariant-momentum (TRIM)

points in the BZ as summarized in Table S1 (see also in Figure 4c).

Table S1: Parity of the TRIM of the monoclinic Brillouin zone. Calculated

based on DFT with SOC turned on.

TRIM (kx, ky, kz) δ TRIM (kx, ky, kz) δ

Γ (0, 0, 0) +1 A (0, 1/2, 0) +1

Y (1/2, 0, 1/2) −1 M (1/2, 1/2, 1/2) −1

V (0, 0, 1/2) +1 L (0, 1/2, 1/2) −1

V′ (1/2, 0, 0) +1 L′ (1/2, 1/2, 0) −1

A sign change of δ between two TRIM points manifests a band inversion. The strong

topological index ν0 is defined by (−1)ν0=
∏

δi, where
∏

goes through all the eight TRIM

points. This leads to ν0=0. The weak topological indices are calculated via the product of

δi at four coplanar TRIM points in the BZ[9], i.e., (−1)ν1=δMδYδV′δL′ , (−1)ν2=δMδL′δAδL,

(−1)ν3=δMδLδVδY, and we obtain ν1=ν2=ν3=1. This analysis suggests that TaAs2 is a

“weak” topological material in all three reciprocal lattice directions, but not a “strong”

topological material.

SI V: Additional LMR

Improperly made contact geometry may also cause negative LMR, especially when the

material shows a large transverse MR, a so-called “current-jetting” effect[10–12]. To test if

this will affect the LMR we have observed in TaAs2, we performed a series of measurements

with various contact geometries, and results are summarized in Figure S4. These measure-

ments were done in a 3-axis magnet (Bx,y,z) to precisely tune the field orientation. We

start with the case of inhomogeneous current as shown in Figure S4a, from which we indeed
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obtain significantly different MR behaviors in RA=V34/I12 and RB=V56/I12. Although RB

decreases rapidly with increasing Bz, the MR of RA is dramatically positive. It might not

be too surprising for such a divergence in the context of a current-jetting effect: due to

the large transverse MR, the path 1-5-6-2 becomes more and more resistive under magnetic

field, and therefore more and more current is accumulated along the path 1-3-4-2, which

inevitably increases (decreases) the voltage drop between the electrodes 3 (5) and 4 (6).
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Figure S4 | LMR measurements with various contact geometries. a, An

inhomogeneous current indeed causes different magnetoresistance behaviors in RA=V34/I12

and RB=V56/I12. b, Measurements in a Hall-bar geometry. Negative LMR is seen in both

RC and RD. c, A four-probe measurements (RE) with all the contacts fully across the

width. A small positive MR is seen on top of the large negative LMR. Intrinsic negative

LMR can be seen after the field direction is carefully tuned.

To avoid this current-jetting effect, we improved the current homogeneity by fully painting

the current leads across the end faces of the sample (Figure S4b). The derived resistances are

now labeled RC and RD, respectively. Both of RC and RD exhibit negative LMR although

in a small region near Bz=0 the MR initially turns up. We attribute this small positive MR

to a angular mismatch (see below). It should be pointed out that the sample was installed

on a home-built sample stage in which an angular mismatch (both polar and azimuthal) up

to ∼5 ocould be possible with respect to a veritable LMR. The situation is similar when

all the electrodes were fully painted across the width (RE, Figure S4c), but the angular

mismatch seems even larger than the previous measurements. Note that these positive MR
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regions completely disappear when the azimuthal magnetic fields (Bx and By) with proper

values are turned on to overcome the angular mismatch, see the green curve (RE′) in Figure

S4c. This field refinement also suppresses the small upturn at high field as mentioned in the

maintext. It is interesting to compare the field dependence of RE′ to RB. One clearly sees

that both show negative MR under field and saturate to comparable values at high field,

but RB drops much faster that RE′ . All these measurements manifest an intrinsic negative

LMR in TaAs2, although the current-jetting effect could play some role if contacts are not

properly made.
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