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FIG. 1. Supplement Figure 1: Estimation of the tip magnetic moment per unit length. a,b,

MFM images of Abrikosov vortices in a Nb film obtained at T = 4 K at a tip-sample distance of

150 nm and 700 nm, respectively. c, Force magnitude as a function of tip-sample distance (open

squares). The red solid line is a fit (see text for details). Inset: multi-sample stage, containing

various samples investigated during a single cool-down using the same MFM tip.

I. ESTIMATING THE MANIPULATION FORCE

In order to probe the manipulation force of magnetic bubble domains in CeRu2Ga2B, we

first estimate the tip magnetic moment per unit length. We image Abrikosov vortices in a

superconducting Nb film at increasing tip-sample distances, which results in a decrease in

MFM contrast (see Figs. S1a,b). Each vortex corresponds to one magnetic flux quantum

of Φ0 = h/2e. Next, we plot the force magnitude ∂Fmax
z /∂z, extracted from line scans

through a single vortex, as a function of the tip-sample distance (see Fig. S1c). In a

simple monopole-monopole picture, the interaction between the tip magnetic moment and

the point-like vortex can be approximated by1

∂Fmax
z

∂z
=
mtip · Φ0

π
× 1

(dts + λ)3
(1)

where λ is the London penetration depth (≈ 110 nm at T = 4 K), dts is the tip-sample-

distance, and mtip is the tip magnetic moment per unit length. By fitting this approximation

to our force gradient data, we obtain mtip = (4.0± 0.6) nAm (see Fig. S1c).
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FIG. 2. Supplement Figure 2: Estimation of the magnetic flux through a single bubble domain.

Black curve: line profile through a bubble domain in CRGB imaged at a tip sample distance of 300

nm. Bright red curve: line profile through a magnetic quantum flux imaged in Nb at a tip-sample

distance of (dts + λ) = 300 nm, dark red curve: Nb vortex profile scaled by a factor of 4.

Next, we estimate the magnetic flux through a single magnetic bubble domain in CRGB

by comparing it to a well-defined magnetic flux quantum imaged under the same conditions

in superconducting Nb, see Fig. S2. Note that our multi-sample stage2 (see inset in Fig.

S1c) allows us to investigate both samples, CRGB and the Nb film, during a single cool-

down and with the same MFM tip. This feature enables us to perform comparative studies

of various samples using a constant, unchanged tip condition. We find that the bubble

diameter in CRGB is comparable to the diameter of individual, isolated vortices in Nb. By

scaling the intensity of the flux quantum to coincide with the bubble cross-section, we find

that a bubble carries a flux Φbubble of roughly 4 times Φ0. Using these approximations we

can now determine the force between tip and bubble necessary for a manipulation process,

as described in the main text.

3



II. MODELING DOMAIN STRUCTURES IN CERU2GA2B

To qualitatively model the appearance of bubbles and their evolution, we use an effective

energy functional based on a lowest order Ginzburg-Landau expansion,

E[S] =

∫
d3x

(
J

2
S · ΓS−HSz −

1

2
KS2

z

)
, (2)

where S(x) is a smooth vector field satisfying |S| = 1 (everywhere except bubble cores). We

fix energy units by taking the interaction strength to be J = 1. An external field H points

in the ẑ direction, and K controls the easy-axis anisotropy in the component Sz.

The operator Γ is most easily understood in Fourier space where the interaction term

becomes

Eint =
1

2(2π)−3

∫
d3kΓ(k)|S(k)|2 ,

with S(k) =
∫

d3x exp(ik·x)S(x). In the ferromagnetic Heisenberg model, the choice ΓFM =

−∇2 is standard. The representation in Fourier space, ΓFM(k) = |k|2, has a minimum at

|k| = 0 and thus favors ferromagnetic configurations. Our aim is to model bubbles of some

finite size; for that purpose we introduce higher order derivatives to Γ. The prototypical

Swift-Hohenberg model of pattern formation uses ΓSH = (q20 +∇2)2 [3], or in Fourier space

ΓSH(k) = (q20 − |k|2)2. The minimum of ΓSH appears at |k| = q0 instead of 0, which

introduces a natural modulation length scale, λ = 2πq−10 . To model the bubble domains

seen in CRGB, we select λ ≈ 0.5 µm.

The model above is valid at large length scales, and assumes a smooth field S(x). To

represent bubbles as finite energy defects, our model has to be regularized in the small

wavelength, ultra-violet (UV) limit. The core of a bubble singularity may be represented as

S = r/|r|. We can estimate Ecore for a single bubble using dimensional analysis. The large k

scaling of the Swift-Hohenberg operator, ΓSH ∼ k4, causes the bubble core energy to diverge

like the UV cutoff frequency, Λ. The physical lattice constant a (order of 1 nanometer) is

not a good regulator, because selecting Λ ∼ 1/a would lead to a bubble core energy on the

order of 1/a, which is very large compared to the characteristic non-singular part of the

configuration energy, ∼ q0. In any case, the UV divergence is not physical since there is no

reason to believe that Γ(k) ∼ k4 at large |k|. We regularize the model at large k by choosing

Γ(k) = c(|k|)(q20 − |k|2)2 (3)

c(k) =
1

1 + k4/Λ4
(4)
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FIG. 3. Supplement Figure 3: Possible Fourier kernels for the interaction term. The choice

ΓFM = k2 corresponds to the Heisenberg ferromagnet. The choice ΓSH = (q20 − k2)2 corresponds

to the Swift-Hohenberg model, and induces modulations on the scale λ ∼ 1/q0. We use ΓSH with a

damping factor c(k) = (1 + k4/(2q0)
4)−1 to eliminate UV divergences while preserving the physics

at k ∼ q0.

With this choice, Γ ∼ 1 at frequencies k � Λ. The frequency cutoff Λ controls the bubble

core energy. We choose Λ = 2q0, where q0 is the modulation frequency. For this choice, the

bubble energy is comparable to the energy of the entire bubble configuration. As shown in

Fig. S3, our choice of Λ = 2q0 is sufficiently large that Γ is nearly unaffected at its minimum

at k ∼ q0.

To summarize our theoretical model, it is a minimal one that contains just the four neces-

sary physical parameters: (1) external field H, (2) anisotropy K, (3) modulation frequency

q0, and (4) finite bubble core energy via the frequency cutoff Λ. An alternative regularization

of the bubble core energy is to “soften” the spins by lifting the restriction |S| = 1.

The form of the interaction that we constructed is essentially phenomenological, and

motivated by the CRGB data. However, we illustrate one scenario of how such an interaction

may come about. Consider that the interaction between Ce moments in CRGB is due to two

primary interactions: nearest neighbor antiferromagnetic superexchange4 and longer-range

oscillatory in space RKKY interaction5–7. Let us show that combining these two interactions

one can naturally obtain a long-wavelength modulation. In momentum space,

JAF (k) = J0[cos(kxa) + cos(kya) + cos(kza)] (5)

JRKKY (k) = −J1χ(k), (6)
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where χ(q) is the Lindhard function8. Expanding around k = 0 and dropping an irrelevant

constant term, we obtain

Jtot = A
[
(k/2kF )2 + (k/2kF )4/5 + . . .

]
+B

[
−(ka)2 + (k4x + k4y + k4z)/12 + . . .

]
.

By tuning parameters A and B, we can cancel the k2 terms leaving J ∝ k4/(2kF )2/5+(k4x+

k4y + k4z)a
2/12. Allowing the quadratic AF term to slightly dominate, and taking kFa� 1,

we obtain the desired nearly isotropic form of the interaction peaked at a finite but small

value of k.

To perform simulations on this model, we evolve the field S(x, t) according to the Langevin

equation
∂S

∂t
= −δE

δS
+
√

2kBTη, (7)

where kBT is the temperature in scaled energy units and η(x, t) is Gaussian white noise with

moments 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′). The functional derivative

of energy is
δE

δS
=

∫
d3xΓS(x)−Hẑ −KSz ẑ. (8)

To satisfy the constraint |S| = 1, we modify the time evolution with a Lagrange multiplier

term ∂S/∂t → ∂S/∂t + λS, where λ is to be solved self-consistently. Assuming ergodicity,

this Langevin equation generates fields S with the appropriate Boltzmann distribution,

P [S] ∝ exp(−βE). In the spirit of time-dependent Ginzburg-Landau modeling, we will

interpret the evolution of S as a qualitative description of the non-equilibrium dynamical

evolution of S.

We integrate the Langevin equation using an implicit numerical scheme for stability, and

alternating between Fourier and real space for efficiency. The steps are:

1. Use the Fast Fourier Transform (FFT) to calculate S(k, t). In Fourier space, construct

T(k, t) ≡ (1 + ∆tΓ(k))S(k, t), using the functional form for Γ(k) given in Eq. (3).

2. Use a reverse FFT to calculate T(x, t).

3. Update S(x, t) according to

S(x, t+ ∆t) = T(x, t) + ∆tẑ(H +KSz) +
√

2kBT∆tξx,t

where each ξx,t is a Gaussian random number with unit variance.
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FIG. 4. Supplement Figure 4: The profile of Sz as a function of distance from the bubble cen-

ter. The profile decays quickly in both parallel and perpendicular directions, consistent with the

numerically observed weak bubble-bubble interaction. The parallel direction, passing through the

bubble defect, has a sharp jump in Sz at r ≈ 2 at the singularity. A limitation of our Gaussian

ansatz is that it is radially symmetric, and does not contain a sharp jump in Sz. Inset: Zoom-in

around Sz = +1.0.
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FIG. 5. Supplement Figure 5: Energy of a single bubble as a function of linear size, using the

Gaussian ansatz. A well defined energetic minimum indicates preferred bubble size. At fields

H & 0.22 the bubble is unstable to decreasing size σ and dynamically implodes. At fields H . 0.12

the bubble is unstable to deconfinement.

4. Normalize S(x, t+ ∆t) to satisfy the constraint |S| = 1.

The bubbles we observe are locally stable, but do not globally minimize the energy.

For these system parameters, the true energy minimum is actually the ferromagnetic state
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S ≈ +ẑ. To understand the energetics of a single bubble, we apply the ansatz,

Sz = 1− 2e−r
2/2σ2

Sx = cosφ
√

1− S2
z

Sy = sinφ
√

1− S2
z

where r is the radial distance from the origin and φ is the azimuthal angle. Our Gaussian

ansatz has a single parameter σ, the linear bubble size. For this ansatz, Sz = 0 at radial

distance r0 = σ
√

2 ln 2 ≈ 1.18σ. Our ansatz does not capture the bubble defects precisely.

Instead, the entire z axis is singular because Sx and Sy are ill-defined on this line. In an

actual bubble of minimal energy, we would observe Sz = −1 along the entire z axis when

r < r0, and Sz = +1 when r > r0. This discrepancy is illustrated in Fig. S4, where a real

bubble of minimum energy is compared to the Gaussian ansatz.

The Gaussian ansatz correctly predicts bubble annihilation at large external field H.

In Fig. S5 we plot the ansatz energy as a function of bubble size σ at fixed K = 0.25

and varying H. The pronounced energetic minimum indicates a preferred bubble size that

decreases slightly with increasing field H. At fields H & 0.22 the local minimum is removed

and the bubble annihilates, leaving behind pure ferromagnetic alignment. This behavior is

consistent with what we observe in Langevin dynamics simulations, Eq. (7). Our Langevin

simulations also demonstrate that the bubble is unstable to deconfinement (and extension

of the string) when H . 0.12.
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