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Table 1: List of high scoring genes for the Armstrong et al. leukemia data set

Affymetrix ID Gene name Gene symbol F-statistic
32847 at myosin, light polypeptide kinase MYLK 159.59
1389 at membrane metallo-endopeptidase (calla, cd10, neutral en-

dopeptidase, enkephalinase)
MME 137.53

35164 at wolfram syndrome 1 (wolframin) WFS1 128
36239 at pou domain, class 2, associating factor 1 POU2AF1 116.75
1325 at smad, mothers against dpp homolog 1 (drosophila) SMAD1 110.37
37280 at smad, mothers against dpp homolog 1 (drosophila) SMAD1 110.07
963 at ligase iv, dna, atp-dependent LIG4 89.77
34168 at deoxynucleotidyltransferase, terminal DNTT 89.31
40570 at forkhead box o1a (rhabdomyosarcoma) FOXO1 86.89
33412 at lectin, galactoside-binding, soluble, 1 (galectin 1) LGALS1 81.31
34950 at zinc finger protein 423 ZNF423 78.12
37539 at ral guanine nucleotide dissociation stimulator-like 1 RGL1 78
266 s at cd24 antigen (small cell lung carcinoma cluster 4 antigen) CD24 76.74
31575 f at lectin, galactoside-binding, soluble, 1 (galectin 1) LGALS1 76.04
37403 at annexin a1 ANXA1 65.17
32838 at myosin, heavy polypeptide 10, non-muscle MYH10 64.83
31886 at 5’-nucleotidase, ecto (cd73) NT5E 61.9
36021 at lymphoid enhancer-binding factor 1 LEF1 61.51
1914 at cyclin a1 CCNA1 60.3
34800 at leucine-rich repeats and immunoglobulin-like domains 1 LRIG1 59.52
37680 at a kinase (prka) anchor protein (gravin) 12 AKAP12 59.41
35648 at autism susceptibility candidate 2 AUTS2 58.97
32533 s at vesicle-associated membrane protein 5 (myobrevin) VAMP5 57.48
34990 at set binding protein 1 SETBP1 56.39
38578 at tumor necrosis factor receptor superfamily, member 7 CD27 54.38
1126 s at cd44 antigen (indian blood group) CD44 53.39
41448 at homeobox a10 HOXA10 48.08
36643 at discoidin domain receptor family, member 1 DDR1 47.93
40282 s at complement factor d (adipsin) CFD 47.77
35260 at mlx interacting protein MLXIP 42.92

List of the 30 top-ranked genes selected by the ENSEMBLE method on the leukemia data set by Armstrong et al. (all
genes have a q-value below 0.002)
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Example analysis of the leukemia microarray data set by Armstrong
et al.

To illustrate the features available on ArrayMining.net, we have applied algorithms from different analysis
modules to the well-known leukemia data set by Armstrong et al. In the following sections we will present
the data set and pre-processing methods, discuss gene selection and clustering results obtained with our
ensemble and consensus methods, as well as an example combination of the gene set analysis module with
the class assignment module.

Data set and pre-processing

The leukemia data set by Armstrong et al. [1] contains expression values for 12,626 genes and 72 microar-
ray samples, which are subdivided into three leukemia subtypes: Acute lymphoblastic leukemia (ALL, 24
samples), acute myelogenous leukemia (AML, 28 samples) and ALL with mixed-lineage leukemia gene
translocation (MLL, 20 samples). Affymetrix U95A or U95A V2 oligonucleotide arrays [2] had been used
in the study to obtain the experimental data.
To pre-process the raw data we applied the variance stabilizing normalization [3] using the expresso-
package in the R statistical learning environment [4]. Moreover, we imposed thresholds based on the
suggestions in the supplementary material of the original publication [1] and applied a fold-change filter to
remove features with low variance (all gene vectors with less than a 5-fold change between the maximum
and minimum expression value were discarded).

Gene selection results

In this section we present the results for a gene selection analysis on ArrayMining.net using the Armstrong
et al. leukemia data and discuss the selected genes in detail. Table 1 shows the top 30 genes chosen by
our ENSEMBLE method (the annotations in column 2 have been extracted from the DAVID [5] database;
for two genes, SMAD1 and LGALS1, two different genetic probes matched to the same gene). We first
identified those genes which were already identified as significantly differentially expressed in the original
study on the Armstrong et al. data set [1] and then investigated the functional annotations of the genes
based on the GO and KEGG data bases, ignoring very general annotations like “cell development” or “cell
communication”. Finally, we searched for known functional associations between the genes and leukemia
development in the biomedical literature.
As already stated in the study by Armstrong et al. many under-expressed genes in the MLL subtype
have a function in early B-cell development. Among the genes belonging to this group, we identified
MME, CD24 and DNTT, POU2AF1 and LIG4 as significantly differentially expressed, which were already
detected and discussed in the original study [1]. Similarly, our results confirm the finding by Armstrong et
al. that certain adhesion molecules (LGALS1, ANXA1, CD44) are significantly over-expressed in MLL, as
well as the myeloid-specific gene CCNA1. Other genes from our ranking which were already mentioned
as distinguishing MLL from ALL by Armstrong et al. are MYLK, FOXO1, MYH10 and VAMP5 (see
individual gene discussion below).
When investigating the available annotation data for the selected genes, we found that five genes are known
to be involved in immune system processes (associated to the Gene Ontology terms “immune response”
and “immune system process”). These are CD24, LIG4, CFD, POU2AF1 and CD27.

• CD24 is a glycoprotein known to be involved in metastasis and highly expressed in many tumours,
mediating apoptosis in precursor-B acute lymphoblastic leukemia cell lines [6].

• LIG4 is the gene encoding the DNA Ligase IV protein, which joins double-strand breaks in the DNA,
and a mutation in LIG4 has been suggested to confer a pre-disposition to leukemia [7].

• CFD (adipsin) is a serine protease involved in the alternative complement pathway as part of the
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innate immune system. The gene is located in a chromosomal region which is known to be associated
with myeloid cell differentiation by means of changes in chromatin organization [8].

• The gene POU2AF1 (see Fig. 2) encodes a transcriptional regulator required by the immune system
for the formation of germinal centers in lymph follicles after antigen contact and binding specifically
to either the transcription factor OCT1 or OCT2 in the B-cell response to antigens [9, 10]. Deregu-
lation of POU2AF1 by means of translocation has been implicated in lymphoma and leukemia de-
velopment [11] and the gene’s expression levels have previously been shown to vary across different
lymphoma types by means of real-time quantitative PCR analysis [12].

• CD27 is a tumor necrosis factor receptor which has been implicated in B-cell activation and found
to be differentially expressed in normal B-cells and neoplastic B-cells [13].

Six genes in the ranking were found to be involved in apoptosis. Apart from the already discussed genes
CD24, LIG4 and CD27 these include FOXO1, ANXA1 and LGALS1.

• FOXO1 is a member of the forkhead family of transcription factors which has been associated with
cell cycle arrest and apoptosis of hematopoietic cells [14].

• ANXA1, belonging to the adhesion molecules over-expressed in MLL (see above), is a phospholipid-
binding protein with anti-inflammatory functions which might result from its inhibitory effect on the
inflammation mediator phospholipase 2 [15]. It has been reported to be differentially expressed in
various cancers and is used as marker in an assay to differentiate between hairy cell leukaemia and
other B-cell malignant diseases [16, 17].

• LGALS1 is another adhesion molecule over-expressed in MLL, which has been reported to induce
apoptosis of human thymocytes [18] and interact with the oncogene H-Ras [19].

Three other genes from the ranking, ZNF423, LEF1 and VAMP5, are associated with the GO-term for cell
differentiation.

• ZNF423 is a transcription factor whose deregulated expression has been shown to contribute to the
induction of the terminal phase of chronic myelogenous leukemia, known as “blast crisis”, which is
clinically similar to an acute leukemia [20].

• LEF1, Lymphoid enhancer-binding factor 1, is a transcription factor expressed in pre-B and T-cells.
It has been implicated in leukemogenesis based on experiments in which mice, transplanted with
bone marrow retrovirally transduced to express LEF1, developed B lymphoblastic and acute myeloid
leukemia [21].

• VAMP5 is a member of the family of vesicle-associated membrane proteins. Since the mRNA and
protein levels of VAMP5 have been shown to be increased during in vitro myogenesis, it has been
suggested that VAMP5 could be involved in vesicle trafficking events that are associated with myo-
genesis [22].

Among the top-ranking genes not discussed so far, four are involved in DNA-dependent regulation of
transcription (GO-term 6355): HOXA10, SMAD1, MLXIP and SETBP1.

• HOXA10 is transcription factor whose over-expression in murine hematopoietic cells has been re-
ported to perturb myeloid and lymphoid differentiation leading to acute myeloid leukemia [23].

• SMAD1 (see Fig. 2) is a transcriptional modulator and a component of the transforming growth factor
(TGF)-beta signaling pathway, which plays a key role in cell differentiation and apoptosis pathways
[24]. Different studies have revealed that mutations in SMAD-genes can cause a disruption of this
pathway leading to various types of leukemia [25, 24].
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• MLXIP is a protein interacting with MAX-like protein X (MLX), which plays a role in proliferation
and differentiation. It has been shown that MAX and MAX-like proteins can form heterodimers with
MAD family proteins which oppose the growth-promoting action of heterodimers between MAX
and the oncogene MYC [26].

• SETBP1 is a transcription factor involved in hematopoietic stem cell (HSC) regulation, and fusion of
SETBP1 with another gene (NUP98) has been reported in T-cell lymphoblastic leukaemia [27].

Among the remaining genes in the ranking, which were not found in specific cancer-related GO or KEGG
terms, we first discuss the six genes that were already identified by Armstrong et al. as discriminators
between ALL and MLL: MME, CCNA1, DNTT, CD44, MYLK, MYH10.

• MME stands for the enzyme “membrane metallo- endopeptidase” and is also known as “common
acute lymphoblastic leukemia antigen” (CALLA). The protein is involved in the degradation of se-
creted peptides and has been suggested to play a role at an early stage of lymphoid differentiation
[28]. Furthermore, MME has been demonstrated to be expressed in most acute lymphoblastic lym-
phomas and in some B-cell and T-cell lymphomas [29].

• CCNA1 is a cyclin protein involved in cell cycle regulation which is highly expressed in various
myeloid leukemic cell lines and has therefore been implicated in germline meiotic cell cycle control
[30].

• DNTT encodes a template-independent DNA polymerase which generates antigen receptor diversity
by adding nucleotides at the junction of rearranged Ig heavy chainand T-cell receptor gene segments
during the maturation of B- and T-cells [31, 32]. DNTT has been suggested as a marker distinguish-
ing subtypes of lymphoid leukemias of childhood [33].

• CD44 is a cell-surface protein with a great variety of functions resulting from a large number of
splicing isoforms. It is involved in cell adhesion and migration processes and more specifically,
lymphocyte activation, tumor metastasis and hematopoiesis [34]. The ligation of CD44 has been
reported to reverse blockage of differentiation in human acute myeloid leukemia [35].

• MYLK (myosin light chain kinase, see Fig. 2) is an enzyme which phosphorylates myosin light
chains to support the interaction of actin filaments with myosin and changed expression of MYLK
leading to inhibition or potentiation of myosin II activation has been shown to delay or accelerate tu-
mor necrosis factor-alpha (TNF)-induced apoptotic cell death [36]. Moreover, expression of MYLK
is correlated with disease recurrence and distant metastasis in non-small cell lung cancer [37].

• MYH10 (myosin heavy chain 10, non-muscle) is a gene coding for a myosin protein with putative
functions in cytokinesis and cell shape, and has been reported to be down-regulated in patients with
T-lineage acute lymphoblastic leukemia for whom induction therapy fails [38].

Finally, we discuss the genes which were neither found in cancer-specific GO or KEGG terms nor discussed
as being functionally related to leukemia development in the paper by Armstong et al. These are WFS1,
RGL1, NT5E, LRIG1, AKAP12, AUTS2 and DDR1.

• WFS1 (see Fig. 2) has been investigated as a candidate glucocorticoid-response gene in childhood
acute lymphoblastic leukemia (glucocorticoids mediate apoptosis of lymphoid cells and are therefore
used in chemotherapy for lymphoid malignancies) [39].

• RGL1 is a guanine nucleotide exchange factor and a proposed effector of the oncogene ras and other
ras-like proteins [40].

• NT5E is an enzyme catalyzing the dephosphorylation of AMP and other nucleoside monophosphates
and is used as a marker for lymphocyte differentiation [41]. The activity of NT5E has been observed
to be strongly reduced in peripheral blood lymphocytes from B-Cell chronic lymphocytic leukemia
patients in comparison to normal cells [42].
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• LRIG1 encodes a transmembrane protein which interacts with receptor tyrosine kinases of the epi-
dermal growth factor receptor (EGFR) family and restricts growth factor signaling by enhancing
receptor degradation [43]. The protein has been investigated as a potential tumor suppressor and was
found to be down-regulated in conventional and papillary renal cell carcinomas [44].

• AKAP12 is a tumor suppressor gene encoding a cell growth-related protein binding to the regulatory
subunit of protein kinase A [45]. Based on real-time quantitative PCR measurements on 162 samples,
AKAP12 expression has been found to be decreased in samples of acute leukaemia as compared to
healthy controls and to be associated with an inferior overall survival [46].

• The function of AUTS2 is currently unknown, but in patients with B-cell precursor acute lymphoblas-
tic leukemia (BCP-ALL) fusions of AUTS2 with PAX5, an important regulator of B-cell develop-
ment, have been reported [47].

• DDR1 is a receptor tyrosine kinase which is up-regulated by p53 oncoprotein [48] and has been
identified as significantly over-expressed in many human tumors [49, 50, 51].

In summary, almost all of the selected genes are either known oncogenes or tumor suppressor genes or
have been suggested to be functionally associated with cancer progression or immune response processes.
Differences in the expression status of these genes across different cancer types or different stages or
subtypes of specific cancer diseases are therefore to be expected, which matches to the observation of
differential expression across different leukemia subtypes on the Armstrong et al. data set. Although
false positives cannot be ruled out in this approach, the functional annotations of the selected genes and the
related findings from the literature suggest that this gene selection scheme is useful in prioritizing genes and
proteins for investigating their potential involvement in explaining differences between diverse conditions
of the biological system of interest.
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Figure 1: Heat map for the 30 genes selected by the ENSEMBLE method on the Armstrong et al. leukemia
data set (rows correspond to genes, columns correspond to samples)
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Figure 2: Four example box plots for genes selected by the ENSEMBLE method on the Armstrong et al.
leukemia data set (the horizontal axis separates the tumor sample groups, the vertical axis corresponds to
the normalized gene expression value)

Clustering results

As an example application of the class discovery module on ArrayMining.net, we present results obtained
on the leukemia data set by Armstrong et al. using the ensemble clustering method. Prior to the analysis
we standardized the samples by subtracting the median from the expression values and dividing by the
median absolute deviation. Moreover, we applied a variance filter, retaining only the 2000 genes with the
highest variance across the samples (both of these options are available on the class discovery interface on
ArrayMining.net).
When comparing the estimated optimal number of clusters for different pairs of clustering methods and
cluster validity indices, the great majority of approaches estimate 2 as the optimal number of clusters.
In order to investigate this result in more detail, we manually inspected the optimal clustering results with
regard to the validity indices for different algorithms and found that the methods could perfectly distinguish
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Table 2: Estimated number of clusters for the Armstrong et al. leukemia data set based on different
clustering methods and validity indices

Method Validity index Est. number of clusters
CLARA C-index 2
SOTA C-index 2
HYBRID C-index 2
PAM C-index 2
HIERARCHICAL C-index 2
PAM Calinski-Harabasz 2
CLARA Calinski-Harabasz 2
HIERARCHICAL Calinski-Harabasz 2
HYBRID Calinski-Harabasz 2
KMEANS Calinski-Harabasz 2
SOM Calinski-Harabasz 2
PAM Dunn 2
SOM Dunn 2
HIERARCHICAL Dunn 2
KMEANS Dunn 2
SOTA Dunn 2
DIANA Dunn 2
KMEANS Silhouette 2
SOM Silhouette 2
SOTA Silhouette 2
DIANA Silhouette 2
CLARA Silhouette 2
HIERARCHICAL Silhouette 2
HYBRID Silhouette 2
KMEANS knn-Connectivity 2
SOM knn-Connectivity 2
DIANA knn-Connectivity 2
CLARA knn-Connectivity 2
SOTA knn-Connectivity 2
HYBRID knn-Connectivity 2
HYBRID Dunn 3
HIERARCHICAL knn-Connectivity 3
SOM C-index 4
DIANA Calinski-Harabasz 4
PAM Silhouette 5
CLARA Dunn 6
KMEANS C-index 7
DIANA C-index 7
SOTA Calinski-Harabasz 8
PAM knn-Connectivity 8

List of the estimated number of clusters on the leukemia data set by Armstrong et al. based on pairwise combinations
of 8 clustering methods and 5 validity indices

the Mixed Lineage Leukemia (MLL) subtype from the Acute Lymphoblastic Leukemia (ALL) subtype, but
could not separate ALL from Acute Myeloid Leukemia (AML) and only partly separate MLL from AML
samples. In most clusterings, all MLL samples were assigned to the same cluster and only some of the
AML samples were assigned additionally to this cluster, but none of ALL samples.
Although the original grouping of samples into ALL, AML and MLL subtypes is based on objective cri-
teria, several meaningful cluster structures might exist in the data and there is no single objective criterion
as to what the “real” or “optimal” clustering structure is. However, we notice that MLL was assigned to a
separate cluster from the ALL samples and only some of the AML samples were additionally assigned to
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the MLL-cluster, which matches to the finding in the original study by Armstrong et al. according to which
the MLL subtype is more similar to AML than to ALL (with regard to results from a principal component
analysis and based on the expression of myeloid-specific genes in MLL).
The clustering results were also combined into a single representative clustering using our Simulated An-
nealing based consensus clustering method and the outcome was visualized using a principal component
analysis plot (see Fig. 3). This plot confirms the observations from the manual inspection of the single
algorithm clustering results according to which the MLL samples can perfectly be separated from the ALL
group and are partly overlapping with the AML samples. A silhouette plots visualizes the silhouette widths
for each sample as a reliability measure for the corresponding cluster assignment [52] (see Fig. 4).
When inspecting a 3-dimensional visualization of pre-filtered data using an Independent Component Anal-
ysis, a better separation of the tumor subtypes was observed, with no overlap between the ALL/MLL groups
and the AML/ALL groups and only a small overlap between AML and MLL samples (see the VRML-file
in the Supplementary Material). Moreover, density estimation contour surfaces revealed three regions of
high data density (colored green in the VRML-file) corresponding to the three leukemia types.
On the whole, although only standard parameters had been used and all results were generated in an au-
tomatic process by the class discovery module, the clustering and visualization results enable the user to
distinguish between major sample subgroups in the data (e.g. ALL vs. MLL) and provide other useful
insights (e.g. MLL samples are more similar to AML samples than to ALL samples with regard to their
expression profiles).

Gene set analysis results

To demonstrate the features of our gene set analysis module, we tested the enrichment of a collection
of 37 cancer-related gene sets from the van Andel Institute in Michigan [53] in the leukemia data set by
Armstrong et al. The module also provides access to Gene Ontology and KEGG gene sets, but these contain
many very general gene sets (e.g. “cell cycle”-related genes) which are enriched in almost all microarray
data sets and therefore only have a limited value for biological interpretation of the data.
We applied the MDS-GSA method using multi-dimensional scaling to combine the expression vectors for
the genes in a gene set into a single signature vector (the “meta-gene”). To asses whether the enriched gene
sets were differentially expressed across pairs of different sample groups the empirical Bayes t-statistic was
used [54].
The q-value significance scores in the ranked table of gene sets, computed based on the Benjamini-
Hochberg method, suggest that many cancer-related gene sets are significantly differentially expressed
across the sample groups. We therefore only discuss the three gene sets with the smallest q-values as
example cases: VEGF down, ES M down and FH down.

• The VEGF down gene set contains genes associated with vasculogenesis and angiogenesis obtained
from a microarray study in which human umbilical cord vein endothelial cell (HUVEC) isolates were
treated with vascular endothelial growth factor-A (VEGF-A) in low or high serum media. Apart
from vasculogenesis and angiogenesis, VEGF has also been associated with growth, dissemination,
metastasis and poor outcome in solid tumors and has been shown to be an independent predictor
of outcome in patients with acute myeloid leukemia (AML) [55]. Moreover, an analysis of VEGF
expression in the bone marrow of AML patients showed that VEGF is restricted to certain stages of
differentiation and correlates with AML sub-categories [56]. The role of VEGF in myeloid leukemias
is also highlighted by another study which showed that a broad spectrum of VEGF receptors is
expressed in various myeloid neoplasms [57].

• The ES M down gene set was obtained from a study comparing the expression levels of genes in mul-
tipotent mesenchymal embryonic stem cells (ESM) against adult mesenchymal stem cells (MSC). It
is composed of the genes which are significantly down-regulated in ESM cells as compared to MSCs.
Similarities between stem cells and some cancer cells, e.g. the potential for self-renewal, have been
widely discussed in the literature [58]. Another example for this is the cytokine “leukemia inhibitory
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Table 3: List of differentially expressed cancer-related gene sets for the Armstrong et al. leukemia
data set

Identifier Pathway/function PubMed/GEO ID Q-values F-
score

VEGF down Vasculogenesis and angiogenesis (Vascular endothelial growth
factor dependent)

GEO: GDS495 1.60E-22 119.03

ES M down Cell differentiation (differentially expressed in multipotent
mesenchymal embryonic stem cells)

PMID: 15971941 3.00E-22 113.64

FH down Differentially expressed in cells with fumarate-hydratase muta-
tions

PMID: 16319128 3.90E-22 110.97

TNF 2 up Inflammation response (Tumour necrosis factor regulated) GEO: GSE2489 8.00E-22 107.03
E2F3 up Cell cycle regulation/control of tumour suppressor genes (onco-

gene)
PMID: 16273092 6.40E-19 82.92

HYPER 2 down Differential expression induced by hyperoxia GEO: GSE489 8.00E-19 81.6
ES M up Cell differentiation (differentially expressed in multipotent

mesenchymal embryonic stem cells)
PMID: 15971941 9.50E-19 80.58

HYPER 2 up Differential expression induced by hyperoxia GEO: GSE489 1.30E-18 79.14
NFKB1 up Inflammation response (Nuclear Factor-kB (NF-kB) dependent) GEO: GSE2624 4.90E-18 74.83
HYPOXIA up Differential expression induced by hypoxia (small set) PMID: 16417408 6.40E-18 73.43
HGF 2 down Proliferation and cell migration (Hepatocyte growth factor in-

duced differential expression)
PMID: 16052207 6.40E-18 73.47

VEGF up Vasculogenesis and angiogenesis (Vascular endothelial growth
factor dependent)

GEO: GDS495 7.60E-18 72.66

HYPOXIA down Differential expression induced by hypoxia PMID: 16417408 2.70E-17 68.84
NFKB1 down Inflammation response (Nuclear Factor-kB (NF-kB) dependent) GEO: GSE2624 5.20E-17 66.76
HGF 2 up Proliferation and cell migration (Hepatocyte growth factor in-

duced differential expression)
PMID: 16052207 8.00E-16 59.3

MET up Met-regulated expression signature PMID: 16710476 3.10E-14 50.24
HRAS down Cell division regulation and growth factor stimulation (onco-

gene)
PMID: 16273092 3.50E-14 49.77

WND up Wound healing processes PMID: 14737219 6.20E-14 48.35
SRC down Family of proto-oncogenic tyrosine kinases PMID: 16273092 7.50E-14 47.8
CMYC down Gene regulation (oncogene) PMID: 16273092 1.60E-13 46.04
NFKB1 2 down Inflammation response (Nuclear Factor-kB (NF-kB) dependent) GEO: GSE2489 3.20E-13 44.35
HYPER up Differential expression induced by hyperoxia GEO: GSE489 7.60E-13 42.4
WND down Wound healing processes PMID: 14737219 5.90E-12 38.08
FH up Differentially expressed in cells with fumarate-hydratase muta-

tions
PMID: 16319128 1.10E-11 36.68

TNF 2 down Inflammation response (Tumour necrosis factor regulated) GEO: GSE2489 2.60E-11 35.04
SRC up Family of proto-oncogenic tyrosine kinases PMID: 16273092 3.10E-11 34.6
HRAS up Cell division regulation, growth factor stimulation (oncogene) PMID: 16273092 4.20E-11 33.93
BRAF down Cell-signaling and cell growth (oncogene) PMID: 15048078 6.80E-10 28.72
TFA change Chromosomal instability signature (Total function aneuploidy) PMID: 16921376 4.30E-08 21.77
TNF up Inflammation response (Tumour necrosis factor regulated) GEO: GSE2624 9.80E-08 20.44
BRAF up Cell-signaling and cell growth (oncogene) PMID: 15048078 2.00E-06 15.9
E2F3 down control of tumour suppressor genes (oncogene) PMID: 16273092 4.30E-06 14.8
NFKB1 2 up Inflammation response (Nuclear Factor-kB (NF-kB) dependent) GEO: GSE2489 4.60E-06 14.67
HYPOXIA up Differential expression induced by hypoxia (large set) PMID: 16417408 3.60E-05 11.86
CMYC up Gene regulation (oncogene) PMID: 16273092 7.80E-05 10.81
TNF down Inflammation response (Tumour necrosis factor regulated) GEO: GSE2624 1.60E-04 9.89
HYPER down Differential expression induced by hyperoxia GEO: GSE489 3.00E-02 3.67

List of cancer-related gene sets from the van Andel institute in Michigan which were identified as differentially ex-
pressed on the Armstrong et al. leukemia data (using the GSA-MDS method)
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Figure 3: Principal Component Analysis based visualization of clustering results for the Armstrong et al.
leukemia data set - the two clusters identified by the consensus clustering are shown as ellipses and the
corresponding samples are encoded by different symbols (triangles and circles); the tumor types of the
samples are represented by different colors (ALL = red, AML = green and MLL = blue)

factor” (LIF), which induces terminal differentiation of myeloid leukemia cells and also plays an
important role in the regulation of signaling in embryonic stem cells [59].

• The FH down gene set is derived from microarray experiments studying differences in gene expres-
sion patterns in uterine fibroids caused by mutations in the fumarate hydratase (FH) gene. It contains
genes which were significantly down-regulated in fibroids containing FH-mutations as opposed to
fibroids with wild-type FH. Mutations and other defects in mitochondrial enzymes like FH have
been reported to predispose to tumorigenesis. Mitochondrial DNA alterations have for example been
implicated in the transformation of myelodysplastic syndromes into acute leukemia [60].

In addition to the ranking of gene sets, a heat map was generated to visualize the meta-gene expression
values across different samples and sample groups (see Fig. 5). Although the interpretation of the meta-
gene expression vectors, obtained from combining multiple genes into a single vector by means of multi-
dimensional scaling, is not as straightforward as in the case of single gene expression vectors, the heat map
suggests that the derived meta-genes can to certain extent distinguish between the three leukemia classes.
Moreover, in agreement with our previous findings in the clustering analysis, the heat map indicates that
the AML samples are more similar to the MLL than to the ALL samples. A subgroup of about 8 samples
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Figure 4: Silhouette plot visualizing the Silhouette width for each sample by horizontal bars as a confidence
measure for the sample’s cluster assignment (based on the consensus clustering results for the Armstrong
et al. leukemia data set)

in the AML-group (the columns on the right in the heat map) appears to bear a particularly close similarity
to the MLL group with regard to the meta-gene expression profile.
These preliminary gene set analysis results suggest that this type of analysis can provide additional insights
as compared to a so-called “singular enrichment analysis”, in which the genes are first pre-selected using
feature selection before testing the enrichment of certain functional gene groups (see gene selection results
above). Moreover, by using cancer-related gene sets instead of Gene Ontology or KEGG derived gene
sets, the annotations of the enriched gene sets are likely to be more specific and more informative for the
biological interpretation of the data.

Prediction results

Using the class assignment module on ArrayMining.net we illustrate how sample classification results can
be obtained in an automatic fashion by uploading data on this module and how the results can be improved
by using features obtained from another analysis module (in this case, the gene set analysis module).
We applied a 10-fold external cross-validation [61] analysis on the leukemia data by Armstrong et al. using
our ENSEMBLE prediction method and the empirical Bayes t-statistic for feature selection [54]. Moreover,
we applied the same cross-validation scheme and the same predictor to meta-gene expression values derived
from a gene set analysis on the same data set using the GSA-MDS method and Gene Ontology derived gene
sets (we chose the Gene Ontology data base here, because it contains a much larger number of gene sets
than our collection of cancer-related gene sets).
Based on single genes as features an average cross-validated accuracy of 80.9% (±14%) was obtained,
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Figure 5: Heat map showing differentially expressed gene sets for the Armstrong et al. leukemia data set
(rows correspond to gene sets, columns correspond to samples)
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whereas 87.5% (±11%) accuracy were reached when using the meta-genes as input. Although some stud-
ies have reported higher accuracies on this data set, we think these are reasonable results for a 3-class
microarray classification problem with 72 samples, using an almost fully automated process and an exter-
nal cross-validation scheme [61].
Since the classification results are affected by high variance, which is common in microarray studies with
small sample sizes, we additionally report results for three other gene expression cancer data sets using
the same methodology as above (see Tab. 4). Similar trends can be observed across the different data
sets: Using meta-genes representing biological pathways as features similar accuracies and standard devi-
ations were reached as based on single genes. This suggests that the user can generate models of similar
predictive quality based on biological pathways and on single genes, enabling two different model-based
interpretations of the data.
In summary, these example results suggest that the class assignment module can be a helpful tool to com-
pare cross-validated prediction accuracies for different data sets and methods. In combination with the gene
set analysis module, prediction models based on biological pathways as features with high classification
accuracies can be obtained based on an almost fully automated process.

Table 4: Comparison of sample classification results for different data sets

Predictors:
Single genes Gene sets (”Meta-genes”)

Data sets: accuracy (%) stddev. accuracy (%) stddev.
Leukemia [1] 80.9 14 87.5 11
Prostate cancer [62] 92.3 9 89.5 10
DLBCL [63] 95.0 9 95.0 6
T-Cell Lymphoma [64] 81.0 13 82.6 14

Comparison of 10-fold cross-validation sample classification results obtained on different microarray cancer data sets
using both single genes and summarized gene sets as features
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