
Automated detection and enumeration of marine wildlife using unmanned aircraft systems

(UAS) and thermal imagery

A. C. Seymour1*, J. Dale1, M. Hammill2, P. N. Halpin1 and D. W. Johnston1

1 Division of Marine Science and Conservation, Nicholas School of the Environment, Duke

University Marine Laboratory. 135 Duke Marine Lab Rd. Beaufort, NC 28516

2 Peches et Oceans Canada/Fisheries and Oceans Canada. Institut Maurice-Lamontagne/Maurice

Lamontagne Institute. C.P. 1000/P.O. Box 1000 850 Route de la Mer Mont-Joli, QC G5H 3Z4

Correspondance to alexander.c.seymour@duke.edu

Appendix A: Automated Detection Model Script

Grey Seal Detection and Enumeration Model

Designed for use in ArcMap and arcpy-enabled applications like Pythonwin

Devised, Coded and Tested by Alexander Cy Seymour

Created: September, 2016

Have Questions? Email acs72@duke.edu

Import arcpy module and load licenses

import arcpy, sys

from arcpy import env

from arcpy.sa import *

arcpy.CheckOutExtension("Spatial")

arcpy.env.overwriteOutput = True

#Set Workspaces ***IMPORTANT, READ COMMENT BELOW***

Scratch = sys.argv[1]

arcpy.env.scratchWorkspace = Scratch

Data = sys.argv[2]

arcpy.env.workspace = Data

#The user must select two directories to use a scratch and primary workspace

#for intermediate and final outputs. The scratch workspace must be a folder named

#"Scratch" and the primary workspace must be a folder named "Data". Both of these

#folders must be in the same directory as this script.

#Set Variables and Inputs

ThermalIndex = sys.argv[3]

#User selects a thermal index (raster filetype). This raster must be placed in the

#primary workspace (the "Data" folder).

TempSelect = sys.argv[4]

#user inputs a lower thermal threshold representing the

#temperature that YOY seals can be found on the thermal index.

#Set Geoprocessing Environments

arcpy.env.outputCoordinateSystem = ThermalIndex

arcpy.env.snapRaster = ThermalIndex

#Processesing Workflow Begins

Process: Con (6)

arcpy.gp.Con_sa(ThermalIndex, "1", "Scratch\\ConOut.tif", "", "value > " + TempSelect)

#Selects all the cells with a temperature index greater than or equal to the

#user's selection.

Process: Region Group

arcpy.gp.RegionGroup_sa("Scratch\\ConOut.tif", "Scratch\\RegionGroup.tif", "EIGHT", "WITHIN",

"NO_LINK", "")

#This step prevents isolated pixels directly adjacent and diagonal to other pixel clusters

#from being broken into separate polygons in the following raster to polygon step.

Process: Raster to Polygon (5)

arcpy.RasterToPolygon_conversion("Scratch\\RegionGroup.tif", "Scratch\\RtoP.shp", "NO_SIMPLIFY",

"Value")

#Vectorizes all pixels slected by the previous step and converts them to polygons.

Process: Dissolve

arcpy.Dissolve_management("Scratch\\RtoP.shp", "Scratch\\MainPoly.shp", "GRIDCODE", "",

"MULTI_PART", "DISSOLVE_LINES")

#Reorganizes the large single polygon created in the previous step into a multipart

#polygon, so that each polygon part can have its own attributes. This step is made

#necessary due to the earlier use of the Region Group tool.

Process: Add Geometry Attributes

arcpy.AddGeometryAttributes_management("Scratch\\MainPoly.shp", "AREA", "",

"SQUARE_METERS", "")

#Adds area atributes to all polygon pieces.

Process: Minimum Bounding Geometry

arcpy.MinimumBoundingGeometry_management("Scratch\\MainPoly.shp", "Scratch\\ConvexHulls.shp",

"CONVEX_HULL", "NONE", "", "MBG_FIELDS")

#Builds new convex hull polygons around all of the original polygon pieces.

Process: Add Geometry Attributes (6)

arcpy.AddGeometryAttributes_management("Scratch\\ConvexHulls.shp", "AREA", "",

"SQUARE_METERS", "")

#Attaches an area attribute to each of convex hull polygons.

Process: Join Field

arcpy.JoinField_management("Scratch\\MainPoly.shp", "GRIDCODE", "Scratch\\ConvexHulls.shp",

"GRIDCODE", "POLY_AREA")

#Joins the convex hull polygon areas to the attribute tables of the original polygons

#they were built around.

Process: Zonal Statistics as Table

arcpy.gp.ZonalStatisticsAsTable_sa("Scratch\\MainPoly.shp", "GRIDCODE", ThermalIndex,

"Scratch\\ZonalStats", "DATA", "MEAN")

#Averages the values of the thermal index under each polygon and puts the results in

#a table.

Process: Join Field (3)

arcpy.JoinField_management("Scratch\\MainPoly.shp", "GRIDCODE", "Scratch\\ZonalStats",

"GRIDCODE", "Mean")

#Appends the mean thermal index results to the attribute table of the appropriate

#polygons.

Process: Add Field (2)

arcpy.AddField_management("Scratch\\MainPoly.shp", "P_C_Ratio", "DOUBLE", "7", "4", "", "",

"NULLABLE", "NON_REQUIRED", "")

#Adds a field for the polygon/convex hull ratios to be calculated in.

Process: Calculate Field (2)

arcpy.CalculateField_management("Scratch\\MainPoly.shp", "P_C_Ratio", "[POLY_AREA]/

[POLY_ARE_1]", "VB", "")

#Calculates the polygon/convex hull ratio and puts the results in the "P_C_Ratio" column

#of the attribute table. Note that "POLY_ARE_1" refers to the column "POLY_AREA" added in

#the previous Join Field process. Its name was automatically changed when it was joined to

#"MainPoly.shp" because "MainPoly.shp" already had a field called "POLY_AREA".

Process: Select

arcpy.Select_analysis("Scratch\\MainPoly.shp", "Data\\IndividualYOY.shp", "\"POLY_AREA\" <=

0.85")

#Runs Selection critera on the polygons and classifies those that meet the critera as

#individual YOY. Critera Shown are for the simplified classification scheme. Critera for

#the complex scheme would be:

#"\"POLY_AREA\" <= 0.85 AND \"MEAN\" < 6.5 OR \"POLY_AREA\" < 0.65"

#Note that the MEAN < 6.5 degrees value is set for the Saddle Island dataset and was offset

#from parameters trained at Hay Island. If you choose to use the complex classification

#scheme, first review the methods section of the manuscript to properly offset this value

#for your new dataset.

Process: Select (2)

arcpy.Select_analysis("Scratch\\MainPoly.shp", "Data\\IndividualAdult.shp", "\"POLY_AREA\" >0.85

AND \"POLY_AREA\" <=3.5 AND \"P_C_Ratio\" >0.8")

#Runs Selection critera on the polygons and classifies those that meet the critera as

#individual adults. Critera Shown are for the simplified classification scheme. Critera for

#the complex scheme would be:

#"\"POLY_AREA\" > 0.65 AND \"POLY_AREA\" <= 3.5 AND \"P_C_Ratio\" > 0.8 AND \"MEAN\" >

6.5

#OR \"POLY_AREA\" > 0.85 AND \"POLY_AREA\" <= 3.5 AND \"P_C_Ratio\" > 0.8"

#Note that the MEAN > 6.5 degrees value is set for the Saddle Island dataset and was offset

#from parameters trained at Hay Island. If you choose to use the complex classification

#scheme, first review the methods section of the manuscript to properly offset this value

#for your new dataset.

Process: Select (3)

arcpy.Select_analysis("Scratch\\MainPoly.shp", "Scratch\\AdultPiles.shp", "\"POLY_AREA\" > 3.5 AND

\"P_C_Ratio\" < 0.8")

#Runs Selection critera on the polygons and classifies those that meet the critera as adult

#aggregation polygons.

AdultPileDesc = arcpy.Describe("Scratch\\AdultPiles.shp")

AdultPileExtent = ("{0} {1} {2} {3}".format(AdultPileDesc.extent.XMin, AdultPileDesc.extent.YMin,

AdultPileDesc.extent.XMax, AdultPileDesc.extent.YMax))

#Records the extent of the AdultPiles shapefile so that it can be input into the clip

#process below.

Process: Clip (2)

arcpy.Clip_management(ThermalIndex, AdultPileExtent, "Scratch\\ThermAClip.tif",

"Scratch\\AdultPiles.shp", "-3.402823e+038", "ClippingGeometry", "NO_MAINTAIN_EXTENT")

#Isolates the thermal index under the adult aggregation polygons in preparation for a

#high pass filter.

Process: Filter (2)

arcpy.gp.Filter_sa("Scratch\\ThermAClip.tif", "Scratch\\AdultHigh.tif", "HIGH", "NODATA")

#Runs a high pass filter on the isolated areas of the thermal index.

#The filter runs a neighborhood function on each pixel of the input raster.

#A new, normalized value is calculated for the center pixel of each neighborhood.

#This is done by multiplying the neighborhood by the following values:

-0.7 -1.0 -0.7

-1.0 6.8 -1.0

-0.7 -1.0 -0.7

#Then, the results are summed and the value given to the center cell. This process

#is carried out for each cell in the input raster.

#This is a standard tool in the spatial analyst toolbox in ESRI's ArcMap software.

#More information can be found at:

#http://resources.arcgis.com/en/help/main/10.1/index.html#//009z000000r5000000

#or by searching the web for "arcmap high pass filter".

#The results of the filter create high value pixels on the edges of each seal

#in a given aggregation polygon. These pixels are much higher in value than their

#neighbors and can easily be thresholded and vectorized. The results of this filter

#are normalized so that edges across different datasets will have the same values.

Process: Con

arcpy.gp.Con_sa("Scratch\\AdultHigh.tif", "1", "Scratch\\AggCon.tif", "", "\"value\" > 1")

#Selects the output pixels from the high pass filter that represent the edges of seals.

Process: Raster to Polygon

arcpy.RasterToPolygon_conversion("Scratch\\AggCon.tif", "Scratch\\RtoPFilteredAdults.shp",

"NO_SIMPLIFY", "VALUE")

#Vectorizes the selected pixels from the previous step, creating a new polygon feature

#of individual adults isolated from their aggregations.

Process: Add Geometry Attributes (2)

arcpy.AddGeometryAttributes_management("Scratch\\RtoPFilteredAdults.shp", "AREA", "",

"SQUARE_METERS", "")

#Appends each of the polygons created in the previous step with an area attribute.

Process: Select (4)

arcpy.Select_analysis("Scratch\\RtoPFilteredAdults.shp", "Data\\AggregationAdults.shp",

"\"POLY_AREA\">0.15")

#Removes very small polygons from the aggregation adults, as these are usually the result

#of ambient landscape pixels within the aggregation polygon extents that were accentuated

#by the high pass filter.

Process: Select (5)

arcpy.Select_analysis("Scratch\\MainPoly.shp", "Scratch\\YOYPiles.shp", "\"POLY_AREA\" > 0.65

AND \"POLY_AREA\" < 3.5 AND \"P_C_Ratio\" < 0.75 OR \"POLY_AREA\" > 0.85 AND

\"POLY_AREA\" < 3.5 AND "\"P_C_Ratio\" < 0.8")

#Runs Selection critera on the polygons and classifies those that meet the critera as

#YOY aggregation polygons.

YOYPileDesc = arcpy.Describe("Scratch\\YOYPiles.shp")

YOYPileExtent = ("{0} {1} {2} {3}".format(YOYPileDesc.extent.XMin, YOYPileDesc.extent.YMin,

YOYPileDesc.extent.XMax, YOYPileDesc.extent.YMax))

#Records the extent of the YOYPiles shapefile so it can be input into the clip

#process below.

Process: Clip (3)

arcpy.Clip_management(ThermalIndex, YOYPileExtent, "Scratch\\ThermYClip.tif",

"Scratch\\YOYPiles.shp", "-3.402823e+038", "ClippingGeometry", "NO_MAINTAIN_EXTENT")

#Isolates the thermal index under the YOY aggregation polygons in preparation for a

#high pass filter.

Process: Filter (3)

arcpy.gp.Filter_sa("Scratch\\ThermYClip.tif", "Scratch\\YOYHigh.tif", "HIGH", "NODATA")

#Runs a high pass filter on the isolated areas of the thermal index.

#The filter runs a neighborhood function on each pixel of the input raster.

#A new, normalized value is calculated for the center pixel of each neighborhood.

#This is done by multiplying the neighborhood by the following values:

-0.7 -1.0 -0.7

-1.0 6.8 -1.0

-0.7 -1.0 -0.7

#Then, the results are summed and the value given to the center cell. This process

#is carried out for each cell in the input raster.

#This is a standard tool in the spatial analyst toolbox in ESRI's ArcMap software.

#More information can be found at:

#http://resources.arcgis.com/en/help/main/10.1/index.html#//009z000000r5000000

#or by searching the web for "arcmap high pass filter".

#The results of the filter create high value pixels on the edges of each seal

#in a given aggregation polygon. These pixels are much higher in value than their

#neighbors and can easily be thresholded and vectorized. The results of this filter

#are normalized so that edges across different datasets will have the same values.

Process: Con (3)

arcpy.gp.Con_sa("Scratch\\YOYHigh.tif", "1", "Scratch\\YOYAggCon.tif", "", "\"value\" > 1")

#Selects the output pixels from the high pass filter that represent the edges of seals.

Process: Region Group (2)

arcpy.gp.RegionGroup_sa("Scratch\\YOYAggCon.tif", "Scratch\\YOYRegGroup.tif", "EIGHT",

"WITHIN", "ADD_LINK", "")

#This step prevents isolated pixels directly adjacent and diagonal to other pixel

#clusters from being broken into separate polygons in the following raster to polygon step.

Process: Raster to Polygon (2)

arcpy.RasterToPolygon_conversion("Scratch\\YOYRegGroup.tif", "Scratch\\YOYAggRtoP.shp",

"NO_SIMPLIFY", "VALUE")

#Vectorizes the selected pixels from the previous step, creating a new polygon feature

#of individual YOY isolated from their aggregations.

Process: Dissolve (2)

arcpy.Dissolve_management("Scratch\\YOYAggRtoP.shp", "Data\\AggregationYOY.shp",

"GRIDCODE", "","MULTI_PART", "DISSOLVE_LINES")

#Reorganizes the large single polygon created in the previous step into a multipart polygon,

#so that each polygon part can have its own attributes. This step is made necessary due to the

#earlier use of the Region Group tool.

#To get total number of seals, add the polygons from "IndividualAdults.shp", "IndividualYOY.shp",

#"AggregationAdults.shp" and "AggregationYOY.shp". This can be done simply looking at the attribute

#table of each shapefile and looking at the feature count at the botton of the table UI.

