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Instrument resolution

The instrument resolution function ∆ was estimated by considering the width of the Bragg peaks in KBr

powder. This material has a fcc structure with a lattice parameter a = 6.598 Å that provides peaks even

at relatively low scattering angles. In particular, for λ = 0.724 Å, the (111) reflection is at 2θ = 10.9◦, a

value that ensures a reliable determination of the instrument resolution also in the region of the first peaks

of the α-quartz GeO2.

The sample was loaded into an Al cylindrical cell and measured at T = 373 K to avoid any water

contamination of the KBr powder. Data were analyzed according to Refs. [S2, S3]. The empty cell

contribution was not subtracted and Al Bragg peaks were thus included in the analysis. The so-obtained

diffraction pattern is shown in Fig. S1.

The measured intensity was fitted as the sum of three components

S(2θ) = ST (2θ) + SB(2θ) + bkg. (S1)

The first term ST (2θ) accounts for the thermal diffuse scattering, SB(2θ) represents the Bragg peaks pattern

of KBr and Al, whereas bkg is a flat background due to the incoherent contributions. The TDS contribution

ST (2θ) was estimated using a very simple approximation from Ref. [S1], i.e.

ST (2θ) = 1− e−2W , (S2)

where exp (−2W ) = exp
(
−2B( sin θλ )2

)
is the Debye Waller factor. The value B = (2.33± 0.09) Å2 is taken

from Ref. [S4]. The Bragg peaks contribution is written as a sum of Gaussian functions and it turns out to

be:
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The position of the ith peak 2θi is given by the structure, whereas its area Ai is fitted independently for

each peak. Conversely, we assume that the full width at half maximum of each peak is completely given by

the instrument resolution ∆. Following Ref. [S5] we can write that

∆ =
√
W2 tan(θ)2 +W1 tan(θ) +W0, (S4)

where W2, W1 and W0 depend on the instrument collimation and they can be obtained by fitting Eq. S1

to the data.

Fig. S1 shows the results of the fit on KBr data. The fit was refined by including both KBr and Al peaks,

red and black lines in Fig. S1(b) respectively. The instrument resolution determined according Eq. S4 is

reported in the inset of Fig. S1.

FIG. S1: (a) Diffraction pattern measured on KBr powder. Experimental data (open black circles) are fitted by using the
model of Eq. S1 (red line); the blue line is the sum of ST (2θ) and bkg. The instrumental resolution ∆ as obtained by the fit
is reported in the inset (black line). (b) Positions of the Bragg peaks used in the fit; thick red stiks mark the KBr structure
whereas the blue ones represent the position of Al peaks due to the container.

Johnson-Mehl-Avrami-Kolmogorov analysis

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model [S6–S10] describes the time evolution of the frac-

tion of transformed material during an isothermal crystallization. For an isothermal transformation, the

JMAK equation can be written as

X(t) = 1− e−ktn , (S5)

whereX(t) is the fraction of transformed volume and k an effective rate constant depending on the nucleation

and growth rates. The exponent n is termed Avrami exponent and is expected to assume integer or half

an integer values. The Avrami exponent depends on the characteristics of the process. As an example,

for continuous nucleation and 3D spherical growth, the Avrami exponent is n = 4. The JMAK equation

implies a complete crystallization of the amorphous medium, which appears in contrast with the observed

time evolution of the crystallized fraction Ac. Figure S2 shows a fit of Ac with Eq. S5 using k and n as free
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parameters. The results is represented with a blue dashed line and it does reproduce neither the shape nor

the long-time behavior.

In order to improve the agreement at long t, we can introduce a constant scale parameter Xc accounting

for the incomplete crystallization. Consequently, Eq. S5 can be rewritten as

X(t) = Xc

[
1− e−ktn

]
. (S6)

The result of the fit with this modified JMAK equation is shown in Fig. S2 (solid blue line). The scale

parameter results Xc = 0.76± 0.01 while the Avrami exponent is n = 1.92± 0.02. Equation S6 provides a

considerably better agreement than the JMAK equation, in particular in the first stages of the crystallization

processes. However, as the crystallized fraction increases, the model is still not able to accurately reproduce

the shape of Ac as the approach proposed in the paper.

FIG. S2: (a) Time evolution of the crystalline fraction Ac (black diamonds). The solid red line represents the fit with the model
presented in the text. The solid blue line is the fit with the JMAK equation, Eq. S5, whereas the solid green line is obtained
by using Eq. S6. (b) Time evolution of the crystalline fraction Ac (black diamonds) fitted with the Eq. S5 considering only
the first about 20 h of the process (solid blue line). For comparison, the fit obtained with the model described in the text is
also reported (solid red line).

Figure S2(b) shows a fit with the JMAK model obtained by considering only the first about 20 h of the

process. Within this range, the JMAK equation provides a very good description of the experimental data.

As a matter of fact, at the beginning of the crystallization process, the hypotheses of random nucleation and

similar growth of spherical regions hold. Increasing the transformed fraction in a non-diffusive environment

(T � Tm), the density difference between crystallized and amorphous region influences both the nucleation

and the growth mechanism, thus producing the observed non-complete crystallization.
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