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Supplementary Materials
Scalar differential inequalities
Consider the following initial values problem

x′ = f(x, t), (1)

x(0) = x0

with x0 ≥ 0 and let Q, with x(0) ∈ Q, be a positively
invariant set for (1), i.e. such that for all t > 0 it is
x(t) ∈ Q. Let g(x, t) be a function such that

f(x, t) > g(x, t)

in Q, and let it be

y′ = g(y, t), (2)

y(0) = y0

with y0 ≥ 0 and such that Q is positively invariant
also for (2). Thus it holds that for all t > 0 it is

x(t) > y(t) .

Scalar linear ODE with periodic coefficients
Consider the following linear scalar ODE

x′ = a(t)x, (3)

where a(t) is bounded and periodic with period
P . From Fourier’s theorem it follows that a(t) =
〈a(t)〉 + b(t) where b(t) is a bounded periodic func-
tion with zero mean. This yelds that

x(t) = x(0) exp

(
〈a(t)〉+

∫ t

0

b(s)ds

)

and thus, from x(nP ) = x(0) exp
(
〈a(t)〉Pn

)
, it fol-

lows that x(t) → +∞ if 〈a(t)〉 > 0, and x(t) → 0
otherwise.

Impulsive differential equations

Consider the following equation

x′ = −kx+

Ne∑
0

qiδ(t− θi) (4)

where Ne ≤ +∞, k > 0 and qi > 0 and consider the
equivalent linear impulsive differential equation [?,?]

x′ = −kx (5)

x(θ+i ) = x(θ−i ) + qi

since for θi < t < θi+1 it is x(t) = x(θ+i )e−k(t−θi).
We define the auxiliary variable Xi = x(θ+i ), whose
dynamics is ruled by the following discrete dynami-
cal system

Xi+1 = e−k(θi+1−θi)Xi + qi .

When Ne = +∞, θn = nP and the doses qi are
all equal, i.e. qi = q for any i, one has Xi+1 =
e−kPXi + q and hence

Xi = X∞ + (X0 −X∞)e−kPi (6)
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where X∞ =
q

1− e−kP
. Then, for large times x(t)

tends to

x(t) =
qe−k(t mod P )

1− e−kP
. (7)

Similarly, in the case where k is not a constant but
a periodic function k(t) with period P it holds that

x(t) =
qe−K(t mod P )

1− e−K(P )
(8)

where K(t) =
∫ t
0
k(s)ds.

Combined impulsive immunotherapies
Here we shall briefly study the local stability of a
combination therapy between ACI impulsive and IL
impulsive. Uniquely to simplify the calculations we
consider the special case of contemporary adminis-
tration, i.e. synchronous therapies where for any i

θACIi = θILi = iP .

When all the therapy sessions share the same in-
jection rate of the drug, i.e. wi = w, after some
calculations one can show that

ε∞(t) =
wF (t mod P )

1− e−µEP
(

Q+ gE
Qe−µIP + gE

) pE
µI

where

F (t) = e−µEt
(

Q+ gE
Qe−µIt + gE

) pE
µI

Q =
u

1− e−µIP
.

The average value of ε∞(t) reads as

〈ε∞〉 =
w(1 + gE/Q)pE/µI

1− e−µEP
(

Q+gE
Qe−µIP+gE

) pE
µI

ξ1
µEP

where

ξ1 =

∫ 1

e−µEP
dz

(
zµI/µE +

gE
Q

)−pE/µI
z = e−µEt .

Although very cumbersome, the above integral is an-
alytically calculable since

∫
dz

(zm + g)
r =

(zm + g)
1−r

g
Hyp2,1 (γ1, γ2, γ3, γ4)

where γ1 = 1, γ2 = 1−r+
1

m
, γ3 = 1+

1

m
, γ4 =

−zm

g
and Hyp2,1 is the Gauss hypergeometric function

pFq of order (p, q) = (2, 1) [?].
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