
Model estimation

In this document we show how optimal parameters that minimize the loss
function associated to the simultaneous component methods can be obtained
either by a singular value decomposition (SVD) of the concatenated weighted
data matrices or by a two-step approach in which first the common structure
is found by an eigendecomposition of the sum of cross-product matrices and
second the K companion matrices are found by means of a suitable regression
analysis.

The strategy that uses a singular value decomposition of the concatenated
data, relies on the following equivalences: (1) In case of a common object
(row) mode:

min
T,Pk

∑

k

‖Xk −TPT
k ‖2 = ‖XconcV −TPT

conc‖2, (1)

with XconcV = [w1X1 . . . wkXk . . . wKXK ] being of size I × (
∑

k Jk) and
representing the matrix of the concatenated weighted data matrices and
Pconc = [PT

1 . . .PT
K ]T of size (

∑
k Jk) × R representing the matrix of con-

catenated block specific loadings; (2) in case of a common variable (column)
mode:

min
Tk,P

‖XconcO −TconcP
T‖2, (2)

with XconcO = [w1X
T
1 . . . wKXT

K ]T being of size (
∑

k Ik) × J and Tconc =
[TT

1 . . .TT
K ]T , of size (

∑
k Ik) × R, representing the matrix of concatenated

block specific component scores.
In the first case a solution for the component scores and loadings can be

obtained directly from an SVD of the concatenated data XconcV , XconcV =
USVT = USpS(1−p)VT . The R common component scores T can then be
obtained by taking the R left singular vectors scaled by the associated R
largest singular values raised to the power p,

T = URSp
R, (3)
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and the R loading vectors by taking the R right singular vectors scaled by
the associated R largest singular values raised to the power 1 − p, Pconc =
VRS

(1−p)
R . For the second case, a solution for the component scores and

loadings can be obtained analogously, from an SVD of the now differently
concatenated data XconcO in (6), XconcO = USpS(1−p)VT , with the R common
loadings given by

P = VRS
(1−p)
R (4)

and the component scores by Tconc = URSp
R.

These component scores and loadings have a principal axes orientation;
orthonormal component scores can be obtained by taking p = 0, while or-
thonormal loadings can be obtained by taking p = 1.

The second algorithmic strategy relies on a two-step approach where: (1)
in the first step common component scores or common loadings are derived
from an eigendecomposition of the matrix XconcV XT

concV =
∑

k w2
kXkX

T
k in

the first case (resp. XT
concOXconcO =

∑
k w2

kX
T
k Xk in the second case), and

(2) in the second step concatenated loadings or component scores can be
obtained by regressing XconcV on T (resp. P): Pconc = XT

concV T(TTT)−1

(resp. Tconc = XconcOP(PTP)−1 ). Note that these can also be obtained
by concatenating the block specific regressions: Pk = XT

k T(TTT)−1 (resp.
Tk = XkP(PTP)−1 ). In the first step, an orthonormal T (resp. P) can be
obtained by setting it equal to the first R eigenvectors while a columnwise
orthonormal concatenated score (resp. loading) matrix will be obtained when
these eigenvectors are scaled by the square root of the associated eigenvalues.

Both algoritmic strategies result in the same solution. This can be un-
derstood by noting that the left (resp. right) singular vectors of XconcV

(resp. XconcO) can be found by an eigendecomposition of XconcV XT
concV (resp.

XT
concOXconcO), thus resulting in the same common component scores T (resp.

loadings P); from the equality of T (resp. P), the equality of Pconc (resp.
Tconc) follows.

2


