Fine-tuning anti-tumor immunotherapies via stochastic simulations: Supplementary Materials

Giulio Caravagna¹, Roberto Barbuti², Alberto d'Onofrio^{3,*}

¹ Institute for Informatics and Telematics, National Research Council, Via. G. Moruzzi 1, Pisa, 56127, Italy. 2 Dipartimento di Informatica, Università di Pisa, Largo Pontecorvo 3, Pisa, 56127, Italy.

³Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano, 20141, Italy.

Email: Giulio Caravagna - giulio.caravagna@iit.cnr.it; Roberto Barbuti - barbuti@di.unipi.it; Alberto d'Onofrio∗ alberto.donofrio@ifom-ieo-campus.it;

[∗]Corresponding author

Supplementary Materials Scalar differential inequalities

Consider the following initial values problem

$$
x' = f(x, t),
$$

$$
x(0) = x_0
$$
 (1)

with $x_0 \geq 0$ and let Q, with $x(0) \in Q$, be a positively invariant set for (1), i.e. such that for all $t > 0$ it is $x(t) \in Q$. Let $g(x, t)$ be a function such that

$$
f(x,t) > g(x,t)
$$

in Q, and let it be

$$
y' = g(y, t),
$$

$$
y(0) = y_0
$$
 (2)

with $y_0 \geq 0$ and such that Q is positively invariant also for (2). Thus it holds that for all $t > 0$ it is

$$
x(t) > y(t).
$$

Scalar linear ODE with periodic coefficients

Consider the following linear scalar ODE

$$
x' = a(t)x,\t\t(3)
$$

where $a(t)$ is bounded and periodic with period P. From Fourier's theorem it follows that $a(t) =$ $\langle a(t) \rangle + b(t)$ where $b(t)$ is a bounded periodic function with zero mean. This yelds that

$$
x(t) = x(0) \exp \left(\langle a(t) \rangle + \int_0^t b(s) ds \right)
$$

and thus, from $x(nP) = x(0) \exp((a(t))P_n)$, it follows that $x(t) \rightarrow +\infty$ if $\langle a(t) \rangle > 0$, and $x(t) \rightarrow 0$ otherwise.

Impulsive differential equations

Consider the following equation

$$
x' = -kx + \sum_{0}^{N_e} q_i \delta(t - \theta_i)
$$
 (4)

where $N_e \leq +\infty$, $k > 0$ and $q_i > 0$ and consider the equivalent linear impulsive differential equation [?,?]

$$
x' = -kx
$$

\n
$$
x(\theta_i^+) = x(\theta_i^-) + q_i
$$
\n(5)

since for $\theta_i < t < \theta_{i+1}$ it is $x(t) = x(\theta_i^+)e^{-k(t-\theta_i)}$. We define the auxiliary variable $X_i = x(\theta_i^+)$, whose dynamics is ruled by the following discrete dynamical system

$$
X_{i+1} = e^{-k(\theta_{i+1} - \theta_i)} X_i + q_i.
$$

When $N_e = +\infty$, $\theta_n = nP$ and the doses q_i are all equal, i.e. $q_i = q$ for any i, one has $X_{i+1} =$ $e^{-kP}X_i + q$ and hence

$$
X_i = X_{\infty} + (X_0 - X_{\infty})e^{-kP_i}
$$
 (6)

where $X_{\infty} = \frac{q}{1 - e^{-kP}}$. Then, for large times $x(t)$ tends to

$$
x(t) = \frac{qe^{-k(t \bmod P)}}{1 - e^{-kP}}.
$$
 (7)

Similarly, in the case where k is not a constant but a periodic function $k(t)$ with period P it holds that

$$
x(t) = \frac{qe^{-K(t \bmod P)}}{1 - e^{-K(P)}}\tag{8}
$$

where $K(t) = \int_0^t k(s)ds$.

Combined impulsive immunotherapies

Here we shall briefly study the local stability of a combination therapy between ACI impulsive and IL impulsive. Uniquely to simplify the calculations we consider the special case of contemporary administration, i.e. synchronous therapies where for any i

$$
\theta_i^{ACI} = \theta_i^{IL} = iP.
$$

When all the therapy sessions share the same injection rate of the drug, i.e. $w_i = w$, after some calculations one can show that

$$
\varepsilon_{\infty}(t) = \frac{wF(t \bmod P)}{1 - e^{-\mu_E P} \left(\frac{Q + g_E}{Q e^{-\mu_I P} + g_E}\right)^{\frac{p_E}{\mu_I}}}
$$

where

$$
F(t) = e^{-\mu_E t} \left(\frac{Q + g_E}{Q e^{-\mu_I t} + g_E} \right)^{\frac{p_E}{\mu_I}} \quad Q = \frac{u}{1 - e^{-\mu_I P}}.
$$

The average value of $\varepsilon_{\infty}(t)$ reads as

$$
\langle \varepsilon_{\infty} \rangle = \frac{w (1 + g_E/Q)^{p_E/\mu_I}}{1 - e^{-\mu_E P} \left(\frac{Q + g_E}{Q e^{-\mu_I P} + g_E} \right)^{\frac{p_E}{\mu_I}} \frac{\xi_1}{\mu_E P}
$$

where

$$
\xi_1 = \int_{e^{-\mu_E P}}^1 dz \left(z^{\mu_I/\mu_E} + \frac{g_E}{Q} \right)^{-p_E/\mu_I} \quad z = e^{-\mu_E t}.
$$

Although very cumbersome, the above integral is analytically calculable since

$$
\int \frac{dz}{(z^m + g)^r} = \frac{(z^m + g)^{1-r}}{g} Hyp_{2,1} (\gamma_1, \gamma_2, \gamma_3, \gamma_4)
$$

where $\gamma_1 = 1, \, \gamma_2 = 1 - r + \frac{1}{r}$ $\frac{1}{m}, \gamma_3 = 1 + \frac{1}{m}$ $\frac{1}{m}$, $\gamma_4 = \frac{-z^m}{g}$ g and $Hyp_{2,1}$ is the Gauss hypergeometric function ${}_{p}F_{q}$ of order $(p,q) = (2,1)$ [?].