Results and Application of Rl

Results

Tests are performed on real datasets (AIDS, PDBSvI, PDBSv2, PDBSv3, Graemlin and PPI) and the synthetic dataset
distributed by Sansone et al. All datasets are labeled using the real information (such as atoms, protein domains, protein
names). Since in Graemlin and PPI each vertex has a unique label, we performed tests using the networks with their
unique labels and with randomly assigned labels varying the number from 32, 64, 128, 256, 512, 1024, to 2048. Label
assignment follows uniform and normal distributions in different tests. Patterns are extracted from the target graphs
varying the density and the dimension. For each dataset we report in Table 1 and/or in plots the number of matches.
All algorithms are deterministic and correct therefore they report the same number of matches. We refer to the main
paper for a complete description of the datasets and the related patterns.

We point out that all algorithms end. However, tests are run with a timeout of 3 minutes to the total execution time
of the algorithms. We chose this timer since it reflects in proportion the results reported in [7] (where test are run with a
timeout of 1 hour). For each dataset we report how many subgraph isomorphism runs each algorithm completes before
the timeout. When an algorithm times out, we exclude the related running times from the means of all algorithms.

The total time needed by an algorithm includes the time to read graphs from files, build data structures, run pre-
processing operations, run the real matching phase and so on. Therefore, we distinguish between the total time and
the matching time. The matching time for Rl and VF2[1] regards the matching process; instead for LAD[7] and
FocusSearch[8] it also includes the preprocessing time. Notice that, the preprocessing steps are the first parts of the
matching processes. The space size is the number of visited nodes of the hypothetical search space tree and the memory
size is the amount of kilobytes required to store all data structures. Each algorithm uses several data structures besides
those to store the graphs.

In Figures 1, 2, 3, 4,5, 6,7, 8,9 and 10 we give a summery view of the results in each dataset. Next, for each

dataset, we report all plots separately.

Algorithm timeout Rl shows overall the best behavior. Results for VF2 on PPI datasets are not reported since
they often time out. FocusSearch times out on dense datasets with small queries (Graemlin and PPI datasets). LAD

sometimes times out on large graphs (PPI dataset).

Number of matches The number of matches is related to the density of the patterns and to the number of labels. For
example, in PDBSvI (see Table 1), the number of subgraph isomorphisms for patterns of sizes 64 and 128 is larger
than for smaller pattern sizes. This may due to the fact those patterns match parts of the backbones of the proteins and
parts of their surfaces. Protein surfaces are rich in atoms of the same type (such as hydrogen). Thus, the number of
possible subgraph isomorphisms increases. However, larger patterns may have fewer matches (see the case of size 256
for sparse patterns (see Table 1, PDBSv3). As can be expected, dense patterns have fewer subgraph isomorphisms than

semidense patterns (see Table 1, PDBSv3, Figure 5) and patterns on target graphs with 512 labels have more matches



than patterns on target graphs with 2048 labels (see Figure 7).

Search space and memory requirement Since LAD and FocusSearch run a preprocessing phase to filter out the
variable domains before the matching phase begins, they can potentially generate a smaller search space as in Figures
1,2,3,5,8,9. However, in Graemlin and PPI with 32 labels datasets and in the synthetic dataset (see Figures 4, 8 and
10), LAD has a larger search space than all other algorithms. On the other hand, FocusSearch maintains low search
spaces in all datasets. This is due to the fact that the datasets have a small number of different labels, in the spirit of
[8], Section 7.7 "Molecular graph retrieval experiments”.

In otherdatasets (AIDS, PDBSvi, and PDBSv2 in Figures 1, 2 and 3), the extensive reduction operations of LAD
prune the search space very well and better than FocusSearch at the price of a greater computational cost. FocusSearch
applies low-priced reduction operations decreasing the running time but generating a larger search space.

The fact that topology-based filtering is more effective than label-based reduction procedures is consistent with our
strategy because the static order of Rl is based on the pattern topology.

By looking at all Search Space and Matches plots we notice that the search space curves are, for all algorithms and
in particular for FocusSearch, dependent on the number of matches in almost all datasets (see for example the plots for
PDBSv3 or PPI datasets).

Concerning the memory requirement, all plots show that Rl consumes a little memory compared to FocusSearch
and LAD, which need extra memory to store compatible maps, domains, and to perform reduction operations. RI-
DsPm increases the consumption of memory compared to RI-Ds whose consumption is similar to Rl . RI-DsPm and
RI do not perform inference or pruning, so the search space is larger than for FocusSearch and LAD. FocusSearch, by
using also bit vectors, requires less memory than LAD. In Figure 3 the memory required by LAD in dense targets is
comparable with all other algorithms and again increases in the sparse targets (PDBSv2) which may be due to the fact
that LAD uses adjacent matrices. Matrices are an advantage in dense graphs. For such graphs therefore, LAD uses less

memory than other algorithms.

Total time and Matching time The total and matching time plots in all datasets, obtained by varying label distribu-
tions, pattern dimensions, pattern densities in sparse and dense targets, show that Rl and RI-Ds outperforms all other
algorithms. Note that, even though RI has to explore larger search spaces than LAD and FocusSearch, it explores the

search space faster since it does not perform reductions. Summarizing we make the following observations.
e Rl always outperforms VF2.
e Rl outperforms all other algorithms in sparse target graphs such as AIDS, PDBSv1, PDBSv2 and synthetic data.

e Rl is comparable with LAD and FocusSearch on small dense pattern graphs, PDBSv3, with dense patterns, and

with semidense small-medium patterns.

¢ Rl outperforms LAD but not FocusSearch on small dense pattern graphs PDBSv3 with large semidense or sparse

patterns.



RI-Ds outperforms LAD on medium dense Graemlin datasets using a small number of labels, for example, 32

labels. It is comparable with LAD and FocusSearch in all target graphs of the datasets.

In total time, RI-Ds is comparable with FocusSearch and outperforms all others across the number of labels,
pattern dimensions, and densities on large dense PPI datasets. In particular it outperforms LAD. In matching

time RI-Ds also outperforms FocusSearch.
RI outperforms all algorithms on all graph types (bounded, meshes and random) of the synthetic datasets.

Plots show that by adding any other even light reduction steps on Rl does not improve performances (see the

behavior of RI-DsPm ).

RI has a low memory requirement and times out less than other algorithms.
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Figure 1: Results on AIDS dataset.

Pattern dim. (number of edges)



Number of subgraph isomorphisms

Number of space's nodes - log-scale

Time (sec.) - log-scale

Matches Finished Instances

1,000,000 == R| == VF2 LAD === FocusSearch
100,000 350
8 300k
10,000 c
S 250
£
1,000 g 200
100 £ 150
5100
[
10 2 5
S
1 Z 0
4 8 16 32 64 128 4 8 16 32 64 128
Pattern dim. (number of edges) Pattern dim. (number of edges)
Search Space Total Time
= R| == \/F2 LAD == FocusSearch == R| == VF2 LAD == FocusSearch
10,000,000 100 3
4
1,000,000 ° 10 I I I/T/
100,000 ] I ¢
@
10,000 & & —- 2
1,000 & T * "-l; I/’L__'L, ‘/I/i
Q
100 8
10 £ oot l— —&
1 0
4 16 32 64 12¢ 4 8 16 32 64 128
Pattern dim. (number of edges) Pattern dim. (number of edges)
Matching Time Memory
® =Rl ——VF2 LAD == FocusSearch == R| == \/F2 LAD == FocusSearch
100 T 1,000,000
10 I
T / o
'3 3 ) i I % 100,000
Y ] ?
S m— I L [ B B
. x
0.01 £ 1000 -\]\1
o
& — 2 ;
& e N -
0 1,000
4 8 16 32 64 128 4 8 16 32 64 128
Pattern dim. (number of edges) Pattern dim. (number of edges)

Figure 2: Results on PDBSvI dataset.
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Figure 3: Results on PDBSv2 and PDBSv3 datasets.
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Figure 4: Results on Graemlin dataset. Graphs are labeled using 32 labels uniformly distributed.
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Figure 5: Results on Graemlin dataset. Graphs are labeled using 256 labels uniformly distributed.
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Figure 6: Results on Graemlin dataset varying the number of labels.
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Figure 7: Results on PPI dataset. Graphs are labeled using a normal distribution
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Figure 9: Results on PPI dataset. Graphs are labeled using the original protein names. Each vertex has a unique label.



el

umber of subgraph isomorphisms - log-scale.

Time (sec) - log-scale

Time (sec.) -log-scale.

Matches

I

1.00E+005

1.00E+004

1.00E+003

1.00E+002

1.00E+001

i

16 36 64 81 100 196 400 576 784
Mesd 2D Mesh
Targetdim. (number of nodes)

1.00E+000

40 60 80 100 200 400 600 800 1000
Bonded valence

Search Space
=Rl ——VF2

1.00E+008

1.00E+007

1.00E+006

1.00E+005

1.00E+004

1.00E+003

1.00E+002

1.00E+001

Finished Instances

—8— Rl = VF2 LAD == FocusSearch == RI-Ds

ished instances

Number of

27 64 125 216 343 512 7291000
3

LAD = FocusSearch === RI-Ds

e

120
100 E ¥ '—‘.—.\—.\

8

60

o

i 20

16 81 256 6251206 20 40 60 80 100 200 400 600 800 1000
Mesh 4D Random

0
20 40 60 80 100 200 400 600 8001000 16 36 64 81 100 196 400 676 784 1024

100 2
Bonded valence fesd 2 h3D Mesh 4D

Targetdim. (number of nodes)

Total Time

—— Rl = VF2

LAD = FocusSearch == RI-Ds.

log-scale

Time (sec.

l\"\i — ~

1.00E+4000 0
20 40 60 80 100 200 400 600 8001000 16 36 64 81 100 196 400 576 784 27 64 125 216 343 512 7291000 16 81 256 6251206 20 40 60 80 100 200 400 600 800 1000 20 40 60 80 100 200 400 600 800 1000 16 36 64 81 100 196 400 576 784 27 64 125 216 343 512 7291000 16 81 256 625 1296
Bonded valence Mesd 2D esh 31 Mesh 4D Random Bonded valence Mesd 2D Mesh 3D Mesh 4D
Targat dim. (number of nodos) Targat dim. (umbor of nodos)
Matching Time Memory
8 Rl =4 VF2 5 LAD = FoCUSSearch = RI-DS ~8— Rl =4 VF2 % LAD = FoCUSSearCh = RI-Ds.
1.00E4002 100,000
T
1.00E4001 3
3
N
1.00E+000 -
10,000
1.00E-001 3
1.00€-002 H
H oot P ,ﬂ#ﬁ /
1,000 Pt =
1.008-003 +
1.00E-004
1.00E-005 100
20 40 60 80 100 200 400 600 8001000 16 36 64 81 100 196 400 576 784 27 64 125216 43 512 7291000 16 81 256 6261296 20 40 60 80 100 200 400 600 800 1000 20 40 60 80 100 200 400 600 8001000 16 36 64 81 100 196 400 576 784 27 64 125 216 343 512 7291000 16 81 256 625 1296
Bonded valence Mesd 2D Mesh 3D Mesh 4D Random Bonded valence Mesd 2D Mesh 4D

Target dim. (number of nodes)

Targetdim. (number of nodes)

Figure 10: Results on synthetic datasets distributed by Sansone et al.

27 64 125 216 343 512 7291000 16 81 256 625 1296
Mes}

20 40 60 80 100 200 400 600 800 1000
Random

20 40 60 80 100 200 400 600 800 1000
Random

/""

20 40 60 80 100 200 400 600 800 1000
Random



AIDS dataset

Figure 11 shows the total search space size in terms of the number of visited tree nodes. As expected, LAD generates
the smallest search space, FocusSearch outperforms Rl due to the preprocessing and reduction operations and Rl
outperforms VF2. Figures 12, 13, and 14 show the means of the memory requirements, matching and total running

time. Rl outperforms all the other algorithms.

PDBSv1 dataset

Figure 15 shows the number of times the algorithms end before the timeout. Figure 16 shows that LAD and Fo-
cusSearch have a better search space pruning while in Figure 17 Rl and VF2 show the low memory requirements. Rl

outperforms all other systems in matching and total time (see Figures 18 and 19).

PDBSv2 and PDBSv3 datasets

Figure 20 shows the number of times the algorithms end before the timeout. For the PDBSv2 dataset, Figure 21
shows the space size. CSP based methods (LAD and FocusSearch) have an effective size reduction on increasing the
density of the patterns. Figure 22 shows the memory requirements. Rl and VF2 maintain a low profile. By contrast,
since LAD and FocusSearch store compatibility maps and variables domains, their memory requirements increase with
the number of vertices of the target graphs. Furthermore, since LAD uses adjacency matrices, it gives better results
when the number of edges per vertex increases. For each pattern vertex, LAD and FocusSearch must store a structure
containing the domain of that variable. This results in a potential quadratic space requirement to store compatibility
maps and domains. However, FocusSearch uses bit-vector representations for compatibility maps and domains, so it
may maintain a more flat profile though still quadratic. Figures 23 and 24 show the matching and the total time. RI
outperforms the other methods except for the some patterns matched into dense targets (i.e. Contact Map, PDBSV3).
This behavior is due to the small number of constraints present in the patterns. Rl and VF2 seem to explode as pattern
sizes (number of edges) increase in sparse graphs (proteins backbones) but this is due to the absence of compatibility
maps. As discussed before, VF2 and RI need linear time to check for edge existence versus the constant time needed

when compatibility maps are used.

Graemlin dataset

Figures 25 and 26 show the number of matches and the number of times the algorithms end before the timeout,
respectively. The number of matches decreases increasing the number of labels. Notice that, in Figure 27, FocusSearch
has a smaller space requirement than LAD. This is due to the vertex labeling and the prematch process of FocusSearch
which is based on neighborhood labels. However, LAD outperforms all other methods on targets graph with unique
labels. Figure 28 shows the memory requirements. Rl has the lowest memory requirement. Figures 29 and 30 show

the matching and the total times, respectively. The total time of Rl is comparable with all other systems besides VF2
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using unique or 2048 labels, whereas on the same targets, Rl outperforms all other systems. By decreasing the number

of labels, RI-Ds shows the best performances both in matching and total time.

PPI dataset

We do not report the performance of VF2 on this dataset because it solved just a few instances. Figures 31 and 32 show
the number of matches using a normal and uniform distribution, respectively. The number of matches decreases with
increasing numbers of labels. Figures 33, 34 and 35 show the number of times the algorithms end before the timeout
using unique label, normal, and uniform label distribution, respectively. Rl results the more robust. Figures 36, 37 and
38 show the space size using unique label, normal, uniform label distribution, respectively. LAD has a very low space
size using unique labels. FocusSearch has the best performances using normal and uniform distribution. Figures 39, 40
and 41 and 42, 43 and 44 show the matching and the total times using unique label, normal, uniform label distribution,
respectively. Rl shows very low matching and total time using unique labels. RI-Ds outperforms all other systems in

the rest of the target garphs.

Synthetic dataset

Our synthetic dataset consists of the graphs distributed by Sansone et al. They are pairs of unlabeled graphs having
sizes varying from 20 to 1000 vertices. We refer to their main paper for the dataset detail statistics. The dataset contains

the following kinds of graphs:

e Bounded Valence: The number of edges per vertex varies from 3, 6, 9.
e Mesh: 2D, 3D and 4D, where 2,3,4 indicate the dimensionality of the meshes.

e Random: Edges are added according to a probability; edges are independent and the probability distribution is

uniform.

Since the synthetic dataset is composed of a pair of (target and pattern) graphs, we do not need to generate patterns
for it. Results are showed in Figures 45, 46, 47, 48, 49 and 50. RI outperforms FocusSearch and LAD on matching,
memory and total time. This is due to the fact that those graphs are unlabeled, so the inference rules of FocusSearch
and LAD have less power because they are partly (note that LAD and FocusSearch reduce better the space) based on

labels.

Table 1 - Statistics of Biochemical Patterns Subgraph Isomorphisms.

All algorithms are exact and deterministic and find the same number of subgraph isomorphisms. Patterns are divided
per size and/or per density. For each pattern type, the table reports the average number of subgraph isomorphisms (SI)

and its related standard deviation (SD).
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Pattern Size  Avg Number of SI ~ SD of Avg Number of SI
AIDS 4 350120.86 427210.75

8 220855.34 280818.33

16 14703.55 73942.02

32 20495.16 148230.81
PDBSvI 4 379.83 607.87

8 257.74 483.74

16 400.44 1307.04

32 696.16 1998.14

64 61484.71 295970.22

128 193612.03 542854.14
PDBSv2 4 655.53 584.92

8 326.18 390.59

16 82.18 157.66

32 9 10.17

64 16.54 15.01

128 361.37 793.5
PDBSv3
Dense 8 1 0

16 1 0

32 8.5 17.72

64 1.32 0.99

128 1.71 1.14

256 4.11 8.39
Semi-dense 8 1.2 0.4

16 58.86 145.48

32 119.97 198.94

64 129.8 417.9

128 18953.57 123154.79

256 23128.58 67948.13
Sparse 8 208.5 466.96

16 11104.38 20141.36

32 1135928.3 1949694.37

64 814667.64 3094065.45

128 974924.8 2325178.8

256 30120.02 189904
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Figure 11: Averages of search space sizes on AIDS dataset for different patterns having 4, 8, 16 and 32 edges. The
chart shows the number of visited nodes. Reduction based methods (LAD and FocusSearch) outperform Rl and VF2.
RI outperforms the VF2 heuristics. The efficiency of the search strategy of Rl increases with the number of pattern
edges.
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Figure 12: Averages of memory requirement on AIDS dataset for different patterns having 4, 8, 16 and 32 edges. Rl
outperforms all other algorithms.
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Figure 13: Averages of matching time on AIDS dataset for different patterns having 4, 8, 16 and 32 edges. Rl outper-
forms all other algorithms.
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Figure 14: Averages of the total times on AIDS dataset for different pattern graph dimensions having 4, 8, 16 and 32
edges. The ratio between the size of the generated search space and the time needed to explore the search space allows
Rl to outperform all other methods.
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Figure 15: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out on PDBSvI
dataset.
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Figure 16: Averages of search space sizes on PDBSvI dataset for different patterns having 4, 8, 16 and 32, 64 and 128
edges. The chart shows the number of visited nodes. Reduction based methods (LAD and FocusSearch) outperform
Rl and VF2.

19



Memory

== R| == \/F2 LAD === FocusSearch

1,000,000

100,000

L 11

— & . — &

1,000
4 8 16 32 64 128

Kilobytes - log-scale

Pattern dim. (number of edges)

Figure 17: Averages of memory requirement on PDBSvI dataset for different patterns having 4, 8, 16 and 32, 64 and
128 edges. Rl outperforms LAD and FocusSearch algorithms.
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Figure 18: Averages of matching time on PDBSvI dataset for different patterns having 4, 8, 16 and 32, 64 and 128
edges. Rl outperforms all other algorithms.
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Figure 19: Averages of the total times on PDBSvI dataset for different pattern graph dimensions having 4, 8, 16 and
32, 64 and 128 edges. The ratio between the size of the generated search space and the time needed to explore the
search space allows RI to outperform all other methods.
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Figure 20: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out on PDBSv2 and PDBSv3 datasets.
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Figure 21: Averages of the search spaces sizes on PDBSv2 and PDBSv3 datasets. The chart shows the number of visited nodes. Results are divided by pattern density and
pattern dimension. Dense indicates that the number of vertices of the pattern is 50% of the number of pattern edges. Semidense indicates that the number of vertices of the
pattern is the 25% of the number of pattern edges. In the sparse patterns the number vertices of the pattern is the 90% of the number of pattern edges. Sparse patterns on
contact maps,PDBSv3, (which are dense graphs) generate a larger search space for all the methods. However, the reduction procedures of FocusSearch and LAD outperform
the other methods in particular on medium sparse graphs (PDBSv2) at the cost of memory usage (see next plot-Memory).
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Figure 22: Averages of memory requirements on PDBSv2 and PDBSv3 datasets. The chart measures the maximum peaks of memory usage. Results are divided by pattern
density and pattern dimension (number of edges). Dense indicates that the number of vertices of the pattern is 50% of the number of pattern edges. Semidense indicates that
the number of vertices of the pattern is the 25% of the number of pattern edges. In the sparse patterns the number vertices of the pattern is the 90% of the number of pattern
edges. On medium sparse graphs, PDBSv2, domain-based methods require much memory to store domains and compatibility maps. This makes it possible for them to have
a low search space (see the above plot-Search Space).
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Figure 23: Averages of matching times on PDBSv2 and PDBSv3 datasets. Results are divided by target type, patterns density and patterns dimension. Dense indicates that
the number of vertices of the pattern is 50% of the number of pattern edges. Semidense indicates that the number of vertices of the pattern is the 25% of the number of
pattern edges. In the sparse patterns the number vertices of the pattern is the 90% of the number of pattern edges. The RI search strategy keeps Rl competitive on contact
maps (PDBSv3) and outperforms other methods on sparse targets such as proteins backbones (PDBSv2).
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Figure 24: Averages of total times on PDBSv2 and PDBSv3 datasets. Results are divided by target type, patterns density and patterns dimension. Dense indicates that the
number of vertices of the pattern is 50% of the number of pattern edges. Semidense indicates that the number of vertices of the pattern is the 25% of the number of pattern
edges. In the sparse patterns the number vertices of the pattern is the 90% of the number of pattern edges. The Rl search strategy keeps Rl competitive on contact maps
(PDBSv3) and outperforms other methods on sparse targets such as proteins backbones (PDBSv2).
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Figure 26: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out on Graemlin dataset
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Figure 27: Averages of search space sizes on Graemlin dataset. The chart shows the number of visited search tree nodes. Networks are randomly uniformly labeled with 32,
64, 128, 512, 2048 and all different labels. Results are grouped by number of labels in the dataset and pattern dimension (number of edges). FocusSearch outperforms all
other systems but LAD on the dataset labeled with unique labels.
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Figure 28: Averages of memory requirements for the Graemlin datasets. Networks are randomly uniformly labeled with 32, 64, 128, 512, 2048 and all different labels.
Results are grouped by number of labels in the dataset and pattern dimension (number of edges). The chart measures the peaks of memory usage during the execution of
the algorithms. The large number of nodes in the target graphs does not make the memory usage in LAD explode in contrast to the amount of memory requirement to store
compatibility maps and domains. However, thanks to the bit vector domain representation, FocusSearch can maintain a reasonably low memory usage. Rl outperforms all
other systems.
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Figure 29: Averages of matching times on Graemlin dataset. Networks are randomly uniformly labeled with 32, 64, 128, 512, 2048 and all different labels. Results are
grouped by number of labels in the dataset and pattern dimension (number of edges). Rl outperforms the other methods by increasing the number of labels. For a small
number of labels RI-Ds outperforms other systems.
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Figure 30: Averages of matching times on Graemlin dataset. Networks are randomly uniformly labeled with 32, 64, 128, 512, 2048 and all different labels. Results are
grouped by number of labels in the dataset and pattern dimension (number of edges). RI-Ds is comparable with all other methods and outperforms LAD on a small number
of labels.
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Figure 31: Number of subgraph isomorphisms on PPI dataset. The PPI networks are randomly labelled using a normal distribution.



123

Number of subgraph isomorphisms - log-scale

1,000,000

100,000

10,000

1,000

10

o

1

o

—_

Matches

“m“ ni”" n"h i

16 32 64 128 256 4 16 32 64 128 256 4 16 32 64 128 256 4
32 labels 128 labels 512 labels

Pattern dim. (humber of edges)

M

16 32 64 128
2048 labels

Figure 32: Number of subgraph isomorphisms on PPI dataset. The PPI networks are uniformly randomly labelled.
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Figure 33: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out. The PPI networks are labeled with the names of proteins. Each
vertex has a unique label.
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Figure 34: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out. The PPI networks are randomly labelled using a normal
distribution.
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Figure 35: Number of pattern subgraph isomorphisms completed by the algorithms before the set time-out. The PPI networks are uniformly randomly labelled.
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Figure 36: Averages of search space sizes on PPI dataset. The PPI networks are labeled with the names of proteins. Each vertex has a unique label. LAD outperforms all
other systems.
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Figure 37: Averages of search space sizes on PPI dataset. The PPI networks are randomly labelled using a normal distribution. FocusSearch has the best performances.
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Figure 38: Averages of search space sizes on PPI dataset. The PPI networks are uniformly randomly labelled. FocusSearch has the best performances.
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Figure 39: Averages of matching times on PPI dataset. The PPI networks are labeled with the names of proteins. Each vertex has a unique label. Rl ouyperforms other
systems.
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Figure 40: Averages of matching times on PPI dataset. The PPI networks are randomly labelled using a normal distribution. RI-Ds outperforms all other systems.
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Figure 41: Averages of matching times on PPI dataset. The PPI networks are uniformly randomly labelled. RI-Ds outperforms all other systems.
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Figure 42: Averages of matching times on PPI dataset. The PPI networks are labeled with the names of proteins. Each vertex has a unique label. Rl outperforms all other
systems



Sy

Total Time

== R| == | AD FocusSearch === R|-DS ==p== R[-DsPm

100

10
)
[}
b
g
I 1
s
3
(0]
£
'_

0.1

0.01

4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256 4 8 16 32 64 128 256
32 labels 128 labels 512 labels 2048 labels

Pattern dim. (number of edges)

Figure 43: Averages of matching times on PPI dataset. The PPI networks are randomly labelled using a normal distribution. RI-Ds outperforms all other systems.
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Figure 44: Averages of matching times on PPI dataset. The PPI networks are uniformly randomly labelled. RI-Ds outperforms all other systems.
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Figure 45: The number of matches on Sansone et al. dataset. Results are grouped by target type (Bounded valence, Mesh 2D, Mesh 3D, Mesh 4D, Random) and target
dimension (number of vertices). Patterns come from the original dataset.
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Figure 46: Number of times algorithms end before timeout.
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Figure 47: Averages of search spaces sizes on Sansone et al. dataset. The chart shows the number of visited nodes of the search tree by the five algorithms. Results are
grouped by target type (Bounded valence, Mesh 2D, Mesh 3D, Mesh 4D, Random) and target dimension (number of vertices). Patterns come from the original dataset. On
unlabeled graphs, FocusSearch does not take advantages by its prematch steps (which is based on degrees and labels neighborhood). The pruning power is due only to the
reduction procedures.



0s

Memory

= R| =—t— \/F2 LAD === FocusSearch ==p==RI-Ds

100,000

10,000
]
@
3
o
°
P
2
2
°

1,000 -
100
20 40 60 80 100 200 400 600 800 1000 16 36 64 81 100 196 400 576 784 27 64 125 216 343 512 729 1000 16 81 256 625 1296 20 40 60 80 100 200 400 600 800 1000
Bonded valence Mesd 2D Mesh 3D Mesh 4D Random

Targetdim. (number of nodes)

Figure 48: Memory requirement on Sansone et al. dataset. The chart measures the peak of memory usage during the executions of the algorithms. Results are grouped by
target type (Bounded valence, Mesh 2D, Mesh 3D, Mesh 4D, Random) and target dimension (number of vertices). Patterns come from the original dataset. On increasing
the target dimension, the domains of FocusSearch and LAD become large.
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Figure 49: Matching time on Sansone et al. dataset. Results are grouped by target type (Bounded valence, Mesh 2D, Mesh 3D, Mesh 4D, Random) and target dimension
(number of vertices). Patterns come from the original dataset. Rl outperforms FocusSearch and LAD.
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Figure 50: Total time on Sansone et al. dataset. Results are grouped by target type (Bounded valence, Mesh 2D, Mesh 3D, Mesh 4D, Random) and target dimension (number
of vertices). Patterns come from the original dataset. Both the ratio between the size of the generated search space and the time needed to explore it allow Rl to outperform
FocusSearch and LAD.



Complexes Search in Biological Networks

The CORUM dataset[2] contains protein complexes from several species. Each complex extracted from a species is known to be
highly conserved in different species. That is, proteins of a complex are high conserved in the other species via protein sequence
similarity obtained from the SIMAP database[5]. This conservation does not necessarily imply that the molecular interactions within
a complex in a species are also present in the other species. We test whether the implication nevertheless does apply.

We labeled the protein interaction networks used in the datasets PPI using the GO annotations taken from BioDBNet[4]. We
extract the interactions from the species where some complexes of interest originated, and we look for all occurrences of such
complexes graphs (patterns) in the other species (targets) using their known functional annotations and the similarity map computed
with SIMAP. Using DAVID [6] we extracted the most relevant GO terms associated with the subunits of the complexes. The
similarity map is used to select among the results the most similar to the complex patterns.

Let us use as example the complex 208 proteasome[3] from Mus musculus (see Figure 52). It has 14 vertices and 182 edges.
It is an essential component of the ATP-dependent proteolytic pathway in eukaryotic cells and is responsible for the degradation of
most cellular proteins. The 20S proteasome in our PPI dataset is high conserved in Homo sapiens, Rattus norvegicus, Bos taurus,
Xenopus tropicalis, Danio rerio, and Takifugu rubipres and medium conserved in Caenorhabditis elegans, Drosophila melanogaster

and Saccaromyces cerevisiae. Figure51 shows a screen shot of CORUM phylogenetic conservation of the 20S proteasome complex.
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Figure 51: Phylogenetic conservation of the 20S proteasome complex.

We found that the 20S proteasome complex interactions are preserved in all tests networks except in the network for Xenopus
tropicalis. This may due to the lack of pattern edges or relevant vertices in the target networks. In general we observed a large number
of matches in networks related to complex organisms (for example in Homo sapiens we found that the complex also matches with
subunits specific of the 26S proteasome complexes). Figure 53 shows a match of the 20S proteasome complex in Takifugu rubipres

and Rattus norvegicus, respectively.
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Figure 53: (a) and (b) show the 20§ proteasome complex occurrence in Takifugu rubipres. (c) and (d) show the 20S
proteasome complex occurrence in Rattus norvegicus. (b) and (c) depict the occurrences with a partial view of the
target networks.
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