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1 Rationale behind LaBNE

This section provides a detailed description of the rationale behind the Laplacian-
based Network Embedding (LaBNE), an approach for the embedding of com-
plex networks to the two-dimensional hyperbolic plane H2, proposed in the main
body of the article that this supplement accompanies. This description is largely
based on the justification provided by Belkin and Niyogi for the Laplacian Eigen-
maps1, a manifold learning algorithm for the representation of high-dimensional
data in a reduced Euclidean space. Some of the information given in the main
body of the article is reproduced here to make this supplement self-contained.

Let us consider only undirected, unweighted, single-component networks, as
LaBNE is only applicable to networks with these properties1. Moreover, they
are assumed to be scale-free (with scaling exponent γ ∈ [2, 3]) and with cluster-
ing coefficient c̄ significantly larger than expected by chance. These networks
are graphs G = (V,E) with N = |V | nodes and L = |E| edges connecting them.
An undirected, unweighted graph can be represented by an N × N adjacency
matrix Ai,j = Aj,i ∀i, j, whose entries are 1 if there is an edge between nodes i
and j and 0 otherwise. The graph Laplacian is a transformation of A given by
L = D − A, where D is a matrix with the node degrees on its diagonal and 0
elsewhere.

In the context of manifold learning, most algorithms rely on the construction
of a mesh or network over the high-dimensional manifold containing the samples
of interest2,3. When pairwise distances between samples are computed, they
correspond to shortest-paths over the constructed network, allowing for a better
preservation of the sample relationships when the data is embedded to low
dimensions1–4. If there is really a hyperbolic geometry underlying a complex
network, it should lie on a hyperbolic plane, with nodes drifting away from the
space origin. If the network itself is seen as the mesh that connects samples
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(nodes in this case) that are close to each other5, it can be used as in manifold
learning to recover the hyperbolic coordinates of its nodes. Connected pairs
of nodes in the network should be very close to each other in the target, low-
dimensional space and, consequently, their angular separation (governed by their
similarity dimension according to the Popularity-Similarity model) should also
be small. Their popularity or seniority dimension, represented by how far away
they are from the space origin, can be easily recovered based on their node
degree5–7.

In particular, embedding of a complex network to the two-dimensional hy-
perbolic plane H2, represented by the interior of a Euclidean circle8, is given by
the N × 2 matrix Y = [y1,y2] where the ith row, Yi, provides the embedding
coordinates of node i. This corresponds to minimising 1

2

∑
i,j Ai,j ||Yi − Yj ||2 =

tr(Y TLY ), which reduces to Yemb = minY TDY=I tr(Y TLY ) with D as defined
above, I the identity matrix, MT the transpose of M and tr(M) the trace of M .
Finally, Yemb, the matrix that minimises this objective function, is formed by the
two eigenvectors with smallest non-zero eigenvalues that solve the generalised
eigenvalue problem LY = λDY .

To see that this is indeed the case, let us consider the problem of mapping
a network with adjacency matrix A to a line: if Ai,j = 1 for two nodes i and
j (i.e. they are connected), these two nodes should stay as close together as
possible on the target line. As a result, we require yi ∈ R that minimise:

1

2

∑
i,j

Ai,j(yi − yj)2 (1)

Since A is symmetric and Di,i =
∑

j Ai,j , Equation 1 can be written as:

1

2

∑
i,j

Ai,j(y
2
i + y2j − 2yiyj) =

1

2

∑
i

y2iDi,i +
∑
j

y2jDj,j − 2
∑
i,j

yiyjAi,j

 (2)

Note that the two first terms on the right hand side of Equation 2 contribute
equally to the expression. As a result, this equation reduces to:∑

i

y2iDi,i −
∑
i,j

yiyjAi,j

which in vector form can be written as:

yT (D −A)y (3)

Based on the definition of the graph Laplacian given above, Equation 3
reduces to:

yTLy

Therefore, mapping the network of interest to a line consists in finding:

minyTDy=1 y
TLy (4)

where the constraint yTDy = 1 removes an arbitrary scaling factor in the
embedding2,3. Since this is an equality constraint, we can resort to Lagrange
multipliers to solve Equation 4:
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L(y, λ) = yTLy − λ(yTDy − 1)

Finally, the solution is given by:

∇L(y, λ) =

(
∂L
∂y

,
∂L
∂λ

)
=
(
2Ly − 2λDy,yTDy + 1

)
= 0

(5)

Note that one of the solutions to Equation 5, ∂L
∂y = 2Ly − 2λDy = 0, leads

to Ly = λDy. The minimum, non-zero, eigenvalue solution to this generalised
eigenvalue problem gives the vector y that minimises the objective function
(Equation 4). More generally, embedding of a network into Rd(d > 1) is given
by the N × d matrix Y = [y1,y2, ...,yd]. Thus, we need to minimise:

1

2

∑
i,j

Ai,j ||Yi − Yj ||2 = tr(Y TLY )

which reduces to:

Yemb = minY TDY=I tr(Y TLY )

as already discussed above for d = 2, which is the focus of this work.
To complete the mapping to the two-dimensional hyperbolic plane H2, an-

gular node coordinates are obtained via θ = arctan(y2/y1) and, as above-
mentioned, radial coordinates are chosen so as to resemble the rank of each
node according to its degree. This is achieved via ri = 2β ln(i) + 2(1−β) ln(N),
where nodes i = {1, 2, . . . , N} are the network nodes sorted decreasingly by
degree and β = 1/(γ − 1)5,8.

This strategy is valid, because the native representation of H2, in which the
hyperbolic space is contained in a Euclidean disc and Euclidean and hyperbolic
distances from the origin are equivalent, is a conformal model. This means that
Euclidean angular separations between nodes are also equivalent to hyperbolic
ones8. On the other hand, the radial arrangement of nodes corresponds to a
quasi-uniform distribution of radial coordinates in the disc8.
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clustering and manifold learning. In Advances in Neural Information Pro-
cessing Systems, volume 17, pages 225–232, 2004.

[3] Lawrence Cayton. Algorithms for manifold learning. UCSD tech report,
CS2008-0923:1–17, June 2005. URL http://www.lcayton.com/resexam.

pdf. Last visited: 2016-03-30.

[4] J. B. Tenenbaum. A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290(5500):2319–2323, December 2000. ISSN
00368075, 10959203. doi: 10.1126/science.290.5500.2319.

3



[5] Fragkiskos Papadopoulos, Maksim Kitsak, M. Ángeles Serrano, Marián
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and Marián Boguñá. Hyperbolic geometry of complex networks. Physical
Review E, 82(3), September 2010. ISSN 1539-3755, 1550-2376. doi: 10.1103/
PhysRevE.82.036106.

2 Supplementary figures
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Figure S1: Real vs inferred angles. Real vs angles inferred by (a) LaBNE
and (b) the most recent and fastest version of HyperMap for networks with 500
nodes, γ = 2.5, 2m = 6 and different temperatures T = {0, 0.3, 0.6, 0.9}. Axes
show the angles in radians.
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Figure S2: Network nodes in H2. Once a network has been mapped to
the two-dimensional hyperbolic plane, its nodes can be visualised in two or
three dimensions by means of (a) H2 contained in a Euclidean disc or (b)
the hyperboloid model of the plane, respectively. The latter case requires the
transformation of the polar coordinates found by LaBNE or HyperMap via
(r, θ)→ (X,Y, Z) = (r cos(θ), r sin(θ),

√
r2 + 1).
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Figure S3: Mapping Barabasi-Albert networks to H2. Barabasi-Albert
(BA) networks with 500 nodes and different m = {2, 3, 4, 5} were generated and
embedded into H2 using LaBNE and the most recent and fastest version of Hy-
perMap. As already shown by Papadopoulos and colleagues5, short hyperbolic
distances between nodes are not good predictors of link formation in BA net-
works, mainly due to the fact that their clustering is asymptotically zero5. On
the other hand, in Popularity-Similarity (PS) networks with the same number
of nodes, m and γ as the generated BA networks, but strong clustering (T = 0),
close nodes are almost always connected. This is in contrast with weakly clus-
tered PS networks (T = 0.9), for which the probability that two hyperbolically
close nodes connect is lower.
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